
(12) United States Patent
Teichmann et a1.

US008751437B2

US 8,751,437 B2
Jun. 10, 2014

(10) Patent N0.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

SINGLE PERSISTENCE IMPLEMENTATION
OF BUSINESS OBJECTS

Applicant: SAP AG, Walldorf (DE)

Inventors: Jan Teichmann, Neustadt/Weinstrasse
(DE); Daniel Hutzel, Karlsruhe (DE);
Stefan Baeuerle, Rauenberg-Rotenberg
(DE); Oliver Jaegle, Lorsch (DE);
Abhay Tiple, St. Leon-Rot (DE);
Gunther Liebich, Walldorf (DE);
Marcel Kassner, Hockenheim (DE);
Peter Anselmann, Leimen (DE); Anton
Forstreuter, Heidelberg (DE)

Assignee: SAP AG, Walldorf (DE)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 42 days.

Appl. No.: 13/666,661

Filed: Nov. 1, 2012

Prior Publication Data

US 2014/0122411A1 May 1,2014

Int. Cl.
G06F 17/30
US. Cl.
CPC G06F 17/3007(2013.01); G06F 17/30073

(2013.01); G06F17/3009] (2013.01); G06F
17/30315 (2013.01); G06F 17/30563 (2013.01);

G06F 17/30592 (2013.01)

(2006.01)

USPC 707/600; 707/607

Field of Classi?cation Search
CPC G06F17/30073; G06F 17/3007; G06F

17/30091; G06F 17/30315; G06F 17/30563;
G06F 17/30592

USPC 707/600, 607

See application ?le for complete search history.

MODEL liq

SlNGLE PERSISTENCEJB}

DATABASE 1 - -

(56) References Cited

U.S. PATENT DOCUMENTS

6,831,668 B2 12/2004 Cras et a1.
8,407,183 B2 * 3/2013 Foeldesi et al. 707/611

2003/0204534 A1 * 10/2003 Hopeman et al. .. 707/200
2007/0136278 A1 * 6/2007 GraZioli et a1. 707/6

2009/0164486 A1 * 6/2009 Foeldesi et al. 707/100
2009/0240663 A1 * 9/2009 Plattner et al. 707/3

2011/0161379 A1* 6/2011 Grund et a1. 707/812
2013/0110766 A1 * 5/2013 Promhouse et al. 707/607

OTHER PUBLICATIONS

“Business Object Types,” SAP NetWeaver 2004 SPS23, visited Jun.
6, 2012, 2 pages.
“SAP Business ByDesign: Analytics,” SAP AG, on or before Jun. 7,
2012, 78 pages.
“Product Documentation, SAP Business ByDesign FP 3.5: Analyt
ics,” visited Jun. 7, 2012, 113 pages.
Tuan, “CD 122, Five Essential SAP Business ByDesign Customizing
Capabilities That Every Partner Should Know,” SAP TechEd, Sep.
2011, 21 pages.
Schneider, “SAP Business ByDesign StudioiApplication Develop
ment,” Galileo Press, Nov. 1, 2011, Chapter 8, 29 pages.

* cited by examiner

Primary Examiner * FrantZ Coby

(74) Attorney, Agent, or Firm * Klarquist Sparkman, LLP

(57) ABSTRACT

Business objects can be implemented in a single persistence
scenario that supports both online transaction processing
(OLTP) and online analytical processing (OLAP). A con
sumption-centric approach can use a same business object
attribute data format model for consumption and persistence.
Also, a singular model can be implemented in different layers
of a system processing business objects. Extra software layers
can be avoided. A business-objects-based system can take
advantage of the technologies to provide greater ?exibility,
ease of extensibility, and performance improvements.

20 Claims, 12 Drawing Sheets

ac METADATA
REPOSITORV

14$

US. Patent Jun. 10, 2014 Sheet 1 0f 12 US 8,751,437 B2

OLTP OLAP
5 SERVICES _ . SERVICES

:_ CONSUMER _.- E_ CONSUMER .
'- m . ?

_ _ _ _ _Eus_INEss______"___l

OBJECT l
OLTP MODEL m |

SERVICES |
RUNTIME BO METADATA |
m REPOSITORY I
BO @ I

BUSINESS
LOGIC l
14—5 |

l
I_ _.

OLAP
SERVICES
RUNTIME
E

100

SINGLE PERSISTENCE ?

DATABASE 1 90

FIG. 1

US. Patent

200

Jun. 10, 2014 Sheet 2 0f 12

RECEIVE OLTP SERVICE REQUESTS

FULFILL OLTP SERVICE REQUESTS VIA
SINGLE PERSISTENCE IN DATABASE

I
RECEIVE OLAP SERVICE REQUESTS

I
FULFILL OLAP SERVICE REQUESTS VIA

SAME SINGLE PERSISTENCE IN
DATABASE

US 8,751,437 B2

210

220

230

240

FIG. 2

US. Patent Jun. 10, 2014 Sheet 3 0f 12 US 8,751,437 B2

USER INTERFACE 31_5 USER INTERFACE g

DATA IN UIFORMAT31_7 5 DATAIN UIFORMATE

................... _...Y . . . _ , ,

OLTP OLAP
_ SERVICES '3 SERVICES _

'-_ CONSUMER ; =_ CONSUMER _:

| l
I DATA IN EXTERNAL FORMAT 39—5 I

|
: BUSlNESS OBJECT MODEL @ I
| I BO METADATA

BUSINESS |<_> REPOSITORY
| LOGIC 150
l 14_5 | —

| l
| |
I DATA IN EXTERNAL FORMAT @ I

DATA IN EXTERNAL FORMAT ?

DATABASE M

300

US. Patent

400

Jun. 10, 2014 Sheet 4 0f 12

RECEIVE DATA IN
EXTERNAL DATA FORMAT

PROCESS DATA ACCORDING TO
BUSINESS OBJECT MODEL IN EXTERNAL

FORMAT

I
PERSIST DATA IN EXTERNAL FORMAT

US 8,751,437 B2

410

420

430

FIG. 4

US. Patent Jun. 10, 2014 Sheet 5 0f 12 US 8,751,437 B2

CI)» 585
A

r 3
BUSINESS OBJECT @ W
V

BO NODE
(ROOT) -- .--- TABLE

525R —595R

_ BO NODE TABLE

525A 59%

BO NODE __ TABLE

m m

_ BO NODE TABLE

@ M

DATABASE

L J W

500 5

US. Patent

600

Jun. 10, 2014 Sheet 6 0f 12

RECEIVE DEVELOPMENT DIRECTIVE
CHANGING BUSINESS OBJECT

IM PLEMENT DEVELOPMENT DIRECTIVE

I
MAINTAIN ONE-TO-ONE RELATIONSHIP

BETWEEN BUSINESS OBJECT NODES AND
DATABASE TABLES

US 8,751,437 B2

610

620

630

FIG. 6

US. Patent Jun. 10, 2014 Sheet 7 0f 12 US 8,751,437 B2

ORIGINAL
APPLICATION SUITE m

BUSINESS BUSINESS
OBJECT 720A OBJECT 720D

BUSINESS
OBJECT 72QB

BUSINESS
BUSINESS OBJECT 720N

OBJECT 720C

CUSTOM
IZATIONS
@

DEVELOPMENT ENGINE
m

CUSTOMIZED
APPLICATION SUITE E

BUSINESS BUSINESS
OBJECT m OBJECT 720D’

OBJECT 720B’
BUSINESS

OBJECTm

" FIG. 7
700

US. Patent

800

Jun. 10, 2014 Sheet 8 0f 12

RECEIVE INDICATION TO CUSTOMIZE
APPLICATION SUITE

RESPONSIVE TO INDICATION, CHANGE TO
BUSINESS OBJECT TYPE DEFINITION(S)

I
GENERATE AUTOMATIC FUNCTIONALITY

FOR CHANGES

US 8,751,437 B2

810

820

830

FIG. 8

US. Patent Jun. 10, 2014 Sheet 9 0f 12 US 8,751,437 B2

0LTP OLAP
: SERVICES '3 5 SERVICES
=_ CONSUMER _: CONSUMER _.-'

n 0 I ' 0"...

[—::: IIIIIIIIIIIIIIIJITI
| | EXTERNAL FORMAT DATA @ I I
| _ _ _ _BUSNE€STJBTEC_T MODEL—? _ _ _ _ '_ |

l I
| BUSINESS l
l LOGIC |
| 14—5 I
l I
l I— _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -- ‘l l

| | EXTERNAL FORMAT DATA g I |
I_ _—_—_—_ _—_—_—_—_—_—_—_—_—_—_—_—_—_—_—;1 _.

V
BO METADATA QUERY
REPOSITORY LANGUAGE
@ RUNTIME

%
A

B0
VIEW

_ _ _ _ _ _ _ _ _ _ _ _ _ BUILDER

?

DATABASE E

V

DATABASE VIEWS
m

900

US. Patent Jun. 10, 2014 Sheet 10 0f 12

BUILD DATABASE VIEWS BASED ON BO
METADATA

I
RECEIVE OLAP SERVICE REQUESTS

I
FULFILL OLAP SERVICE REQUESTS VIA
SAME PERSISTENCE IN DATABASE

1000

US 8,751,437 B2

1010

1030

1040

FIG. 10

US. Patent

I.
I COMPUTING ENVIRONMENT 1200

I_I___________

Jun. 10, 2014

graphics or
00 processing

unit 1210 processm
unit 1215

MEMORY MEMORY

Sheet 12 0f 12 US 8,751,437 B2

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___|

COMMUNICATION
CONN ECTION(S) 1270

INPUT DEVICE(S) 1250

OUTPUT DEVICE(S)
1260

i """ ": STORAGE

19'.-.J 1240

SOFTWARE 1280 IMPLEMENTING TECHNOLOGIES

FIG. 12

US 8,751,437 B2
1

SINGLE PERSISTENCE IMPLEMENTATION
OF BUSINESS OBJECTS

BACKGROUND

As enterprises accumulate ever greater amounts of data on
their transactions, processes, products, and operations, online
analytical processing has become an essential part of doing
business. The number of tools and techniques addressing
analytical processing has grown, enabling data analysts to
quickly analyze and navigate through vast complex collec
tions of data.
By conventional practice, online analytical processing is

traditionally performed on data that is separate from live
transactional data. Accordingly, although current approaches
provide a wide variety of functionality, they result in com
plexities related to mapping and persistence. There is there
fore room for improvement.

SUMMARY

The Summary is provided to introduce a selection of con
cepts in a simpli?ed form that are further described below in
the Detailed Description. The Summary is not intended to
identify key features or essential features of the claimed sub
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

Online analytical processing and online transaction pro
cessing can be performed with a single persistence. Business
objects can be supported by the single persistence, and a
one-to-one relationship between business object nodes and
database tables can be implemented. A framework for imple
menting the business objects can implement a single data
format model. For example, an external format can be used
throughout the processing stack when processing or persist
ing business objects.
As described herein, a variety of other features and advan

tages can be incorporated into the technologies as desired.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary system imple
menting a single persistence supporting business objects.

FIG. 2 is a ?owchart of an exemplary method of imple
menting a single persistence supporting business objects.

FIG. 3 is a block diagram of an exemplary system imple
menting a single persistence and a single data format model
for business objects.

FIG. 4 is a ?owchart of an exemplary method implement
ing a single persistence and a single data format model for
business objects.

FIG. 5 is a block diagram of a system implementing a
one-to-one relationship between business object nodes and
database tables in a single persistence scenario.

FIG. 6 is a ?owchart of an exemplary method implement
ing a one-to-one relationship in a development scenario.

FIG. 7 is a block diagram of a system implementing a
customized application suite with business objects having
extension attributes.

FIG. 8 is a ?owchart of an exemplary method implement
ing a customized application suite with business objects hav
ing extension attributes.

FIG. 9 is a block diagram of an exemplary system imple
menting a single persistence and a single data format model
for business objects with database views for online analytical
processing.

20

25

30

35

40

45

50

55

60

65

2
FIG. 10 is a ?owchart of an exemplary method implement

ing a single persistence and a single data format for business
objects with database views for online analytical processing.

FIG. 11 is a block diagram of an exemplary business object.
FIG. 12 is a diagram of an exemplary computing system in

which described embodiments can be implemented.

DETAILED DESCRIPTION

Example 1

Exemplary Overview

The technologies described herein can be used for single
persistence techniques in a variety of scenarios. Adoption of
the technologies can provide ef?cient actions on data in both
OLTP and OLAP scenarios.
The technologies can be helpful for those wishing to

reduce the complexities and resources related to systems
processing both online transaction processing and online ana
lytical processing. Synchronization and inconsistencies
between data can be avoided. Bene?ciaries include develop
ers who wish to customize a computing system implementing
the technologies. End users can also indirectly bene?t from
the technologies because changes to the system can be easily
implemented to meet user requirements.

Example 2

Exemplary System Implementing Single Persistence
Supporting Business Objects

FIG. 1 is a block diagram of an exemplary system 100
implementing a single persistence supporting business
objects as described herein.

In the example, one or more online transaction processing
consumers 110 and one or more online analytical processing
consumers 120 can be served by the system 100. The con
sumers 110, 120 are shown for context and need not be
implemented as part of the technology.
An online transaction processing (OLTP) services runtime

140 can comprise business object business logic 145 of the
supported business objects and is operable to provide OLTP
services to consumers 110 via a single persistence 195 stored
in a database 190. The aggregated business logic 145 of
different business object types can form a business logic layer
in the business object model 130 to provide OLTP services to
business object consumers. A business object has its own
business object implementation in actions, validations, deter
minations, and the like. Certain business logic can be shared
among business objects, such as create, read, update, delete,
lock, unlock, transactional behavior, and the like.
An online analytical processing (OLAP) services runtime

170 is operable to provide OLAP services to consumers 120
via the single persistence 195 (e.g., the same single persis
tence used by the OLTP services runtime 140).

Consumers 110, 120 can access the services 140, 170
according to a business object model 130 that can be used to
ful?ll OLAP services requests as described herein. The busi
ness object model 130 can include conventions for represent
ing different business object types and persisting the
attributes of business object instances. For example, business
object functionality can be implemented by accessing the
business object business logic 145 according to the model.
The structure of business objects and relationships between
them can be represented in the business object metadata
repository 150. Although a business object’s metadata logi

US 8,751,437 B2
3

cally belongs to the business object, they are stored in the
business object metadata repository 150. In this way, the
system 100 can support a plurality of business objects.
The database 190 can persist a plurality of business object

instances (e.g., of one or more business object types) in one or
more computer-readable storage media. Respective of the
business object instances can be persisted as a single persis
tence. For example, both OLAP and OLTP services can be
provided with a single persistence; there need not be a sepa
rate persistence to ful?ll OLAP service requests. OLAP pro
cessing can run on the OLTP database without secondary
persistence. The database 190 can be implemented to be
transaction-safe and support enterprise class database fea
tures such as point-in-time recovery, backup and restore, and
the like. Higher-level analytical models can be in star-schema
shape, but persistence need not be.

In practice, the systems shown herein, such as system 100
can vary in complexity, with additional functionality, more
complex components, and the like. For example, additional
components can be included to implement security, report
design, and the like.

The system 100 and any of the other systems described
herein can be implemented in conjunction with any of the
hardware components described herein, such as the comput
ing systems described below (e.g., processing units, memory,
and the like). In any of the examples herein, the inputs, out
puts, and tools can be stored in one or more computer-read
able storage media or computer-readable storage devices. The
technologies described herein can be generic to the speci?cs
of operating systems or hardware and can be applied in any
variety of environments to take advantage of the described
features.

Client/ server operation can be supported, and cloud com
puting techniques can be applied to give clients the ability to
perform the described techniques via a rich Internet applica
tion without concern over the actual computing infrastructure
needed or used to operate the servers, which can be adminis
tered by a business entity different from the client user.

Example 3

Exemplary Method Implementing a Single
Persistence Supporting Business Objects

FIG. 2 is a ?owchart of an exemplary method 200 of
implementing a single persistence supporting business
objects and can be implemented, for example, in the system
shown in FIG. 1.
At 210, OLTP service requests are received. Such service

requests can comprise one or more business object attributes
(e. g., during create, read, update or delete operations on busi
ness object instances comprising such attributes).

At 220, the OLTP service requests are ful?lled via a single
persistence in a database. Such a persistence can persist the
one or more business object attributes (e.g., for those opera
tions for which persisting the attributes is applicable).

At 230, OLAP service requests are received. Such service
requests can comprise references to one or more business
object attributes (e.g., attribute names for query or other
operations related to attributes, such as the attributes involved
in the earlier OLTP service requests).
At 240, the OLAP service requests are ful?lled via the

single persistence in the database (e.g., the same single per
sistence used for the OLTP service requests).

After ful?lling the service requests, consumers of the ser
vices can display results associated with the requests (e.g.,
displayed attributes or analytics performed on the attributes).

20

25

30

35

40

50

55

60

65

4
Although the example shows OLTP processing and OLAP

processing done in sequence, other arrangements are pos
sible. For example, the two can be intermixed, done in paral
lel, or the like. Further OLTP service requests can be received
after the OLAP service requests are ful?lled.
The method 200 and any of the other methods described

herein can be performed by computer-executable instructions
(e.g., causing a computing system to perform the method)
stored in one or more computer-readable media (e.g., storage
or other tangible media) or stored in one or more computer
readable storage devices.

Example 4

Exemplary Business Object Consumer

In any of the examples herein, a consumer of business
objects can be any software accessing online transaction pro
cessing (OLTP), online analytical processing (OLAP), or
other services associated with a business object. As described
herein, analytical processing can essentially bypass a busi
ness logic layer, but still be considered availing itself of the
business object framework (e.g., as represented in metadata
shared with OLTP).
As described herein, such consumers can execute on any of

a variety of computing systems, including cloud-based
arrangements, and the like.

Example 5

Exemplary Single Persistence

In any of the examples herein, a single persistence can be
used for both OLTP and OLAP. Unlike conventional data
warehousing techniques, as soon as a change to a business
object is saved, it can be re?ected for OLAP, and a second
persistence of the data is not needed for OLAP.

Example 6

Exemplary Business Object Support

In any of the examples herein, the technologies can support
business objects. For example, a business object services
provider can execute at runtime, interpret the business object
model, and provide business object services such as imple
menting business object behaviors, based on the business
object model and the metadata associated with the business
object type of a business object instance. Such support can be
provided by the OLTP services runtime shown herein and can
be partly interpreted and partly implemented by code auto
matically generated according to the business object model
(e.g., code implementing default behavior, code implement
ing customized behavior, or both).

Example 7

Exemplary OLTP Services

In any of the examples herein, create, read, update, and
delete functionality can be implemented by an OLTP services
runtime. Such functionality can be implemented in a transac
tion-safe manner and support enterprise class database pro
cessing.
A rich set of customizable functionality can be provided.

Adopting a single model for dealing with business objects
throughout the processing stack can lead to improvements in

US 8,751,437 B2
5

?exibility and performance. Multiple frameworks can be col
lapsed into fewer elements. So, for example, more business
object behaviors can be automatically generated or modi?ed
without having to resort to writing or modifying software
code.

For example, an enterprise services framework can be pro
vided that manages transactions according to phases (e.g.,
initial phase, interaction phase, save phase, and the like).
Such services can be used to provide runtime functionality for
business objects, such as saving data that has been changed in
a user interface (e.g., by having the enterprise services frame
work coordinate persistence for various business objects
involved). Modi?cations can be done at various exit points,
but using a single model for the business objects can avoid
complicated mappings between multiple layers.

Lifecycle management for business objects can be simpli
?ed by collapsing services into fewer elements via one busi
ness object model. For example, a status and action model can
indicate whether a business object instance is in revision,
completed, active, or the like as the life cycle state of the
business object instance. There can also be a consistency
status (e.g., consistent, inconsistent, unde?ned, etc.). The
business object model can include default behavior for status
transitions.

Additional features of the OLTP services include extensi
bility. User developers can customize the application suite in
a variety of ways. For example, extension attributes (e.g., new
?elds) can be added to the business object nodes as described
herein. The OLTP services can continue to operate, providing
default behavior where appropriate (e.g., the extension
attributes are persisted during state transitions), but also
allowing custom behavior if desired. Such an extensibility
framework can be collapsed into another framework (e. g., the
enterprise services framework) and use the same business
object model (e.g., performing processing on the external
format as described herein).

Thus, online transaction processing services runtime can
operate as a single layer providing enterprise services for
business objects, life cycle management services for business
objects, and extension services for business objects. Such
services can process business object instances according to a
single business object model as described herein. Mappings
between different attribute formats can be avoided during
such processing. As a further bene?t, development can be
simpli?ed because different attribute formats need not be
used during development (e.g., the same attribute format can
be used throughout the above services).

Example 8

Exemplary Business Logic

In any of the examples herein, business logic can be the
logic implemented by a business object to perform its opera
tions on data, such as business object attributes. For example,
determinations, actions, and validations can be performed to
accomplish business process tasks. The aggregated business
logic of different business object types can form a business
logic layer in the business object model.

Example 9

Exemplary OLAP Services

In any of the examples herein, query and other online
analytical processing services can be provided by an online
analytical processing services runtime. Such a service can be

20

25

30

35

40

45

50

55

60

65

6
implemented by a framework that interprets the business
object model, including business object metadata.

During development, analytics queries and database views
can be modeled. An analytics framework can accept the meta
data for a business object and create database access (e.g., for
the database views) that is optimized for the OLAP services.
As described herein, consumers can bypass OLTP logic

(e.g., the business logic layer) when accessing OLAP services
in case no transactional processing is needed.

Example 10

Exemplary Business Object Attributes

In any of the examples herein, business object attributes
can take a variety of forms. A business object attribute de?
nition can specify a name and data type for the business object
attribute. An instance of the business object then re?ects a
particular value for the business object attribute (e. g., accord
ing to the data type). Such attributes are sometimes called
“?elds.” As described herein, derived attributes can be calcu
lated mathematically or otherwise derived from other
attributes.
As described herein, extension attributes (e.g., additional

?elds sometimes called “extension ?elds”) can be added to a
business object type de?nition to customize a business object.
In practice, attributes can be organized by being associated
with particular nodes of a business object.

Example 11

Exemplary Business Object Metadata Repository

In any of the examples herein, a business object model can
comprise a business object metadata repository that stores
business object con?guration information (e. g., data describ
ing business objects, their attributes, and relationships
between them). Such metadata can be separated from the
business object business logic (e.g., be stored as accessible
attributes that can be evaluated rather than being executed as
code). By splitting some business object con?guration infor
mation out of the business object business logic, certain
aspects of the system can bypass the business logic, resulting
in improved performance.
The metadata repository can be used to generate runtime

artifacts and serve as a common transport mechanism for
design time and runtime entities. The metadata repository can
include an API layer to provide uniform read and write APIs
to access repository objects; a repository metamodel that
supports simple introduction of new repository objects; a
repository runtime that provides transactional services to cre
ate and administer repository objects; and a persistency layer
that allows repository objects to be stored in several storage
types, depending on purpose.
The metadata repository runtime can work under a busi

ness object processing framework that can be used as an
implementation layer for consistency checks, activation of
models, and the like.
When building views involving objects, the metadata

repository can assist at design time. Logic can be imple
mented in code in a code editor and saved in a code repository,
which can be referenced in the metadata repository.

Example 12

Exemplary Business Object Model

As shown herein, various components of the system can
operate according to a single business object model when

US 8,751,437 B2
7

performing processing related to business objects. For
example, the online transaction processing services runtime
(e. g., and the business object business logic within it) and the
online analytical processing services runtime can use a single
model when processing business objects. Additional layers
(e. g., a data access layer interposed between a business logic
layer and the database to send and receive data) can also
adhere to the model.
A single business object model can be implemented by

using a single data model throughout the processing stack
(e. g., including in the single persistence in the database). For
example, a single data format model can be used for business
object attributes. In addition, representations of business
objects can be split into business logic and metadata as
described herein. Various components of the system can
access the logic, metadata, orboth as needed to ful?ll requests
for services.

In addition, the system can be extended by the addition of
extension attributes as described herein, and the extension
attributes can be processed and represented according to the
same business object model.
As described herein, the business object model can adhere

to a one-to-one relationship between business object nodes
and database tables.

Although some of the possible advantages (e.g., mapping
avoidance, superior performance, synchronization avoid
ance) apply at runtime, a single business object model can
also provide possible advantages during development. For
example, a single programming model can be used when
implementing business objects, leading to faster development
time, less con?guration, and easier modi?cation of the sys
tem. Such advantages can be particularly help?il in a soft
ware-as-a-service (SaaS) or cloud computing scenario
because con?guration can be achieved via a rich Internet
application rather than conventional coding techniques.

Example 13

Exemplary Single Data Format Model

In any of the examples herein, the business object model
can comprise a single data format model that can be imple
mented in any of the components described. For example, a
single, common (e.g., shared) attribute name and a single,
common (e.g., shared) attribute data type can be used when
referring to a business object attribute throughout the process
ing stack, from the online transaction services runtime, asso
ciated business logic, the online analytical processing ser
vices runtime, and in the single persistence in the database.
So, instead of having a special, separate name or format for
OLAP services, the OLTP name or format can be used (or
vice versa).

Nodes are essentially ?at because databases typically do
not allow for storing tables within tables. To store a In
relationship, two nodes and two database tables can be used.

Such an arrangement can lead to signi?cant advantages,
such as the ability to bypass the business logic at runtime
when ful?lling requests for online analytical processing ser
vices. By going direct to the database (e.g., via views on the
database), performance can be improved.

Example 14

Exemplary Calculated Fields

In any of the examples herein, a single persistence can
include a persisted state of calculated attributes (e.g.,

20

25

30

35

40

45

50

55

60

65

8
attributes that are derived from other attributes by mathemati
cal or algorithmic calculations) for one or more of the busi
ness object instances. The business object model can support
such an arrangement by persisting such ?elds when changes
are made to any related ?elds (e.g., ?elds that are used to
calculate the calculated ?eld). During OLAP, such calculated
?elds need not be calculated because they are persisted in the
single persistence.

Example 15

Exemplary Mapped Queries

In any of the examples herein, it may be undesirable to
persist certain calculated ?elds (e.g., an age ?eld that depends
on today’ s date). Instead, a query mapper can map such
queries to ?t the business object model. In some cases, a query
can be inverted. For example, in the case of age, an age query
can be mapped to a date-of-birth query or the like.

Such an arrangement allows the business object model to
deal with special cases that do not ?t with other aspects of the
system.

Example 16

Exemplary Nested Data Types

In any of the examples herein, nested data types can be
implemented via a ?at structure. Multiple data types can be
combined into a ?at structure. For example, a popular ?at data
type (e.g., storing administrative data) can be used in many
root node structures. As a result, the single ?elds in the ?at
data type ?ts into one database row of the table for the root
node. Other combinations are possible.

Example 17

Exemplary Structured Datatypes

Certain data types, such as “amount” can be shown as one
column on the user interface, but handled as a structure in the
code (e.g., the business object logic) and stored as two sepa
rate columns in the database. Thus, database limitations can
be overcome.

Such data types can be are stored as two ?elds, but query
(e.g., SQL) mappings make them appear to be one ?eld (e. g.,
there is a temporary internal format).

Example 18

Exemplary Application Suite

In any of the examples herein, an application suite can take
the form of one or more software applications working in
concert to perform processing for a business enterprise,
whether public, private, or otherwise. Such an application
suite can include a wide variety of offerings, such as enter
prise resource planning, accounting, ?nancial, human
resources, customer relationship management, supplier rela
tionship management, supply chain management, and other
software. The suite can include business objects that are used
in more than one application in the suite.
As described herein, such an application suite can support

both online transaction processing and online analytical pro
cessing of the data associated with the applications.
The application suite can be provided in a SaaS scenario

taking advantage of cloud computing techniques. Likewise,

US 8,751,437 B2

development can also be similarly achieved. For example,
customization of the software can be achieved via a rich
Internet application accessing a server in a SaaS scenario
taking advantage of cloud computing techniques. In this way,
many aspects of software development can be achieved with
out conventional coding techniques.

Example 19

Exemplary Single Persistence and Single Data
Format Model for Business Objects

FIG. 3 is a block diagram of an exemplary system 300
implementing a single persistence and a single data format
model for business objects. In the example, both OLTP and
OLAP services are provided according to a common business
object model 130.

For purposes of context, one or more OLTP 110 consumers
and one or more OLAP consumers 120 are shown. Although

a single data format model is shown in the system 300, con
sumers 110, 120 can perform additional formatting on the
data and present user interfaces 315, 325 that depict the data
in a user interface (e.g., display) format 317, 327.
As shown, the business object model 130 can use data in an

external format 395 when interfacing with consumers. In
addition, the same external format can be used when inter
facing in the other direction (e.g., toward the database 190),
whether with the database 190 or other layers interposed
between the business object model and the database 190 (e. g.,
a data access layer or the like).

In some special cases, deviation from the external format
can be supported. For example, mapping scripts, mapping
aliases, and the like can be used to map data from an external
format to some other format for persisting in the database
190.

Example 20

Exemplary Method of Implementing a Single
Persistence and a Single Data Format Model for

Business Objects

FIG. 4 is a ?owchart of an exemplary method 400 imple
menting a single persistence and a single data format model
for business objects and can be implemented, for example, in
the system shown in FIG. 3.

At 410, data is received in external format. For example,
components of a services runtime executing under the busi
ness object model can receive business object attributes in the
external format.
At 420, the data is processed according to the business

model in external format. For example, in OLTP scenarios,
business logic of a business object can perform operations on
the data. At 430, the data is persisted in the same external
format to the database.

In OLAP scenarios, queries can be run against database
views constructed using business object metadata (e.g.,
which forms part of the business object model). Such queries
can use the data (e.g., business object attributes) in external
format to query the database, which persists the data in exter
nal format. Some database implementations allow for OLAP
queries to the database without having stored OLTP data
structurally different in a star schema.

Modi?cation of the business object con?guration can be
re?ected in the model, which then applies such modi?cations

20

25

30

40

45

50

55

60

65

10
to both the OLTP and OLAP scenarios. Thus, business object
con?gurations can be easily modi?ed by a developer.

Example 21

Exemplary External Format

In any of the examples herein, a business object model can
use an external format for its data format model. An external
format is the format (e.g., attribute name and attribute data
type) provided for consumption by consumers of OLTP and
OLAP services. As described herein, the data format model
can apply throughout the processing stack (e.g., including the
single persistence of the database).
OLTP requests can be ful?lled according to the external

format; OLAP requests can be ful?lled according to the exter
nal format; and the single persistence in the database can be of
the external format. Other components of the system (e.g.,
business logic, business logic layer, data access layer, and the
like) can also process (e.g., send, receive, modify, or the like)
data using the external format.

Contrary to certain conventional practices of encapsula
tion, favoring the external format when persisting the busi
ness object attributes provides transparency that allows
OLAP to directly access the business object attributes without
needing details of how the business logic interprets them.

The external format can include a naming scheme (e.g., a
single, common name for the same attribute, wherever it may
be processed in the stack or database) and a data type scheme
(e.g., a single, common data type for the same attribute,
wherever it may be processed in the stack or database).

Private attributes can be supported (e.g., persisted in the
single persistence) but cleared before the business object
attributes are provided to a consumer. To achieve such a
result, the private attributes can be annotated or modeled as
private.

Example 22

Exemplary One-to-One Relationship between
Business Object Nodes and Database Tables

FIG. 5 is a block diagram of an exemplary system 500
implementing a one-to-one relationship between business
object nodes 525R, 525A-N and database tables 525R,
595A-N in a single persistence scenario. In the example, a
business object 580 (e.g., accessed via interface 585) com
prises one or more business object nodes 525A-N. The busi
ness object nodes 525R, 525A-N have state (e.g., business
object attributes) that are persisted (e.g., stored) in respective
tables 595R, 595A-N in a database 190. In practice, the nodes
can be stored in a hierarchy so that some nodes (e.g., 525B)
are hierarchically underneath others (e. g., 525A). A root node
525R can be uniformly included in business objects for the
sake of consistency.

Maintaining such a one-to-one relationship can facilitate
OLAP processing on the business objects because persistence
scheme idiosyncrasies of the business object are avoided
(e.g., the persistence scheme transparently follows the busi
ness object node structure). Thus, the OLAP processing need
not go through the business object logic and can instead go
directly to the table structure, resulting in more easily under
standable access and better performance.

US 8,751,437 B2
1 1

Example 23

Exemplary Method of Maintaining One-to-One
Relationship Between Business Object Nodes and

Database Tables

FIG. 6 is a ?owchart of an exemplary method 600 imple
menting a one-to-one relationship between business object
nodes and database tables in a development scenario and can
be implemented, for example, in the system shown in FIG. 5,
or the like. In any of the examples herein, a business object
can comprise one or more business object nodes, and a one
to-one relationship can be maintained between business
object nodes and tables in the database, even if business
objects are customized by changes.

At 610, a development directive changing the business
object is received. For example, such a development directive
can take the form of adding an extension attribute (e.g., new
attribute) to the business object (e.g., to one of the business
object nodes of the business object type de?nition). As
described herein, such directives can be accomplished by a
user taking advantage of a rich Internet application interface.

At 610, the development directive is implemented. As
described herein, the directive can be implemented in a SaaS
or cloud computing scenario, and subsequent processing and
storage of the changed business object is implemented in such
a scenario. Implementing the directive can include automati
cally putting default behavior (e.g., persistence behavior or
the like) into place by generating business logic and modify
ing the business object metadata (e.g., without coding).
At 630, a one-to-one relationship is maintained between

the business object nodes and database tables (e.g., as shown
in FIG. 5).

Having the same structure or model on the database can be

useful when writing stored procedure code in the database
because typically only the database tables are known, not the
models. So, such processing becomes easier, and can be done
without coding on entities other than the ones in the model.

Example 24

Exemplary Business Object Nodes

In any of the examples herein, a business object can com
prise one or more business object nodes. Although any num
ber of arrangements is possible, a hierarchical arrangement
can provide certain advantages. For example, a root node can
be de?ned as a starting point when interacting with an
instance of the business object. Further nodes (e. g., item
nodes, etc.) can be de?ned under the root.
A business object node can have one or more attributes and

also specify associations (e.g., foreign keys). The node can
also have associated behavior in the form of actions or meth
ods. For example, an item node may have actions called
“approve,” “reject,” “copy,” or the like.

Pre-con?gured business objects can have nodes that
already perform expected behavior (e.g., create, read, update,
and delete) from when they are ?rst provided to a developer
(e. g., by default, in an out-of-the-box situation). Such an
approach promotes uniformity and avoids errors in code, and
also makes the system easier to support. Even newly created
business objects can have default functionality (e.g., includ
ing persistence functionality) generated upon development,
avoiding coding by the developer.

20

25

30

35

40

45

50

55

60

65

12
Example 25

Exemplary System Implementing Customized
Application Suite with Business Objects having

Extension Attributes

FIG. 7 is a block diagram of an exemplary system 700
implementing a customized application suite with business
objects having extension attributes. In the example, a devel
opment engine 750 receives customizations 760 (e. g., from a
rich Internet application that can be provided as part of a
cloud computing solution) that specify extension attributes
are to be added to the business object de?nitions 720A-N of
an original application suite 710.
The development engine is operable to output a customized

application suite 710' (e.g., a customized version of the suite
710).As shown, some of the business object de?nitions 720B'
and 720D' have been modi?ed by the customizations. For
example, an extension attribute 722 is added to the business
object de?nition 720D, resulting in modi?ed business object
de?nition 720D'. Such an extension attribute can take the
form of a business object attribute added to one of the busi
ness object nodes of the business object de?nition 720D.

After having added such an extension attribute, the busi
ness logic of the application suite can be automatically altered
by the development engine 750 so that persistence and other
functionality for the modi?ed business objects (e.g., includ
ing the extension attribute 722) is provided without further
development effort by the customizing user. Further, OLAP
processing can incorporate the modi?cations so that queries
and analytics can be performed with the extension attribute
722 without further development effort by the customizing
user. The business object metadata repository can be updated
by the development engine 750 to re?ect that the extension
attribute 722 is a part of the business object de?nition 720. As
a result, the attribute 722 can be incorporated into OLAP
processing (e.g., appear in user interfaces as dimensions,
values, and the like).

During activation of an extension attribute, it can be asked
in which OLTP user interfaces and OLAP reports the exten
sion ?eld is to appear. After selected by a user, the rest is
generated based on the available metadata.

Example 26

Exemplary Method of Implementing Customized
Application Suite with Business Objects having

Extension Attributes

FIG. 8 is a ?owchart of an exemplary method 800 imple
menting a customized application suite with business objects
having extension attributes.

At 810, an indication to implement a customization of an
application suite is received. For example, an indication to
add an extension to a business object node of a business object
de?nition can be received (e.g., indicating the name of the
?eld and a type of the ?eld). Types, logic, and metadata can be
adapted.
At 820, responsive to the indication, changes are made to

the business object type de?nitions (e.g., stored in a business
object metadata repository) that implement the customiza
tion. Existing business object instances can also be modi?ed
as appropriate. For example, in the case of adding an exten
sion attribute, business object logic and metadata can be
modi?ed as described herein.

At 830, automatic functionality for the changes are gener
ated. In the case of an extension attribute, facilities for OLTP

US 8,751,437 B2
1 3

and OLAP functionality (e.g., default code) as described
herein can be automatically generated without further devel
opment effort by the modifying user. As described herein, the
business logic and business object metadata repository can be
modi?ed to achieve such functionality, including persistence
functionality as described herein.

Example 27

Exemplary System Implementing Database Views
for OLAP

FIG. 9 is a block diagram of an exemplary system 900
implementing a single persistence and a single data format for
business objects with database views for online analytical
processing. In the example, the system 900 provides OLTP
and OLAP services to consumers 110, 120, which are shown
for context. As described herein, consumers can format the
external format data according to speci?cation (e.g., for dis
play in a user interface).

The business object model 140 can be those as shown in
FIG. 1 and FIG. 3, including interfacing in external format
data 395. In addition, the system 900 can comprise a business
object view builder 972 that constructs database views 974
from the database 190 based on the business object metadata
repository 150 (e.g., to provide views appropriate for query
ing and other OLAP functionality). OLAP functionality still
depends on the single persistence (e.g., external format data
395) in the database 190, which is also used for OLTP func
tionality.

The query language runtime 976 can also be used by OLTP
services consumer 110.
The business object metadata repository can also affect

OLTP processing. In the metadata repository, the structure of
the business object is modeled. Therefore, the repository can
serve as a basis for any retrieval (or creation, update, deletion,
etc.) in OLTP processing. Further, other actions are also mod
eled in the repository. So, any user interface that deals with
single instances of a business object and processes can draw
on the metadata repository as part of OLTP processing.

Example 28

Exemplary Method Implementing Database Views
for OLAP

FIG. 10 is a ?owchart of an exemplary method 1000 imple
menting a single persistence and a single data format model
for business objects with database views for online analytical
processing and can be implemented, for example, in the sys
tem shown in FIG. 9. One or more acts shown for the method
1 000 can be performed before runtime or in the background to
facilitate OLAP requests that are received at runtime. OLAP
is often based on views on the business object data in a single
persistence model, but the request a runtime does not require
preprocessing or batch processing. Although such processing
can be used for some types of calculated ?elds that are cal
culated and stored.

At 1010, database views are built based on the business
object metadata repository. In the case of customizations,
such as new attributes, the views can incorporate such new
attributes (e.g., as dimensions, values, or the like).

At 1030, OLAP service requests are received.
At 1040, the OLAP service requests are ful?lled via the

same persistence in the database as that used for OLTP (e.g.,
via the constructed database views).

5

20

25

30

35

40

45

50

55

60

65

14
Example 29

Exemplary Business Objects

FIG. 11 is a block diagram ofan exemplary business object
1100. In any of the examples herein, a business object can
take the form of a programmatic object that holds a set of
instance variables (e.g., attributes, values, properties, charac
teristics, or the like). Associations between business objects
of different types can be stored in metadata (e.g., as part of a
data model), which results in a collection of business objects
representing business relationships. The business object can
be a software model representing real-world items used in a
business transaction. For example, a business object may
represent a business document (e.g., sales order, purchase
order, production order, invoice, etc.), master data objects
(e.g., product, business partner, employee, piece of equip
ment, etc.), or the like. In the case of a product, the business
object instance can represent an actual product (e.g., with
attribute values for an identi?er, price, description, length,
volume, or the like).

In any of the examples herein, a universe of business
objects can be created and con?gured to operate in concert in
a particular problem domain. As described herein, extension
attributes and other customization techniques can be used to
tailor a universe of business objects to a speci?c implemen
tation. Such customizations can be achieved in many cases
without coding on the part of the developer.

Business objects can support behaviors via invocation of
one or more business object programmatic actions (e.g., pro
grammatic methods), through which clients of the business
objects can perform operations on the business object (e.g.,
on the instance variables). Such actions are typically provided
via a programmatic interface that supports one or more
parameters that perform a task associated with the action
(e.g., cancel an order, hire an employee, change a customer
classi?cation, create a target group, and the like).

In the example, the business object 1100 can be de?ned to
contain multiple layers. Exemplary layers include a kernel
layer 1110, which represents the object’ s inherent data, com
prising attributes 1112 of the de?ned business object. An
integrity layer 1120 can contain the business logic 1124,
which can include business rules 1122 for consistent embed
ding in the system and the constraints 1126 regarding the
values and domains that apply. For example, business logic
1124 can comprise statements that de?ne or constrain some
aspect of the business, such that they are intended to assert
business structure or to control or in?uence the behavior of
the business entity. It may pertain to the facts recorded on data
and constraints on changes to the data. The business logic
1124 can thus determine what data may or may not be
recorded in the business object 1100.
The interface layer 1130 can supply valid options for

accessing the business object 1100 and describe the imple
mentation, structure, and interface of the business object to
the outside world (e.g., the analytical report tool described
herein). The interface layer 1130 typically contains program
matic methods 1134 (e.g., invocable to perform the actions
described herein), input event controls 1132, and output
events 1136.
The access layer 1140 can de?ne the technologies that can

be used for external access to the business object’s data.
Possible technologies can include Hypertext Transfer Proto
col (HTTP), Java, COM/DCOM/COM+/.NET (e.g., based on
the Component Object Model of Microsoft Corporation),
CORBA (Common Object Request Broker Architecture),
RFC (Remote Function Call), and the like. Additionally, the

