

US008673629B2

(12) United States Patent

Bird et al.

(54) RECOMBINANT RIFT VALLEY FEVER (RVF) VIRUSES AND METHODS OF USE

- Inventors: Brian H. Bird, Woodland, CA (US);
 Cesar G. Albarino, Atlanta, GA (US);
 Stuart T. Nichol, Atlanta, GA (US);
 Thomas G. Ksiazek, Lilburn, GA (US)
- (73) Assignee: The United States of America as represented by the Secretary of the Department of Health and Human Services Centers for Disease Control and Prevention, Washington, DC (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 142 days.
- (21) Appl. No.: 12/809,561
- (22) PCT Filed: Dec. 16, 2008
- (86) PCT No.: PCT/US2008/087023
 § 371 (c)(1),
 (2), (4) Date: Jun. 18, 2010
- (87) PCT Pub. No.: WO2009/082647PCT Pub. Date: Jul. 2, 2009

(65) **Prior Publication Data**

US 2011/0123567 A1 May 26, 2011

Related U.S. Application Data

- (60) Provisional application No. 61/016,065, filed on Dec. 21, 2007, provisional application No. 61/042,987, filed on Apr. 7, 2008.
- (51) Int. Cl. *C12N 15/00* (2006.01) *A61K 39/395* (2006.01)
- None

See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

8,084,248	B2 *	12/2011	Makino et al 435/320.1
2003/0224017	A1	12/2003	Samal et al.
2007/0122431	A1*	5/2007	Makino et al 424/204.1

OTHER PUBLICATIONS

Spik et al. Vaccine, Available on line Aug. 22, 2005, vol. 24, pp. 4657-4666.*

Walsh et al. J. Gen. Virol. 2000, vol. 81, No. 3, pp. 709-718.* Bird et al., "Rift Valley fever virus lacking NSm proteins retains high virulence in vivo and may provide a model of human delayed onset neurologic disease," Virology 362(1):10-15, May 25, 2007.

(10) Patent No.: US 8,673,629 B2 (45) Date of Patent: Mar. 18, 2014

Albariño et al., "A Shared Transcription Termination Signal on Negative and Ambisense RNA Genome Segments of Rift Valley Fever, Sandfly Fever Sicilian, and Toscana Viruses," Journal of Virology 81(10):5246-5256, May 2007. Baskerville et al., "Comparison of the pathogenicity for pregnant

Baskerville et al., "Comparison of the pathogenicity for pregnant sheep of Rift Valley fever virus and a live attenuated vaccine," Research in Veterinary Science 52:307-311, 1992.

Billecocq et al., "NSs Protein of Rift Valley Fever Virus Blocks Interferon Production by Inhibiting Host Gene Transcription," Journal of Virology 78(18):9798-9806, Sep. 2004.

Bird et al., "Highly Sensitive and Broadly Reactive Quantitative Reverse Transcription-PCR Assay for High-Throughput Detection of Rift Valley Fever Virus," Journal of Clinical Microbiology 45(11):3506-3513, Nov. 2007.

Bird et al., "Complete Genome Analysis of 33 Ecologically and Biologically Diverse Rift Valley Fever Virus Strains Reveals Widespread Virus Movement and Low Genetic Diversity Due to Recent Common Ancestry," Journal of Virology 81(6):2805-2816, Mar. 2007.

Bird et al., "Rift Valley Fever Virus Lacking the NSs and NSm Genes is Highly Attenuated, Confers Protective Immunity from Virulent Virus Challenge, and Allows for Differential Identification of Infected and Vaccinated Animals," *J. Virol.* 82(6):2681-2691, 2008. Blakqori et al., "Efficient cDNA-Based Rescue of La Crosse Bunyaviruses Expressing or Lacking the Nonstructural Protein NSs," Journal of Virology 79(16):10420-10428, Aug. 2005.

Bouloy et al., "Genetic Evidence for an Inteferon-Antagonistic Function of Rift Valley Fever Virus Nonstructural Protein NSs," Journal of Virology 75(3):1371-1377, Feb. 2001.

Bridgen et al., "Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs," Proc. Natl. Acad. Sci. 93:15400-15404, Dec. 1996.

Buchholz et al., "Generation of Bovine Respiratory Syncytial Virus (BRSV) from cDNA: BRSV NS2 is Not Essential ifor Virus Replication in Tissue Culture, and the Human RSV Leader Region Acts as a Functional BRSV Genome Promoter," Journal of Virology 73(1):251-259, Jan. 1999.

Gerrard et al., "The NSm proteins of Rift Valley fever virus are dispensable for maturation, replication and infection," Virology 359:459-465, 2007.

Ikegami et al., "Characterization of Rift Valley Fever Virus Transcriptional Terminations," Journal of Virology 81(16):8421-8438, Aug. 2007.

Ikegami et al., "Rescue of Infectious Rift Valley Fever Virus Entirely from cDNA, Analysis of Virus Lacking the NSs Gene, and Expression of a Foreign Gene," Journal of Virology 80(6):2933-2940, Mar. 2006.

Ikegami et al., "Rift Valley Fever Virus Nonstructural Protein NSs Promotes Viral RNA Replication and Transcription in a Minigenome System," Journal of Virology.79(9):5606-5615, May 2005.

(Continued)

Primary Examiner — Bao Li (74) Attorney, Agent, or Firm — Klarquist Sparkman, LLP

(57) ABSTRACT

Described herein are recombinant RVF viruses comprising deletions in one or more viral virulence genes, such as NSs and NSm. The recombinant RVF viruses, generated using a plasmid-based reverse genetics system, can be used as vaccines to prevent infection of RVF virus in livestock and humans. As described herein, the recombinant RVF viruses grow to high titers, provide protective immunity following a single injection and allow for the differentiation between vaccinated animals and animals infected with wild-type RVF virus.

25 Claims, 9 Drawing Sheets

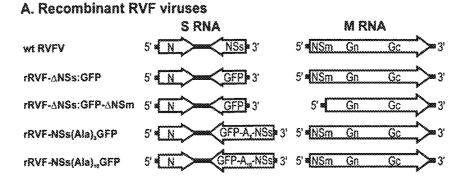
(56) **References Cited**

OTHER PUBLICATIONS

Le May et al., "TFIIH Transcription Factor, a Target for the Rift Valley Hemorrhagic Fever Virus," Cell 116:541-550, Feb. 20, 2004. Lopez et al., "The L Protein of Rift Valley Fever Virus Can Rescue Viral Ribonucleoproteins and Transcribe Synthetic Genome-Like RNA Molecules," Journal of Virology 69(7):3972-3979, Jul. 1995. Morrill et al., "Pathogenicity and neurovirulence of a mutagen-attenuated Rift Valley fever vaccine in rhesus monkeys," Vaccine 21:2994-3002, 2003.

Morrill et al., "Pathogenicity and immunogenicity of a mutagenattenuated Rift Valley fever virus immunogen in pregnant ewes," Am J Vet Res 48(7):1042-1047, Jul. 1987. Pittman et al., "Immunogenicity of an inactivated Rift Valley fever vaccine in humans: a 12-year experience," Vaccine 18:181-189, 2000.

Suzich et al., "Expression Strategy of a Phlebovirus: Biogenesis of Proteins from The Rift Valley Fever Virus M Segment," Journal of Virology 64(4):1549-1555, Apr. 1990.


Virology 64(4):1549-1555, Apr. 1990. Vialat et al., "The S Segment of Rift Valley Fever Phlebovirus (*Bunyaviridae*) Carries Determinants for Attenuation and Virulence in Mice," Journal of Virology.74(3):1538-1543, Feb. 2000.

in Mice," Journal of Virology.74(3):1538-1543, Feb. 2000. Won et al., "NSm and 78-Kilodalton Proteins of Rift Valley Fever Virus Are Nonessential for Viral Replication in Cell Culture," Journal of Virology 80(16):8274-8278, Aug. 2006.

Won et al., "NSm Protein of Rift Valley Fever Virus Suppresses Virus-Induced Apoptosis," Journal of Virology 81(24):13335-13345, Dec. 2007.

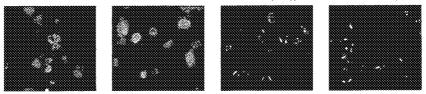
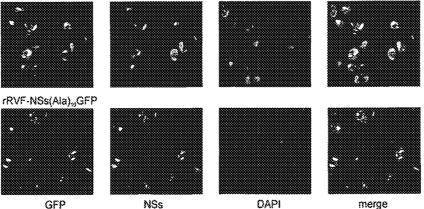

* cited by examiner

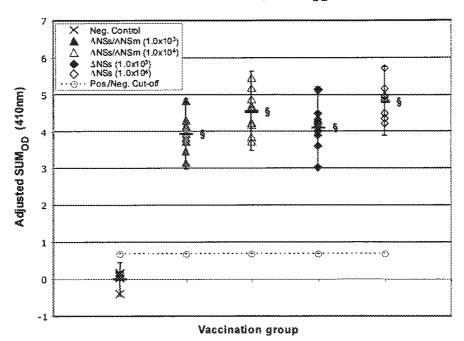
FIG. 1


B. Live infected cells

rRVF-ANSs:GFP rRVF-ANSs:GFP-ANSm rRVF-NSs(Ala),GFP rRVF-NSs(Ala),,GFP

C. Fixed and gamma-irradiated cells

rRVF-NSs(Ala),GFP



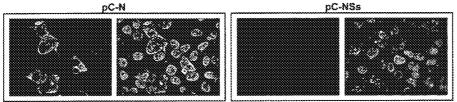
GFP

DAPI

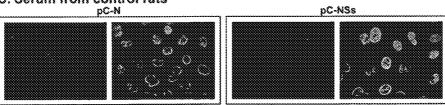
merge

FIG. 2

Anti-RVF total IgG SUMOD


FIG. 3

A. Serum from WT survivors rats pC-N



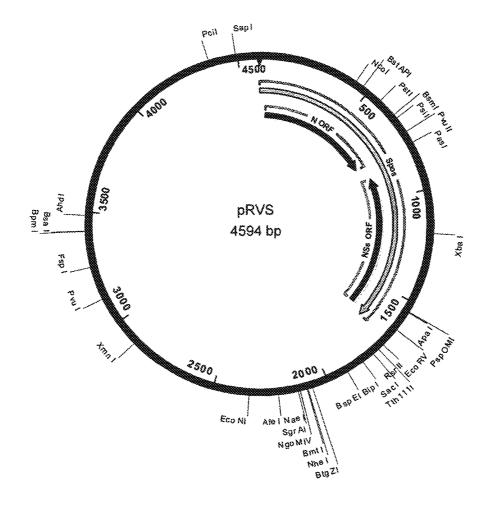
B. Serum from vaccinated rats

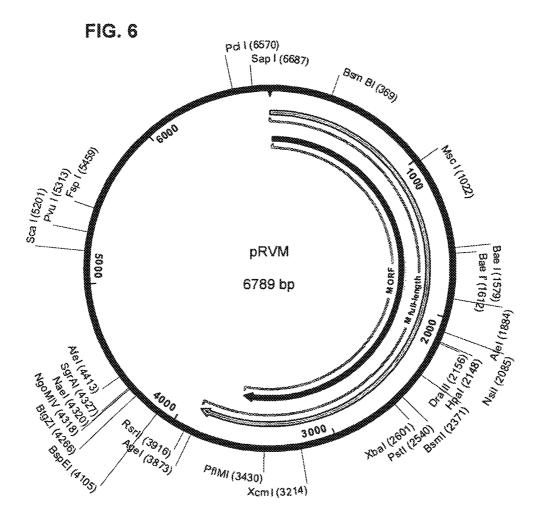
pC-NSs

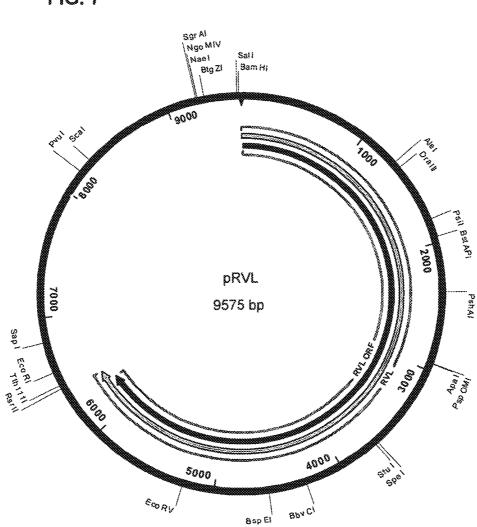
C. Serum from control rats

D. Serum from naturally infected goats

pC-NSs α 68 85


FIG. 4A Pilot Study: Day 21 post-immunization


Inoculum	# animals	Vacc. Dose (PFU)	RVF IgG SUM ₀₀ mean ± (SEM)	PRNT ₅₉ mean ± (SEM)	RVF viremia (PFT/mL eq.) post-vaccination (day 1-4)
		(fru)	mean + (arai)	INCOLATI)	post-vactination (ua) 1-4)
rRVF-ANSs:GFP	9	1x10 ³	2.14±0.12*§	1:1480±(631)	0.0
rRVF-ANScGFP-ANSm	9	1x10 ³	1.24±0.06*§	1:280 ±(120)	0.0
Neg. Control	3	0	-0.08±0.06	1:10 ± (0.0)	0.0


FIG. 4B Challenge Study: Day 26 post-immunization

		Vree Dore	BUT LA CHM	BBXT	RVF via	remia (PFU/mL eq.)	# Surviving
Inoculum	# animals	Varc, Dose (PFU)	RVF lgG SUM _{OD} mean ± (SEM)	PRNT ₁₈ mean±(SEM)	post-vacc. (d1-7)	Peak post-challenge (day)	Challenge
rRVF-ANSe:GFP	10	lai0 ³	4.10±(0.12)*	1:640 (0.0)	0.0	10 animals = 0.0*	10/10*
rRVF-ANSs:GFP	10	1x10 ⁴	4.79±(0.11)*	1:7040 (3200)	0.0	9 = 0.0* 1 = 1.5x10 ¹ (d 4)*	10/10*
rRVF-ANSs:GFP-ANSm	10	lx10 ³	3.94±(0.12)*	1:1120 (733)	0.0	9=0.0* 1=1.1x10 ² (d3)*	10/10*
rRVF-ANSs:GFP-ANSm	10	1x10 ⁴	4.54±(0.13)*	1:640 (0.0)	0.0	9 = 0.0* 1 = 7.0x10 ⁵ (d3)*	10/10*
Neg Control	5	0	-0.02 ± (0.09)	1.5 (2.9)	0.0	3 = 3.4x10 ⁵ (d3) 2=1.6x10 ⁵ (d4)	2/5

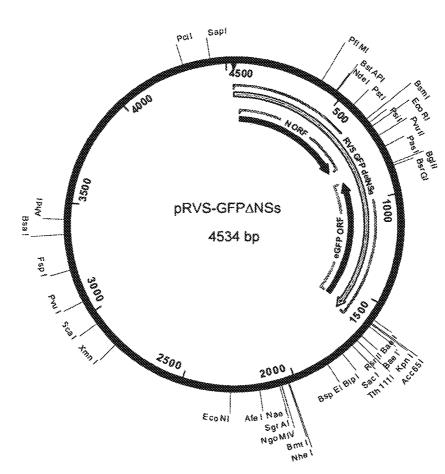
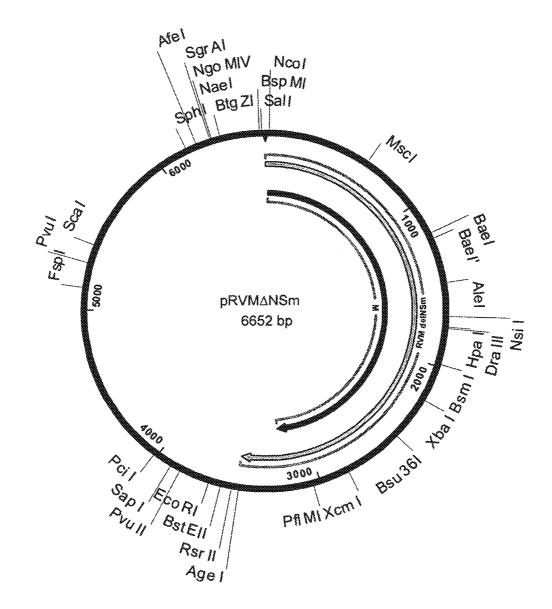



FIG. 8

15

RECOMBINANT RIFT VALLEY FEVER (RVF) VIRUSES AND METHODS OF USE

CROSS-REFERENCE TO RELATED APPLICATIONS

This is the U.S. National Stage of International Application No. PCT/US2008/087023, filed Dec. 16, 2008, which was published in English under PCT Article 21(2), which claims the benefit of U.S. Provisional Application No. 61/016,065, ¹⁰ filed Dec. 21, 2007, and U.S. Provisional Application No. 61/042,987, filed Apr. 7, 2008, each of which is herein incorporated by reference in their entirety.

FIELD

This disclosure concerns recombinant RVF viruses comprising deletions in viral virulence genes. These recombinant viruses can be used as vaccines to prevent RVF virus infection. This disclosure further relates to a reverse genetics sys-²⁰ tem used to generate recombinant RVF viruses.

BACKGROUND

Rift Valley fever (RVF) virus (family Bunyaviridae, genus 25 Phlebovirus) is a mosquito-borne pathogen of both livestock and humans found throughout Africa and more recently the Arabian peninsula. Historically, RVF virus has been the cause of either low-level endemic activity or large explosive epizootics/epidemics of severe disease throughout its range 30 (Findlay et al., *Lancet* ii:1350-1351, 1931; Jouan et al., *Res. Virol.* 140:175-186, 1989; Ringot et al., *Emerg. Infect. Dis.* 10:945-947, 2004; Woods et al., *Emerg. Infect. Dis.* 8:138-144, 2002). RVF outbreaks are characterized by economically disastrous "abortion storms" with newborn animal mor-35 tality approaching 100% among livestock, especially sheep and cattle (Coetzer et al., *J. Vet. Res.* 49:11-17, 1982; Easterday et al., *Am. J. Vet. Res.* 23:470-479, 1962; Rippy et al., *Vet. Pathol.* 29:495-502, 1992).

Human infections typically occur either from an infected 40 mosquito bite, percutaneous/aerosol exposure during the slaughter of infected animals, or via contact with aborted fetal materials. Human RVF disease is primarily a self-limiting febrile illness that in a small percentage (about 1-2%) of cases can progress to more serious and potentially lethal complica- 45 tions including hepatitis, delayed onset encephalitis, retinitis, blindness, or a hemorrhagic syndrome with a hospitalized case fatality of 10-20% (Madani et al., Clin. Infect. Dis. 37:1084-1092, 2003; McIntosh et al., S. Afr. Med. J. 58:03-806, 1980). Excessively heavy rainfall in semi-arid regions 50 often precedes large periodic outbreaks of RVF virus activity, allowing for the abundant emergence of transovarially infected Aedes spp. mosquitoes and subsequent initiation of an outbreak by transmission of virus to livestock and humans via infected mosquito feeding (Linthicum et al., Science 285: 55 397-400, 1999; Swanepoel et al., Contributions to Epidemiology and Biostatistics 3:83-91, 1981). The association with abnormally heavy rains provides some ability to predict periods and regions of high disease risk, which in turn provides a potential window of opportunity for targeted vaccination pro- 60 grams if a safe, inexpensive and highly efficacious single dose vaccine were available.

The ability of RVF virus to cross international and geographic boundaries and strain veterinary and public health infrastructures is well documented. In 1977, RVF virus was 65 reported for the first time north of the Sahara desert where an extremely large outbreak affecting more than 200,000 people

occurred along the Nile River basin in Egypt (Meegan et al., *Contributions to Epidemiology and Biostatistics* 3:100-113, 1981). Approximately ten years later in 1987, a large outbreak occurred in western Africa along the border of Mauritania and Senegal affecting an estimated 89,000 individuals (Jouan et al., *Res. Virol.* 140:175-186, 1989). Later, the virus was isolated for the first time outside of Africa (across the Red sea) in Saudi Arabia and Yemen and was found to be the cause of a large epizootic/epidemic in 2000 with an estimated 2000 human cases and 245 deaths (Anonymous, *Morb. Mortal. Wkly. Rep.* 49:982-5, 2000; Centers for Disease Control and Prevention, *Morb. Mortal. Wkly. Rep.* 49:1065-1066, 2000; Shoemaker et al., *Emerg. Infect. Dis.* 8:1415-1420, 2002).

Most recently, in late 2006 to early 2007, following heavy rainfall in eastern Africa, RVF virus emerged as the cause of a widespread outbreak that eventually resulted in 1062 reported human cases and 315 reported deaths. Associated with the outbreak were substantial economic losses among livestock in southern Somalia, Kenya, and northern Tanzania (Anonymous, *Morb. Mortal. Wkly. Rep.* 56:73-76, 2007). The ability of RVF virus to cause explosive outbreaks in previously unaffected regions accompanied by high morbidity and mortality during RVF epizootics/epidemics highlights the importance of developing high throughput screening tools for potential antiviral therapeutic agents and the development of safe and efficacious vaccines for this significant veterinary and public health threat.

SUMMARY

Disclosed are RVF viruses that are highly attenuated, immunogenic and contain precise molecular markers allowing for the differentiation of naturally infected and vaccinated animals (DIVA). Provided herein are recombinant RVF viruses, wherein the genome of the recombinant RVF viruses comprise (i) a full-length L segment; (ii) a full-length M segment or an M segment comprising a complete deletion of the NSm open reading frame (ORF); and (iii) an S segment comprising a complete deletion of the NSs ORF. In one embodiment, the NSs ORF of the recombinant RVF virus is replaced by the ORF of a reporter gene.

Also provided are immunogenic compositions comprising one or more of the recombinant RVF viruses described herein and a pharmaceutically acceptable carrier. Further provided is a method of immunizing a subject against RVF virus infection, comprising administering to the subject an immunogenic composition disclosed herein. The immunogenic compositions can be used for vaccination of livestock or humans.

Further provided is a collection of plasmids comprising (i) a plasmid encoding a full-length anti-genomic copy of the L segment of RVF virus; (ii) a plasmid encoding a full-length anti-genomic copy of the M segment of RVF virus, or an anti-genomic copy of the M segment of RVF virus comprising a complete deletion of the NSm ORF; and (iii) a plasmid encoding an anti-genomic copy of the S segment of RVF virus, wherein the S segment comprises a complete deletion of the NSs ORF. In some embodiments, the plasmids further comprise a T7 promoter and a hepatitis delta virus ribozyme. In one example, the NSs ORF of the S segment plasmid is replaced by the ORF of a reporter gene, such as a green fluorescent protein. Also provided are isolated host cells comprising a collection of plasmids provided herein.

Further provided is a method of preparing a recombinant RVF virus for immunization of a subject, comprising (i) transfecting cultured cells with the collection of plasmids described herein; (ii) incubating the cells for 1 to 5 days; and (iii) collecting recombinant RVF virus from the cell supernatant.

Also provided are recombinant RVF viruses, wherein the genome of the recombinant RVF viruses comprise a full-length L segment, a full-length M segment and a full-length S segment, wherein the S segment further encodes the ORF of a reporter gene.

A reverse genetics system for producing recombinant RVF virus is also provided. The reverse genetics system consists of ¹⁰ three plasmids, a plasmid that encodes an anti-genomic copy of an S segment, a plasmid that encodes an M segment and a plasmid that encodes an L segment of RVF virus, wherein each plasmid comprises a T7 promoter and a hepatitis delta virus ribozyme. Further provided are recombinant RVF ¹⁵ viruses produced using the reverse genetics system described herein.

The foregoing and other features and advantages will become more apparent from the following detailed description of several embodiments, which proceeds with reference ²⁰ to the accompanying figures.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A is a schematic depiction of the rRVF cDNA plasmid constructions used to generate the rRVF virus stocks. FIG. 1B is a series of images showing direct live cell LTV imaging of Vero E6 cells 24 hours after infection with each recombinant rRVF virus (expressing eGFP). FIG. 1C is a series of images showing Vero E6 cells 24 hours after infection with rRVF-NSs-(Ala)₃GFP or rRVF-NSs(Ala)₁₀GFP viruses at an MOI of 1. Cells were fixed and stained with monoclonal antibodies specific for eGFP, RVF NSs and counterstained with DAPI to confirm intranuclear co-localization of eGFP and NSs. 35

FIG. 2 is a graph showing the results of anti-RVF virus total IgG adjusted SUM_{OD} ELISA testing of all vaccinated (40) and sham inoculated (5) control animals at day 26 post-immunization. A positive/negative cut-off value was established as the mean+3 standard deviations of the sham inocu-40 lated SUM_{OD} values (open circles-dashed line). g=Significant differences between vaccinated and control groups (p-value <0.05).

FIGS. **3**A-**3**D are a series of images showing representative results of indirect fluorescent testing of serum collected from 45 (A) WF rats surviving challenge with RVF virus; (B) vaccinated WF rats (day 26 post-vaccination); (C) negative control sham inoculated rats (day 26 post-vaccination); and (D) naturally infected convalescent livestock (goat) sera obtained during the RVF virus outbreak in Saudi Arabia in 2000. The ⁵⁰ presence of anti-NP antibodies (left panels) and anti-NSs antibodies (right panels) is detected using Vero E6 cells expressing either NP or NSs, respectively. To confirm intranuclear accumulation of anti-NSs antibody, cells were counterstained with DAPI. ⁵⁵

FIGS. **4**A and **4**B are tables showing data obtained from a vaccination pilot study (A) and challenge study (B).

FIG. **5** is a plasmid map of pRVS.

- FIG. 6 is a plasmid map of pRVM.
- FIG. 7 is a plasmid map of pRVL.
- FIG. 8 is a plasmid map of pRVS-GFP Δ NSs.
- FIG. 9 is a plasmid map of $pRVM\Delta NSm$.

SEQUENCE LISTING

The nucleic and amino acid sequences listed in the accompanying sequence listing are shown using standard letter abbreviations for nucleotide bases, and three letter code for amino acids, as defined in 37 C.F.R. 1.822. Only one strand of each nucleic acid sequence is shown, but the complementary strand is understood as included by any reference to the displayed strand. The Sequence Listing is submitted as an ASCII text file, created on Jun. 18, 2010, 60.26 kB, which is incorporated by reference herein. In the accompanying sequence listing:

SEQ ID NO: 1 is the nucleotide sequence of the S segment of wild-type RVF virus strain ZH501, deposited under Genbank Accession No. DQ380149 on Jan. 31, 2007.

SEQ ID NO: 2 is the nucleotide sequence of the M segment of wild-type RVF virus strain ZH501, deposited under Genbank Accession No. DQ380200 on Jan. 31, 2007.

SEQ ID NO: 3 is the nucleotide sequence of the L segment of wild-type RVF virus strain ZH501, deposited under Genbank Accession No. DQ375406 on Jan. 31, 2007.

SEQ ID NO: 4 is the nucleotide sequence of primer RVS-35/KpnI.

- SEQ ID NO: 5 is the nucleotide sequence of primer RVS+ 827/Bg1II.
- SEQ ID NO: 6 is the nucleotide sequence of primer eGFP+ 1/KpnI.
- SEQ ID NO: 7 is the nucleotide sequence of primer eGFP-720/BgIII.

SEQ ID NO: 8 is the nucleotide sequence of primer RVS-829rev/KpnI.

SEQ ID NO: 9 is the nucleotide sequence of primer NSs-GFP+10Ala/Fwd.

SEQ ID NO: 10 is the nucleotide sequence of primer NSs-GFP+10Ala/Rev.

SEQ ID NO: 11 is the nucleotide sequence of plasmid $_{\rm 35}\,$ pRVS.

SEQ ID NO: 12 is the nucleotide sequence of plasmid pRVM.

SEQ ID NO: 13 is the nucleotide sequence of plasmid pRVL.

SEQ ID NO: 14 is the nucleotide sequence of plasmid pRVS-GFPΔNSs.

SEQ ID NO: 15 is the nucleotide sequence of the plasmid $pRVM\Delta NSm$.

DETAILED DESCRIPTION

I. Abbreviations

	BSL	Bio-safety level
	CPE	Cytopathic effect
	DIVA	Differentiation of naturally infected and vaccinated animals
5	eGFP	Enhanced green fluorescent protein
	HRP	Horseradish peroxidase
	IFA	Immunofluorescence assay
	LD	Lethal dose
	MOI	Multiplicity of infection
	NP	Nucleoprotein
0	NS	Non-structural
U	OIE	Office International des Epizooties
	ORF	Open reading frame
	PFU	Plaque-forming unit
	PRNT	Plaque reduction neutralization titers
	RNA	Ribonucleic acid
	RT-PCR	Reverse transcriptase polymerase chain reaction
5	RVF	Rift Valley fever
	SQ	Subcutaneously

60

6.

	. •	
-con	tını	ied

USDA WF WOAH	United States Department of Agriculture Wistar-furth World Organization for Animal Health	5
--------------------	---	---

II. Terms

Unless otherwise noted, technical terms are used according 10 to conventional usage. Definitions of common terms in molecular biology may be found in Benjamin Lewin, *Genes V*, published by Oxford University Press, 1994 (ISBN 0-19-854287-9); Kendrew et al. (eds.), *The Encyclopedia of Molecular Biology*, published by Blackwell Science Ltd., 15 1994 (ISBN 0-632-02182-9); and Robert A. Meyers (ed.), *Molecular Biology and Biotechnology: a Comprehensive Desk Reference*, published by VCH Publishers, Inc., 1995 (ISBN 1-56081-569-8).

In order to facilitate review of the various embodiments of 20 the disclosure, the following explanations of specific terms are provided:

Adjuvant: A substance or vehicle that non-specifically enhances the immune response to an antigen. Adjuvants can include a suspension of minerals (alum, aluminum hydrox- 25 ide, or phosphate) on which antigen is adsorbed; or water-inoil emulsion in which antigen solution is emulsified in mineral oil (for example, Freund's incomplete adjuvant), sometimes with the inclusion of killed mycobacteria (Freund's complete adjuvant) to further enhance antigenicity 30 Immunostimulatory oligonucleotides (such as those including a CpG motif) can also be used as adjuvants (for example, see U.S. Pat. Nos. 6,194,388; 6,207,646; 6,214,806; 6,218, 371; 6,239,116; 6,339,068; 6,406,705; and 6,429,199). Adjuvants also include biological molecules, such as costimula- 35 other RNA molecules. tory molecules. Exemplary biological adjuvants include IL-2, RANTES, GM-CSF, TNF-α, INF-γ, G-CSF, LFA-3, CD72, B7-1, B7-2, OX-40L and 41 BBL.

Administer: As used herein, administering a composition to a subject means to give, apply or bring the composition into 40 contact with the subject. Administration can be accomplished by any of a number of routes, such as, for example, topical, oral, subcutaneous, intramuscular, intraperitoneal, intravenous, intrathecal and intramuscular.

Ambisense: Refers to a genome or genomic segments hav- 45 ing both positive sense and negative sense portions. For example, the S segment of a Phlebovirus, such as Rift Valley fever virus, is ambisense, encoding nucleoprotein (NP) in the negative sense and the non-structural protein (NSs) in the positive sense. 50

Animal: Living multi-cellular vertebrate organisms, a category that includes, for example, mammals and bird. Mammals include, but are not limited to, humans, non-human primates, dogs, cats, horses, sheep and cows. The term mammal includes both human and non-human mammals.

Antibody: An immunoglobulin molecule produced by B lymphoid cells with a specific amino acid sequence. Antibodies are evoked in humans or other animals by a specific antigen (immunogen). Antibodies are characterized by reacting specifically with the antigen in some demonstrable way, 60 antibody and antigen each being defined in terms of the other. "Eliciting an antibody response" refers to the ability of an antigen or other molecule to induce the production of antibodies.

Antigen: A compound, composition, or substance that can 65 stimulate the production of antibodies or a T-cell response in an animal, including compositions that are injected or

absorbed into an animal. An antigen reacts with the products of specific humoral or cellular immunity, including those induced by heterologous immunogens. In one embodiment, an antigen is a RVF virus antigen.

Anti-genomic: As used herein, "anti-genomic" refers to a genomic segment of a virus that encodes a protein in the orientation opposite to the viral genome. For example, Rift valley fever virus is a negative-sense RNA virus. However, the S segment is ambisense, encoding proteins in both the positive-sense and negative-sense orientations. "Anti-genomic" refers to the positive-sense orientation, while "genomic" refers to the negative-sense orientation.

Attenuated: In the context of a live virus, the virus is attenuated if its ability to infect a cell or subject and/or its ability to produce disease is reduced (for example, eliminated) compared to a wild-type virus. Typically, an attenuated virus retains at least some capacity to elicit an immune response following administration to an immunocompetent subject. In some cases, an attenuated virus is capable of eliciting a protective immune response without causing any signs or symptoms of infection. In some embodiments, the ability of an attenuated virus to cause disease in a subject is reduced at least about 10%, at least about 25%, at least about 50%, at least about 75% or at least about 90% relative to wild-type virus.

Fusion protein: A protein generated by expression of a nucleic acid sequence engineered from nucleic acid sequences encoding at least a portion of two different (heterologous) proteins. To create a fusion protein, the nucleic acid sequences must be in the same reading frame and contain to internal stop codons.

Hepatitis delta virus ribozyme: A non-coding, catalytic RNA from the hepatitis delta virus. Ribozymes catalyze the hydrolysis of their own phosphodiester bonds or those of other RNA molecules.

Host cell: In the context of the present disclosure, a "host cell" is a cell of use with the RVF virus reverse genetics systems described herein. A suitable host cell is one that is capable of transfection with and expression of the plasmids of the RVF virus reverse genetics system. In one embodiment, the host cell is a cell expressing the T7 polymerase, such as, but not limited to BSR-T7/5 cells (Buchholz et al., *J. Virol.* 73(1):251-259, 1999).

Immune response: A response of a cell of the immune system, such as a B-cell, T-cell, macrophage or polymorphonucleocyte, to a stimulus such as an antigen. An immune response can include any cell of the body involved in a host defense response, including for example, an epithelial cell that secretes an interferon or a cytokine. An immune response includes, but is not limited to, an innate immune response or inflammation. As used herein, a protective immune response refers to an immune response that protects a subject from infection (prevents infection or prevents the development of disease associated with infection).

Immunogen: A compound, composition, or substance which is capable, under appropriate conditions, of stimulating an immune response, such as the production of antibodies or a T-cell response in an animal, including compositions that are injected or absorbed into an animal. As used herein, as "immunogenic composition" is a composition comprising an immunogen.

Immunize: To render a subject protected from an infectious disease, such as by vaccination.

Isolated: An "isolated" biological component (such as a nucleic acid, protein or virus) has been substantially separated or purified away from other biological components (such as cell debris, or other proteins or nucleic acids). Bio-

logical components that have been "isolated" include those components purified by standard purification methods. The term also embraces recombinant nucleic acids, proteins or viruses, as well as chemically synthesized nucleic acids or peptides.

Linker: One or more amino acids that serve as a spacer between two polypeptides of a fusion protein.

Livestock: Domesticated animals reared in an agricultural setting as a source of food or to provide labor. The term "livestock" includes, but is not limited to, cattle, deer, don- 10 keys, goats, horses, mules, rabbits and sheep.

ORF (open reading frame): A series of nucleotide triplets (codons) coding for amino acids without any termination codons. These sequences are usually translatable into a peptide.

Operably linked: A first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter 20 affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein-coding regions, in the same reading frame.

Pharmaceutically acceptable vehicles: The pharmaceuti- 25 cally acceptable carriers (vehicles) useful in this disclosure are conventional. Remington's Pharmaceutical Sciences, by E. W. Martin, Mack Publishing Co., Easton, Pa., 15th Edition (1975), describes compositions and formulations suitable for pharmaceutical delivery of one or more therapeutic com- 30 pounds or molecules, such as one or more recombinant RVF viruses, and additional pharmaceutical agents.

In general, the nature of the carrier will depend on the particular mode of administration being employed. For instance, parenteral formulations usually comprise injectable 35 fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle. For solid compositions (for example, powder, pill, tablet, or capsule forms), conventional non-toxic solid carri- 40 ers can include, for example, pharmaceutical grades of mannitol, lactose, starch, or magnesium stearate. In addition to biologically-neutral carriers, pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, 45 preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.

Plasmid: A circular nucleic acid molecule capable of autonomous replication in a host cell.

Polypeptide: A polymer in which the monomers are amino 50 acid residues which are joined together through amide bonds. When the amino acids are alpha-amino acids, either the L-optical isomer or the D-optical isomer can be used. The terms "polypeptide" or "protein" as used herein are intended to encompass any amino acid sequence and include modified 55 sequences such as glycoproteins. The term "polypeptide" is specifically intended to cover naturally occurring proteins, as well as those which are recombinantly or synthetically produced. The term "residue" or "amino acid residue" includes reference to an amino acid that is incorporated into a protein, 60 polypeptide, or peptide.

Conservative amino acid substitutions are those substitutions that, when made, least interfere with the properties of the original protein, that is, the structure and especially the function of the protein is conserved and not significantly 65 changed by such substitutions. Examples of conservative substitutions are shown below.

	Original Residue	Conservative Substitutions	
5	Ala	Ser	
	Arg	Lys	
	Asn	Gln, His	
	Asp	Glu	
	Cys	Ser	
	Gln	Asn	
10	Glu	Asp	
	His	Asn; Gln	
	Ile	Leu, Val	
	Leu	Ile; Val	
	Lys	Arg; Gln; Glu	
	Met	Leu; Ile	
15	Phe	Met; Leu; Tyr	
15	Ser	Thr	
	Thr	Ser	
	Trp	Tyr	
	Tyr	Trp; Phe	
	Val	Ile; Leu	

Conservative substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.

The substitutions which in general are expected to produce the greatest changes in protein properties will be non-conservative, for instance changes in which (a) a hydrophilic residue, for example, seryl or threonyl, is substituted for (or by) a hydrophobic residue, for example, leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, for example, lysyl, arginyl, or histadyl, is substituted for (or by) an electronegative residue, for example, glutamyl or aspartyl; or (d) a residue having a bulky side chain, for example, phenylalanine, is substituted for (or by) one not having a side chain, for example, glycine.

Preventing, treating or ameliorating a disease: "Preventing" a disease refers to inhibiting the full development of a disease. "Treating" refers to a therapeutic intervention that ameliorates a sign or symptom of a disease or pathological condition after it has begun to develop. "Ameliorating" refers to the reduction in the number or severity of signs or symptoms of a disease.

Promoter: A promoter is an array of nucleic acid control sequences which direct transcription of a nucleic acid. A promoter includes necessary nucleic acid sequences near the start site of transcription. A promoter also optionally includes distal enhancer or repressor elements. A "constitutive promoter" is a promoter that is continuously active and is not subject to regulation by external signals or molecules. In contrast, the activity of an "inducible promoter" is regulated by an external signal or molecule (for example, a transcription factor). In one embodiment, the promoter is a T7 promoter (from bacteriophage T7).

Purified: The term "purified" does not require absolute purity; rather, it is intended as a relative term. Thus, for example, a purified peptide, protein, virus, or other active compound is one that is isolated in whole or in part from naturally associated proteins and other contaminants. In certain embodiments, the term "substantially purified" refers to a peptide, protein, virus or other active compound that has been isolated from a cell, cell culture medium, or other crude preparation and subjected to fractionation to remove various components of the initial preparation, such as proteins, cellular debris, and other components.

Recombinant: A recombinant nucleic acid, protein or virus is one that has a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, 5 more commonly, by the artificial manipulation of isolated segments of nucleic acids, for example, by genetic engineering techniques. In one embodiment, recombinant RVF virus is generated using the reverse genetics system described herein. In some examples, the recombinant RVF viruses com-10 prise one or more deletions in a viral virulence factor, such as NSs and/or NSm. In other examples, the recombinant RVF viruses comprise a heterologous gene, such as a reporter gene.

Reporter gene: A reporter gene is a gene operably linked to 15 another gene or nucleic acid sequence of interest (such as a promoter sequence). Reporter genes are used to determine whether the gene or nucleic acid of interest is expressed in a cell or has been activated in a cell. Reporter genes typically have easily identifiable characteristics, such as fluorescence, 20 or easily assayed products, such as an enzyme. Reporter genes can also confer antibiotic resistance to a host cell or tissue. Reporter genes include, for example, GFP (or eGFP) or other fluorescence genes, luciferase, β -galactosidase and alkaline phosphatase. 25

Reverse genetics: Refers to the process of introducing mutations (such as deletions, insertions or point mutations) into the genome of an organism or virus in order to determine the phenotypic effect of the mutation. For example, introduction of a mutation in a specific viral gene enables one to 30 determine the function of the gene.

Rift Valley fever (RVF) virus: A virus belonging to the family Bunyaviridae and genus Phlebovirus. RVF virus has a single-stranded, negative-sense genome composed of three genome segments, S, M and L. The S segment is an ambisense 35 genome segment, meaning it encodes proteins in both the positive-sense and negative-sense orientations. The RVF virus genome encodes both structural and non-structural proteins. A "structural" protein is a protein found in the virus particle, whereas a "non-structural" protein is only expressed 40 in a virus-infected cell. RVF virus structural proteins include nucleoprotein (NP or N, used interchangeably), two glycoproteins (Gn and Ge) and the viral RNA-dependent RNA polymerase (L protein). Non-structural RVF virus proteins include NSs, NSm and the NSm+Gn fusion protein. As used 45 herein, a "full-length" RVF virus genome segment is one containing no deletions. Full-length genome segments can contain mutations or substitutions, but retain the same length as the wild-type virus. A "complete deletion" of an ORF of a RVF virus genome segment means either every nucleotide 50 encoding the ORF is deleted from genome segment, or nearly every nucleotide encoding the ORF is deleted such that no proteins are translated from the ORF. Thus, a "complete deletion" includes genome segments retaining up to ten nucleotides encoding the ORF, such as one, two, three, four, five, 55 six, seven, eight, nine or ten nucleotides. In other A number of RVF virus strains have been identified. In one embodiment described herein, the RVF virus strain is ZH501.

As used herein, plasmids encoding full-length RVF virus S, M and L genome segments are referred to as pRVS, pRVM, 60 and pRVL, respectively. The S segment plasmid containing the eGFP ORF in place of the complete NSs ORF is referred to as pRVS-GFP Δ NSs. The M segment plasmid containing a complete deletion of the NSm ORF is referred to as pRVM- Δ NSm. The recombinant RVF viruses based upon the ZH501 65 genome that are generated using reverse genetics are referred to as either rRVF or rZH501. For example, recombinant RVF

virus generated using the pRVS-GFP Δ NSs plasmid (and wild-type M and L plasmids), is referred to as rRVF- Δ NSs: GFP or rZH501- Δ NSs:GFP. Similarly, recombinant RVF virus generated using the pRVS-GFP Δ NSs plasmid and pRVM- Δ NSm plasmid (and wild-type L plasmid), referred to as rRVF- Δ NSs:GFP- Δ NSm or rZH501- Δ NSs:GFP- Δ NSm. Recombinant RVF virus comprising wild-type M and L segments, and an S segment encoding an NSs-eGFP fusion protein with a three alanine residue linker, is referred to as rRVF-NSs(Ala)₃GFP or rZH501-NSs(Ala)₃GFP). If the fusion protein comprises a ten alanine residue linker, the recombinant virus is referred to as rRVF-NSs(Ala)₁₀GFP or rZH501-NSs(Ala)₁₀GFP.

Sequence identity: The similarity between amino acid or nucleic acid sequences is expressed in terms of the similarity between the sequences, otherwise referred to as sequence identity. Sequence identity is frequently measured in terms of percentage identity (or similarity or homology); the higher the percentage, the more similar the two sequences are. Homologs or variants of a given gene or protein will possess a relatively high degree of sequence identity when aligned using standard methods.

Methods of alignment of sequences for comparison are well known in the art. Various programs and alignment algorithms are described in: Smith and Waterman, Adv. Appl. Math. 2:482, 1981; Needleman and Wunsch, J. Mol. Biol. 48:443, 1970; Pearson and Lipman, Proc. Natl. Acad. Sci. U.S.A. 85:2444, 1988; Higgins and Sharp, Gene 73:237-244, 1988; Higgins and Sharp, CABIOS 5:151-153, 1989; Comet
et al., Nucleic Acids Research 16:10881-10890, 1988; and Pearson and Lipman, Proc. Natl. Acad. Sci. U.S.A. 85:2444, 1988. Altschul et al., Nature Genet. 6:119-129, 1994.

The NCBI Basic Local Alignment Search Tool (BLASTM) (Altschul et al., *J. Mol. Biol.* 215:403-410, 1990) is available from several sources, including the National Center for Biotechnology Information (NCBI, Bethesda, Md.) and on the Internet, for use in connection with the sequence analysis programs blastp, blastn, blastx, tblastn and tblastx.

Subject: Living multi-cellular vertebrate organisms, a category that includes both human and non-human mammals. Subjects include veterinary subjects, including livestock such as cows and sheep, and non-human primates.

Therapeutically effective amount: A quantity of a specified agent sufficient to achieve a desired effect in a subject being treated with that agent. For example, this may be the amount of a recombinant RVF virus useful for eliciting an immune response in a subject and/or for preventing infection by RVF virus. Ideally, in the context of the present disclosure, a therapeutically effective amount of a recombinant RVF virus is an amount sufficient to increase resistance to, prevent, ameliorate, and/or treat infection caused by RVF virus in a subject without causing a substantial cytotoxic effect in the subject. The effective amount of a recombinant RVF virus useful for increasing resistance to, preventing, ameliorating, and/or treating infection in a subject will be dependent on, for example, the subject being treated, the manner of administration of the therapeutic composition and other factors.

Transformed: A transformed cell is a cell into which has been introduced a nucleic acid molecule by molecular biology techniques. As used herein, the term transformation encompasses all techniques by which a nucleic acid molecule might be introduced into such a cell, including transfection with viral vectors, transformation with plasmid vectors, and introduction of naked DNA by electroporation, lipofection, and particle gun acceleration.

Vaccine: A preparation of immunogenic material capable of stimulating an immune response, administered for the

prevention, amelioration, or treatment of infectious or other types of disease. The immunogenic material may include attenuated or killed microorganisms (such as attenuated viruses), or antigenic proteins, peptides or DNA derived from them. Vaccines may elicit both prophylactic (preventative) ⁵ and therapeutic responses. Methods of administration vary according to the vaccine, but may include inoculation, ingestion, inhalation or other forms of administration. Inoculations can be delivered by any of a number of routes, including parenteral, such as intravenous, subcutaneous or intramuscular. Vaccines may be administered with an adjuvant to boost the immune response.

Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this 1 disclosure belongs. The singular terms "a," "an," and "the" include plural referents unless context clearly indicates otherwise. Similarly, the word "or" is intended to include "and" unless the context clearly indicates otherwise. Hence "comprising A or B" means including A, or B, or A and B. It is 20 further to be understood that all base sizes or amino acid sizes, and all molecular weight or molecular mass values, given for nucleic acids or polypeptides are approximate, and are provided for description. Although methods and materials similar or equivalent to those described herein can be used in the 25 practice or testing of the present disclosure, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including explanations of 30 terms, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

III. Overview of Several Embodiments

Disclosed herein are RVF virus vaccine candidates that are highly attenuated, immunogenic and contain precise molecular markers allowing for the differentiation of naturally infected and vaccinated animals (DIVA). The recombinant RVF viruses described herein, which in some embodiments 40 contain complete deletions of one or both of the major virus virulence factors, NSs and NSm, are highly attenuated in vivo, induce robust anti-RVF antibody responses, provide protection from virulent virus challenge and allow for the assessment of vaccination status in animals on the basis of 45 NSs/NP serology. Further provided are recombinant RVF viruses comprising a reporter moiety, such as eGFP, which have a variety of applications, including as live virus research tools that can be useful for the rapid screening of antiviral therapeutic compounds. 50

Provided herein are recombinant RVF viruses, wherein the genome of the recombinant RVF viruses comprise (i) a full-length L segment; (ii) a full-length M segment or an M segment comprising a complete deletion of the NSm open reading frame (ORF); and (iii) an S segment comprising a 55 complete deletion of the N Ss ORF. In one embodiment, the NSs ORF of the recombinant RVF virus is replaced by the ORF of a reporter gene. Reporter genes include, but are not limited to genes encoding fluorescent proteins, enzymes or antibiotic resistance. Any gene that produces a protein with a 60 functional readout can be used as the reporter gene. In one example, the reporter gene is a green fluorescent protein (GFP), such as enhanced GFP (eGFP).

The genome of the recombinant RVF viruses provided herein can be derived from any strain or variant of RVF virus. 65 In some embodiments, the genome is derived from ZH501, ZH548, SA75 or SPB 9800523. In a preferred embodiment,

the genome is derived from RVF virus strain ZH501. The sequences of the S, M and L segments of the ZH501 strain are deposited under GenBank Accession Nos. DQ380149 (SEQ ID NO: 1), DQ380200 (SEQ ID NO: 2) and DQ375406 (SEQ ID NO: 3), respectively. The nucleotide sequences of the S, M and L segments need not be 100% identical to the sequences provided herein. In some examples, the S, M and L segments are at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to a known or disclosed RVF virus S, M or L segment, such as the S, M and L segments set forth as SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3, respectively.

Also provided are immunogenic compositions comprising the recombinant RVF viruses described herein and a pharmaceutically acceptable carrier. Suitable pharmaceutical carriers are described herein and are well known in the art. The pharmaceutical carrier used depends on a variety of factors, including the route of administration. In one embodiment, the immunogenic composition further comprises an adjuvant. The adjuvant can be any substance that improves the immune response to the recombinant RVF virus.

Further provided is a method of immunizing a subject against RVF virus infection, comprising administering to the subject an immunogenic composition disclosed herein. In one embodiment, the subject is livestock. Livestock includes, but is not limited to sheep and cattle. In another embodiment, the subject is a human. In one example, the immunogenic composition is administered in a single dose. In another embodiment, the immunogenic composition is administered in multiple doses, such as two, three or four doses. When administered in multiple doses, the time period between doses can vary. In some cases, the time period is days, weeks or months. The immunogenic composition can be administered using any suitable route of administration. Generally, the recombinant RVF viruses are administered parenterally, such as intramuscularly, intravenously or subcutaneously.

Further provided is a collection of plasmids comprising (i) a plasmid encoding a full-length anti-genomic copy of the L segment of RVF virus; (ii) a plasmid encoding a full-length anti-genomic copy of the M segment of RVF virus, or an anti-genomic copy of the M segment of RVF virus comprising a complete deletion of the NSm ORF; and (iii) a plasmid encoding an anti-genomic copy of the S segment of RVF virus, wherein the S segment comprises a complete deletion of the NSs ORF. In some embodiments, the plasmids further comprise a T7 promoter and a hepatitis delta virus ribozyme. In one example, the NSs ORF of the S segment plasmid is replaced by the ORF of a reporter gene. In one example, the reporter gene is green fluorescent protein. In some embodiments, the RVF virus is ZH501.

In one embodiment, the nucleotide sequence of the S segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 14. In particular examples, the nucleotide sequence of the S segment plasmid comprises the nucleotide sequence of SEQ ID NO: 14. In another embodiment, the nucleotide sequence of the M segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 12. In particular examples, the nucleotide sequence of the M segment plasmid comprises the nucleotide sequence of SEQ ID NO: 12. In another embodiment, the nucleotide sequence of the M segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 15. In particular examples, the nucleotide sequence of the M segment plasmid comprises the nucleotide sequence of SEQ ID NO: 15. In another embodiment, the nucleotide sequence of the L segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 13. In particular examples, the nucleotide sequence of the L segment plasmid comprises the nucleotide sequence of SEQ ID NO: 13.

Also provided are isolated host cells comprising the collection of plasmids provided herein. In one embodiment, the cells express T7 polymerase.

Further provided is a method of preparing a recombinant RVF virus for immunization of a subject, comprising (i) transfecting cultured cells with the collection of plasmids described herein; (ii) incubating the cells for 1 to 5 days; and (iii) collecting recombinant RVF virus from the cell supernatant. In one embodiment, the cells express T7 polymerase.

Further provided are recombinant RVF viruses, wherein the genome of the recombinant RVF viruses comprise a fulllength L segment, a full-length M segment and a full-length S ¹⁵ segment, wherein the S segment further encodes the ORF of a reporter gene. In one embodiment, the S segment encodes a NSs-reporter gene fusion protein. In one aspect, the reporter gene is fused to the C-terminus of NSs. In some examples, the fusion protein further comprises a linker. The linker can be ²⁰ any suitable combination of one or more amino acids. In one embodiment, the linker comprises 3 to 10 alanine residues. In another embodiment, the reporter gene is GFP.

Also provided herein is a reverse genetics system for producing recombinant RVF virus. The reverse genetics system 25 consists of three plasmids, wherein a first plasmid encodes an anti-genomic copy of a S segment, a second plasmid encodes an anti-genomic copy of a M segment and a third plasmid encodes an anti-genomic copy of a L segment of RVF virus, and wherein each plasmid comprises a T7 promoter and a 30 hepatitis delta virus ribozyme. In some embodiments, the RVF virus is ZH501. In some embodiments, the S, M and L segments are wild-type S, M and L segments. In another embodiment, the S segment comprises a deletion of the NSs ORF. In another embodiment, the M segment comprises a 35 deletion of the NSm ORF. In another embodiment, the S segment comprises a deletion of the NSs ORF and the M segment comprises a deletion of the NSm ORF.

In one embodiment, the nucleotide sequence of the S segment plasmid is at least 95% identical to the nucleotide 40 sequence of SEQ ID NO: 11. In particular examples, the nucleotide sequence of the S segment plasmid comprises the nucleotide sequence of SEQ ID NO: 11. In another embodiment, the nucleotide sequence of the S segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 45 14. In particular examples, the nucleotide sequence of the S segment plasmid comprises the nucleotide sequence of SEO ID NO: 14. In another embodiment, the nucleotide sequence of the M segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 12. In particular 50 examples, the nucleotide sequence of the M segment plasmid comprises the nucleotide sequence of SEQ ID NO: 12. In another embodiment, the nucleotide sequence of the M segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 15. In particular examples, the 55 nucleotide sequence of the M segment plasmid comprises the nucleotide sequence of SEQ ID NO: 15. In another embodiment, the nucleotide sequence of the L segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 13. In particular examples, the nucleotide sequence of the L $_{60}$ segment plasmid comprises the nucleotide sequence of SEQ ID NO: 13.

Typically, the three plasmids are transfected simultaneously into cells expressing T7 polymerase. After a sufficient period of time to allow for production of recombinant 65 virus, such as about 1 to about 5 days, recombinant RVF virus is collected from the cell supernatant.

Further provided are recombinant RVF viruses produced using the reverse genetics system described herein. In some examples, the recombinant RVF viruses comprise a deletion in one or more viral virulence factors. In one embodiment, the recombinant viruses comprise a complete deletion of the NSs ORF. In another embodiment, the recombinant viruses comprise a complete deletion of the NSm ORF. In yet another embodiment, the recombinant viruses comprise a deletion in both the NSs and NSm ORFs. The recombinant RVF viruses can be used for both research and therapeutic purposes. For example, the recombinant RVF viruses described herein are suitable for use as vaccines to prevent, treat or ameliorate RVF virus infection in livestock and humans.

IV. Rift Valley Fever Virus Genome and Encoded Proteins

Like other members of the genus Phlebovirus, RVF virus has a negative-sense, single-stranded tripartite RNA genome composed of the S, M and L segments (Schmaljohn, and Hooper, Bunyaviridae: The Viruses and their Replication In Fields' Virology, Lippincott Williams & Wilkins, Philadelphia, Pa., 2001). The small (S) segment (about 1.6 kB) encodes, in an ambisense fashion, the virus nucleoprotein (NP) in the genomic (-) orientation, and the non-structural (NSs) protein in the anti-genomic (+) orientation (Albarino et al., J. Virol. 81:5246-5256, 2007). The medium (M) segment (about 3.8 kB) encodes a least four nested proteins in a single ORF, including two structural glycoproteins, Gn and Ge, and two nonstructural proteins, the 14 kD NSm and a 78 kD NSm+Gn fusion (Gerrard et al., Virology 359:459-465, 2007; Gerrard and Nichol, Virology 357:124-133, 2007). The M segment contains five conserved in-frame AUG-methionine start codons within the NSm protein coding region at antigenomic sense positions 21, 135, 174, 411 and 426. Alternate utilization of the AUGs at positions 21 or 135 results in expression of the 14 kDa NSm protein and the 78 kD NSm+ Gn fusion protein (Suzich et al., J. Virol. 64:1549-1555, 1990, Gerrard and Nichol, Virology 357:124-133, 2007). The large (L) segment (about 6.4 kB) encodes the viral RNA-dependent RNA polymerase (L protein).

RVF virus NP and L proteins are required for viral RNA synthesis (Ikegami et al., *J. Virol.* 79:5606-5615, 2005; Lopez et al., *J. Virol.* 69:3972-3979, 1995). Gn and Gc are believed to mediate binding to an as yet unidentified receptor. The 78kD NSm+Gn fusion protein has been reported to be dispensable for viral replication in cell culture (Won et al., *J. Virol.* 80:8274-8278, 2006).

Both nonstructural genes (NSs and NSm) have been reported to function as virus virulence factors and determinants of mammalian host pathogenesis (Bird et al., *Virology* 362:10-15, 2007; Vialat et al., *J. Virol.* 74:1538-1543, 2000; Won et al., *J. Virol.* 24:13335-13345, 2007). NSs mediates the pan-downregulation of mRNA production by inhibition of RNA polymerase II activity (Billecocq et al., *J. Virol.* 78:9798-9806, 2004; Le May et al., *Cell* 116:541-550, 2004). Via this mechanism, the NSs protein performs a critical role in mammalian host pathogenesis by indirectly disrupting the host cell antiviral response (Bouloy et al., *J. Virol.*, 75:1371-1377, 2001; Muller et al., *Am. J. Trop. Med. Hyg.* 53:405-411, 1995; Vialat et al., *J. Virol.* 74:1538-1543, 2000).

Studies of the non-structural gene located on the RVF virus M segment (NSm) indicate it is dispensable for efficient RVF virus growth in both IFN-competent and IFN-deficient cell culture (Gerrard et al., *Virology* 359:459-465, 2007; Won et al., *J. Virol.* 80:8274-8278, 2006). However, further work utilizing a highly sensitive animal model revealed that recom-

binant RVF virus lacking the entire NSm coding region (rRVF- Δ NSm) was attenuated yet retained the ability to cause either acute-onset lethal hepatic necrosis or delayed-onset lethal neurologic disease in a minority (44%) of animals (Bird et al., *Virology* 362:10-15, 2007). Other studies have shown ⁵ that NSm functions as a virus virulence factor by suppressing the host cell apoptotic pathway following infection (Won et al., *J. Virol.* 24:13335-13345, 2007).

V. Reverse Genetics System for RVF Virus

The ability to generate recombinant viruses containing selected mutations and/or deletions is a powerful tool for the development of virus vaccines. Reverse genetics systems have been described for a few viruses of the Bunyaviridae ¹⁵ family, including Bunyamvera virus (Bridgen and Elliott, *Proc. Natl. Acad. Sci. USA* 93:15400-15404, 1996) and La Crosse virus (Blakqori and Weber, *J. Virol.* 79:10420-10428, 2005). Recently, a reverse genetics system for a vaccine strain (MP-12) of RVF virus was reported (U.S. Pre-Grant Publica-²⁰ tion No. 2007/0122431, herein incorporated by reference).

The recombinant RVF viruses described herein are generated using an optimized reverse genetics system capable of rapidly generating wild-type and mutant viruses (Bird et al., *Virology* 362:10-15, 2007; Gerrard et al., *Virology* 359:459-25 465, 2007, each of which is herein incorporated by reference). The RVF virus reverse genetics system is a T7 RNA polymerase-driven plasmid-based genetic system based on the genome of the virulent RVF virus Egyptian isolate ZH501. This system, described in detail in Bird et al. (*Virology* 362: 30 10-15, 12007) and in the Examples below, includes three plasmids expressing anti-genomic copies of the S, M and L segments of ZH501. As used herein, the plasmids are referred to as the pRVS, pRVM and pRVL plasmids, respectively.

Rescue of recombinant viruses is accomplished by simul- ³⁵ taneous transfection of the three anti-genomic sense plasmids into cells stably expressing T7 polymerase (for example, BSR-T7/5 cells). The genome segments of each plasmid are flanked by a T7 promoter, which enables generation of the primary RNA transcript, and the hepatitis delta virus ⁴⁰ ribozyme, which removes extraneous nucleotides from the 3' end of the primary transcriptional products. The T7 RNA polymerase generated transcripts are identical copies of the RVF virus genome segments, with the exception of an extra G nucleotide on the 5' end derived from the T7 promoter. When ⁴⁵ expressed in transfected host cells, the pRVS, pRVM and pRVL plasmids generate anti-genomic sense copies of the S, M and L segments, respectively.

In one embodiment, the recombinant RVF viruses are generated using an S-segment plasmid that comprises a deletion ⁵⁰ in the NSs gene. In one example, the deletion is a deletion of the entire NSs ORF. In one aspect, the NSs ORF is replaced by the eGFP ORF. In another embodiment, the recombinant RVF viruses are generated using an S-segment plasmid comprising a deletion in the NSs gene and an M-segment plasmid com-⁵⁵ prising a deletion in the NSm ORF. In one example, the deletion is a deletion of the entire NSm ORF. In another embodiment, the recombinant RVF viruses are generated using full-length S, M and L plasmids, wherein one of the plasmids further encodes eGFP. In one example, the eGFP ⁶⁰ ORF is encoded by the S plasmid as a NSs-eGFP fusion protein.

VI. Use of Recombinant RVF Viruses

Recombinant RVF viruses generated using the reverse genetics system described herein can be used for both

65

research and therapeutic purposes. Using this system, recombinant RVF viruses can be generated that contain precisely defined deletions of major virus virulence factors on one or more genome segments. For example, viruses can be produce
that contain deletions of NSs and/or NSm. Accordingly, such recombinant RVF viruses can be used as vaccines to prevent infection of livestock and humans with wild-type RVF virus. The recombinant RVF viruses described herein can also be used as live-virus research tools, particularly those viruses
that incorporate reporter genes, for instance a fluorescent protein such as GFP. For example, these viruses can be used for high-throughput screening of antiviral compounds in vitro.

Efforts to prevent RVF virus infection via vaccination began shortly after the first isolation of the virus in 1931 (Findlay and Daubney, Lancet ii:1350-1351, 1931). These earliest vaccines (MacKenzie, J. Pathol. Bacterol. 40:65-73, 1935) and several that followed, including the currently available TSI-GSD-200 preparation, relied on formalin inactivation of live wild-type virus (Pittman et al., Vaccine 18:181-189, 1999; Randall et al., J. Immunol. 89:660-671, 1962). While capable of eliciting protective immune responses among livestock and humans, these inactivated vaccines typically require a series of 2 or 3 initial inoculations, followed by regular booster vaccinations to achieve and maintain protection (Pittman et al., Vaccine 18:181-189, 1999; Swanepoel et al., "Rift Valley fever" in Infectious Diseases of livestock with special reference to South Africa, pages 688-717, Oxford university Press, Cape Town). However, multiple dosing and annual vaccination regimens are logistically difficult to implement and expensive to maintain, and thus are of limited practical value in resource-poor settings, especially in regard to control of RVF virus infection in livestock in enzootic settings. In addition, there have been problems in the past with quality control and "inactivated" vaccines causing disease.

In an effort to eliminate the necessity of booster inoculations, several live-attenuated vaccine candidates were developed for RVF virus with some, such as the Smithburn neurotropic strain, being employed in Africa. These vaccine candidates have relied upon the random introduction of attenuating mutations via serial passage in suckling mouse brain or tissue culture, in vitro passage in the presence of chemical mutagens, such as 5-fluorouracil, or as naturally occurring virus isolates (such as the Smithburn neurotropic strain, the Kenyan-IB8 strains, MP-12, or the Clone 13 isolate) (Caplen et al., J. Gen. Virol. 66:2271-2277, 1985; Coackley, J. Pathol. Bacteriol. 89:123-131, 1965; Moussa et al., Am. J. Trop. Med. Hyg. 35:660-662, 1986; Muller et al., Am J. Trop. Med. Hyg. 53:405-411, 1995; Rossi and Turell, J. Gen. Virol. 69:817-823, 1988; Smithburn, Br. J. Exp. Pathol. 30:1-16, 1949).

Due to the technical limitations of these procedures, and the lack of complete genome sequence for many of the historically derived RVF virus vaccines, the exact underlying molecular mechanisms of attenuation for many of these liveattenuated RVF virus vaccines is either unknown (Smithburn neurotropic strain or Kenyan-IB8) or reliant on the combinatorial effects of multiple nucleotide or amino acid substitutions (MP-12) (Saluzzo and Smith, *Vaccine* 8:369-375, 1990; Takehara et al., *Virology* 169:452-457, 1989). Experimental and field experience with existing live-attenuated RVF virus vaccines demonstrated that in certain instances these vaccines retain the ability to cause teratogenic effects, abortion, and neural pathology in livestock or animal models. Thus, widespread use of these live-attenuated vaccines is problematic, especially in non-endemic areas, or during inter-epizootic/ epidemic periods (Hunter et al., *Onderstepoort J. Vet. Res.* 69:95-98, 2002; Morrill et al., *Am. J. Vet. Res.* 58:1104-1109, 1997; Morrill et al., *Am. J. Vet. Res.* 58:1110-1114, 1997; Morrill and Peters, *Vaccine* 21:2994-3002, 2003).

While useful in many situations, several distinct disadvantages exist among live attenuated RNA virus vaccines prepared by the traditional techniques discussed above. Liveattenuated vaccines reliant on single or multiple nucleotide substitutions are at increased risk for reversion to virulent phenotypes due to the inherently high rate of viral RNA 10 polymerase errors. The loss of attenuation via this mechanism among livestock and human live vaccines has been documented (Berkhout et al., *J. Virol.* 73:1138-1145, 1999; Catelli et al., *Vaccine* 24:6476-6482, 2006; Halstead et al., *Am. J. Trop. Med. Hyg.* 33:672-678, 1984; Hopkins and Yoder, *Avian* 15 *Dis.* 30:221-223, 1986; Rahimi et al., *J. Clin. Virol.* 39:304-307, 2007).

The potential for a similar reversion event among live RVF virus vaccines dependent on attenuating nucleotide mutation was illustrated by recent genomic analyses of RVF virus that 20 revealed an overall molecular evolution rate ($\sim 2.5 \times 10^{-4}$ nucleotide substitutions/site/year) similar to other singlestranded RNA viruses (Bird et al., J. Virol. 81:2805-2816, 2007). Due to error-prone polymerases, live-attenuated RNA virus vaccines prepared by multiple serial passage techniques 25 involved in virus attenuation inherently consist of a complex mixture of genomic micro-variants. In contrast, the origin of reverse genetics derived virus vaccine candidates is advantageous in that vaccine stocks can be generated directly or following limited amplification steps from precisely defined 30 DNA plasmids. This approach allows for the simple production of virus vaccines following good manufacturing processes (GMP) with higher levels of genetic homogeneity.

Another significant drawback of all previously generated live-attenuated RVF virus vaccines is that they do not allow 35 for differentiation of naturally infected from vaccinated animals (DIVA). This ability is important to augment efforts to contain an accidental or intentional release of wild-type RVF virus in previously unaffected areas (Henderson, Biologicals 33:203-209, 2005). As a high consequence pathogen, RVF 40 virus has been classified as a category A Select Agent as defined by the United States Department of Health and Human Services and the United States Department of Agriculture (USDA), and is listed as a high consequence agent with potential for international spread (List A) by the Office 45 International des Epizooties (OIE) (Le May et al., Cell 116: 541-550, 2004) of the World Organization for Animal Health (WOAH), thus greatly increasing the consequences for international livestock trade following the introduction of RVF virus into previously unaffected countries or epizootics in 50 enzootic areas (USDA, 7 CFR Part 331 and 9 CFR Part 121, Federal Register RIN 0579-AB47:13241-13292, 2005). Currently, OIE regulations require surveillance and absence of RVF virus activity for 2 years following an outbreak before resumption of disease free status and the subsequent easing of 55 import/export trade restrictions (International Office of Epizootics, Terrestrial Animal Health Code, XI:2.2.14.1, 2007). The use of any current commercially available livestock vaccines does not permit the differentiation of vaccinated from naturally infected livestock, thus contraindicating the use of 60 prophylactic vaccination in countries wishing to retain disease free status, or in those with ongoing/endemic RVF virus activity.

Thus, disclosed herein are infectious recombinant RVF viruses, generated using reverse genetics, containing either complete deletions of major virus virulence factors, NSs (rZH501-\DeltaNSs:GFP) or NSs and NSm (rZH501-\DeltaNSs:GFP-

 Δ NSm), which confer attenuated phenotypes in vivo, and which allow for the serologic differentiation of naturally infected and vaccinated animals by presence/absence of anti-RVF NP/anti-RVF NSs antibodies. As described herein, in vivo testing of these recombinant RVF (rRVF) viruses demonstrated that they were highly immunogenic and efficacious in the prevention of severe RVF virus disease and lethality (FIG. **2** and FIG. **4**). In an initial pilot study, animals developed high end-point titers (\geq 1:400) of total anti-RVF virus IgG by day 21 post-vaccination that were significantly higher than sham inoculated controls (p-value <0.05, Table 1). At no observed time point post-vaccination did any animal develop disease symptoms or vaccine virus induced viremia (FIG. **4**).

Additional testing in a larger follow-up study confirmed these results with the majority of animals generating robust total anti-RVF IgG responses with typical titers \geq 1:6400 by day 26 post-vaccination. As with the pilot study, no vaccine virus induced viremia was detected. The immunologic response generated in the Δ NSs/ Δ NSm virus vaccinated animals was significantly higher than controls (p-value <0.05) and was sufficient to confer complete protection from both clinical illness and lethality in 100% of vaccinated animals given a known lethal challenge dose of wild-type RVF virus (FIG. 4).

Direct comparisons of the level of protective immunity $(PRNT_{50} \text{ or total IgG})$ titers with previous studies utilizing other RVF virus vaccines are difficult due to vaccine used and species level differences in immunity. However, earlier studies utilizing the 3 dose regimen (day 0, 7 and 28) of inactivated TSI-GSD-200 vaccine in the WF rat model demonstrated protective efficacy against virulent virus challenge at PRNT₈₀ titers >1:40 (Anderson et al., Vaccine 9:710-714, 1991). Later, a large retrospective analysis of human volunteers (n=598), receiving the same recommended 3-dose regimen of this inactivated vaccine were found to develop mean PRNT₈₀ titers of 1:237 (Pittman et al., Vaccine 18:181-189, 1999). Additionally, a large study of the pathogenesis and neurovirulence of the live-attenuated MP-12 vaccine in rhesus macaques demonstrated PRNT₈₀ titers among vaccinated animals of ≥1:640 (Morrill and Peters, Vaccine 21:2994-3002, 2003). As described herein, inoculation with a single dose of the recombinant RVF viruses resulted in mean PRNT₅₀ titers ranging from 1:640 to 1:7040, indicating that the level of neutralizing antibody is similar to or greater than that demonstrated in earlier RVF vaccine studies using multiple doses in animal model systems or among human volunteers.

Thus, the enhanced safety, attenuation, and reduced possibility of reversion to full virulence (via either RVF virus polymerase nucleotide substitution or gene segment reassortment with field-strains) afforded by the double genetic deletions of the entire RVF virus NSs and NSm genes, does not diminish overall vaccine efficacy. A high level of protective immunity was induced by a single dose of the rRVF viruses disclosed herein, with 37 of 40 total vaccinated animals developing a potentially sterilizing immunity as determined by the lack of any detectable post-challenge viremia (FIG. 4).

As described herein, animals immunized with either recombinant RVF virus do not have detectable anti-NSs antibodies. Thus, given the high-level anti-NSs antibody in survivor control animals, DIVA will be possible among animals immunized with these candidate vaccines based on the presence/absence of anti-NSs antibody (FIGS. **3**A-C). Anti-NSs antibodies have also been detected in the serum of naturally infected convalescent livestock obtained during the outbreak in Saudi Arabia in 2000 (FIG. **3**D), and in humans. Therefore, the use of these recombinant RVF viruses, combined with the

further development of rapid ELISA or solid matrix-based differential detection assays for anti-NP/anti-NSs antibodies, can provide a robust DIVA field screening tool.

In addition, the recombinant RVF viruses described herein routinely grew to high titers in tissue culture and provided 5 protective immunity following a single injection, thus likely reducing the overall economic cost of production, and potentially eliminating the need for resource intensive follow-up booster inoculations. Additionally, the precisely defined attenuating deletions and use of cDNA technology eliminates 10the potential risk of reversion to, or contamination from, virulent wild-type virus inherent in serial passaged or inactivated vaccine preparations, and may ease the federal/national regulatory approval process. While the recombinant RVF viruses can be targeted towards veterinary medical use, and 15 thus indirectly the prevention of human RVF disease, the candidate vaccines can also provide effective prophylactic protection for humans, such as those in high risk occupational settings, or in recognized risk groups following natural or intentional introduction of RVF virus into previously unaf-20 fected areas.

VII. Administration of Recombinant RVF Virus for Vaccination

Recombinant RVF viruses, or immunogenic compositions thereof, can be administered to a subject by any of the routes normally used for introducing recombinant virus into a subject. Methods of administration include, but are not limited to, intradermal, intramuscular, intraperitoneal, parenteral, intra- 30 venous, subcutaneous, vaginal, rectal, intranasal, inhalation or oral. Parenteral administration, such as subcutaneous, intravenous or intramuscular administration, is generally achieved by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid 35 forms suitable for solution or suspension in liquid prior to injection, or as emulsions. Injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described. Administration can be systemic or local.

Immunogenic compositions are administered in any suitable manner, such as with pharmaceutically acceptable carriers. Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the composi- 45 tion. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions of the present disclosure.

Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emul- 50 sions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral 55 vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives may 60 also be present such as, for example, antimicrobials, antioxidants, chelating agents, and inert gases and the like.

Some of the compositions may potentially be administered as a pharmaceutically acceptable acid- or base-addition salt, formed by reaction with inorganic acids such as hydrochloric 65 acid, hydrobromic acid, perchloric acid, nitric acid, thiocyanic acid, sulfuric acid, and phosphoric acid, and organic acids

such as formic acid, acetic acid, propionic acid, glycolic acid, lactic acid, pyruvic acid, oxalic acid, malonic acid, succinic acid, maleic acid, and fumaric acid, or by reaction with an inorganic base such as sodium hydroxide, ammonium hydroxide, potassium hydroxide, and organic bases such as mono-, di-, trialkyl and aryl amines and substituted ethanolamines.

Administration can be accomplished by single or multiple doses. The dose administered to a subject in the context of the present disclosure should be sufficient to induce a beneficial therapeutic response in a subject over time, or to inhibit or prevent RVF virus infection. The dose required will vary from subject to subject depending on the species, age, weight and general condition of the subject, the severity of the infection being treated, the particular immunogenic composition being used and its mode of administration. An appropriate dose can be determined by one of ordinary skill in the art using only routine experimentation.

Provided herein are pharmaceutical compositions (also referred to as immunogenic compositions) which include a therapeutically effective amount of the recombinant RVF viruses alone or in combination with a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The carrier and composition can be sterile, and the formulation suits the mode of administration. The composition can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. The composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulations can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, and magnesium carbonate. Any of the common pharmaceutical carriers, such as sterile saline solution or sesame oil, can be used. The medium can also contain conventional pharmaceutical adjunct materials such as, for example, pharmaceu-40 tically acceptable salts to adjust the osmotic pressure, buffers, preservatives and the like. Other media that can be used with the compositions and methods provided herein are normal saline and sesame oil.

The recombinant RVF viruses described herein can be administered alone or in combination with other therapeutic agents to enhance antigenicity. For example, the recombinant viruses can be administered with an adjuvant, such as Freund incomplete adjuvant or Freund's complete adjuvant.

Optionally, one or more cytokines, such as IL-2, IL-6, IL-12, RANTES, GM-CSF, TNF- α , or IFN- γ , one or more growth factors, such as GM-CSF or G-CSF; one or more molecules such as OX-40L or 41 BBL, or combinations of these molecules, can be used as biological adjuvants (see, for example, Salgaller et al., 1998, J. Sung. Oncol. 68(2):122-38; Lotze et al., 2000, Cancer J. Sci. Am. 6 (Suppl 1):S61-6; Cao et al., 1998, Stem Cells 16 (Suppl 1):251-60; Kuiper et al., 2000, Adv. Exp. Med. Biol. 465:381-90). These molecules can be administered systemically (or locally) to the host.

A number of means for inducing cellular responses, both in vitro and in vivo, are known. Lipids have been identified as agents capable of assisting in priming CTL in vivo against various antigens. For example, as described in U.S. Pat. No. 5,662,907, palmitic acid residues can be attached to the alpha and epsilon amino groups of a lysine residue and then linked (for example, via one or more linking residues, such as glycine, glycine-glycine, serine, serine-serine, or the like) to an immunogenic peptide. The lipidated peptide can then be

injected directly in a micellar form, incorporated in a liposome, or emulsified in an adjuvant. As another example, *E. coli* lipoproteins, such as tripalmitoyl-S-glycerylcysteinlyseryl-serine can be used to prime tumor specific CTL when covalently attached to an appropriate peptide (see, Deres et 5 al., *Nature* 342:561, 1989). Further, as the induction of neutralizing antibodies can also be primed with the same molecule conjugated to a peptide which displays an appropriate epitope, two compositions can be combined to elicit both humoral and cell-mediated responses where that is deemed 10 desirable.

The following examples are provided to illustrate certain particular features and/or embodiments. These examples should not be construed to limit the disclosure to the particular features or embodiments described.

EXAMPLES

Example 1

Optimized Reverse Genetics System for Generation of Recombinant RVF Virus

This example describes the development of an improved reverse genetics system for generation of recombinant RVF 25 viruses. The recombinant RVF viruses described herein are generated using an optimized reverse genetics system capable of rapidly generating wild-type and mutant viruses (Bird et al., *Virology* 362:10-15, 2007, herein incorporated by reference). The RVF virus reverse genetics system is a T7 RNA 30 polymerase-driven plasmid-based genetic system that requires only three plasmids. Each plasmid individually expresses an anti-genomic copy of either the S, M or L segment. In this specific example, the S, M and L segments are derived from the genome of the virulent Egyptian RVF virus 35 isolate ZH501. Nucleotide sequences of ZH501 S, M and L segments are provided herein as SEQ ID NOs: 1-3, respectively.

Rescue of recombinant viruses is accomplished by simultaneous transfection of the three anti-genomic sense plasmids 40 into cells stably expressing T7 polymerase (for example, BSR-T7/5 cells). The genome segments of each plasmid are flanked by a T7 promoter, which enables generation of the primary RNA transcript, and the hepatitis delta virus ribozyme, which removes extraneous nucleotides from the 3' 45 end of the primary transcriptional products. The T7 RNA polymerase generated transcripts are identical copies of the RVF-encoding plasmids, with the exception of an extra G nucleotide on the 5' end derived from the T7 promoter.

A previously reported method of producing recombinant 50 RVF virus required the use of five expression plasmids (Gerrard et al., Virology 359:459-465, 2007). In addition to expression plasmids encoding RVF virus S, M and L segments, this system included plasmids encoding RVF virus N protein and RNA-dependent RNA polymerase (L protein). 55 Northern blot and 3'RACE revealed that the S plasmid used in that system produced low levels of full length S-segment anti-genomic replication products. To produce a more efficient S segment plasmid, the full length S RNA from ZH501 was re-cloned into a version of the plasmid vector that was 60 modified to remove the multiple cloning site. Within this backbone context, levels of N protein expression were significantly increased, allowing for subsequent rescue of recombinant virus without the need for a support plasmid encoding the N protein.

In addition, the optimized system described herein includes an M segment clone in which two non-synonymous

mutations were corrected to match the wild-type sequence, allowing for exact in vivo comparisons between recombinant and wild-type viruses. These corrections were made in both the full-length M segment and the Δ NSm plasmid by site directed mutagenesis and restriction fragment exchange. These changes included removal of the XhoI restriction site. After incorporating these changes into the reverse genetics system, virus rescue was accomplished by simultaneous transfection of only the three anti-genomic sense plasmids (either wild-type S, M and L segments, or deletion mutants thereof). The nucleotide sequences of exemplary wild-type S, M and L plasmids, and plasmids comprising deletions in the S and M segments, are provided herein as SEQ ID NOs: 11-15. Maps of each of these plasmids are shown in FIGS. **5-9**.

After complete lysis of transfected cells, cell supernatants containing rescued viruses were clarified, diluted and virus passaged twice on Vero E6 cells. All recombinant viruses ²⁰ were found to grow similarly to wild-type ZH501 in Vero E6 cell culture. To confirm the exact molecular identity of all viruses used in this Example, complete genome sequence was obtained following previously described techniques (Bird et al., *J. Virol.* 81(6):2805-2816, 2007, herein incorporated by ²⁵ reference).

A total of 11 separate rescue attempts using a variety of plasmid concentrations ranging from $0.5 \,\mu g \text{ to } 4 \,\mu g$ resulted in 100% recombinant virus rescue efficiency using only the three expression plasmids.

Example 2

Generation and Characterization of Recombinant RVF (rRVF) Viruses

This example describes the generation of recombinant RVF viruses comprising deletions in the ORF of NSs and/or NSm, which play a role in viral virulence. This example further describes a recombinant RVF virus comprising a reporter gene.

RVF Virus and Biosafety

All work with infectious RVF virus (wild-type or recombinant) was conducted within the Centers for Disease Control (CDC) bio-safety level 4 (BSL-4) laboratory. Low passage (FRhL+2, Vero E6+2) working stocks of wild-type strain ZH501, isolated originally from a fatal Egyptian human case in 1977, were used as challenge virus, and were prepared by passage on Vero E6 cell monolayers. The complete genome sequence of the S, M and L segments of the wild-type RVF virus strain ZH501 has been deposited under Genbank Accession Nos. DQ380149 (SEQ ID NO: 1), DQ380200 (SEQ ID NO: 2) and DQ375406 (SEQ ID NO: 3), respectively.

Construction of ΔNSs:GFP Deletion/Replacement Plasmid To generate plasmids containing a complete deletion of the NSs ORF, replaced by the eGFP ORF (Towner et al., *Virology* 332(1):20-27, 2005, incorporate herein by reference), the eGFP ORF was amplified by PCR with forward and reverse primers containing the KpnI (GGTACC) and BgIII (AG-ATCT) restriction sites, respectively. Utilizing the full-length RVF S-segment plasmid (pRVS; SEQ ID NO: 11), a strand specific PCR was conducted with primers designed to contain the KpnI and BgIII restriction sites annealing immediately upstream to the NSs START codon, and immediately downstream of the NSs STOP codon. Primer sequences are shown below in Table 1. Restriction site sequences are indicated by italics.

	TABLE 1	
Primer a	sequences for replacement of NSs with	eGFP
Primer	Sequence	SEQ ID NO:
RVS-35/KpnI	aaaaaa <i>GGTACC</i> GATATACTTGATAAGCACTAG	4
RVS + 827/BglII	aaaaaAGATCTGATTAGAGGTTAAGGCTG	5
eGFP + KpnI	aaaaaa <i>GGTACC</i> ATGGTGAGCAAGGGCGAGGAG	6
eGFP-720/BglII	aaaaaa <i>AGATCT</i> TTACTTGTACAGCTCGTCCATG	7

The resulting PCR fragment contained a complete deletion 15 of the NSs ORF flanked by KpnI and BglII restrictions sites. The eGFP and RVF-S plasmid amplicons were gel purified and ligated following standard molecular biology techniques. The resulting plasmid (pRVS-GFPANSs; SEQ ID NO: 14) contained a complete in-frame replacement of the NSs ORF^{-20} by eGFP.

Construction of Plasmids Containing a NSs-eGFP Fusion Protein

In a second set of plasmid constructions, rRVF viruses 25 were generated which contained the complete full-length genome and an insertion of the eGFP ORF. Two constructions were made containing in-frame fusions of the c-terminus of NSs with the eGFP ORF, separated by amino acid linker moieties of varying lengths. In the first construction, the 30 full-length RVF-S segment plasmid backbone was modified using site directed mutagenesis PCR (QuickChange, Stratagene) with overlapping primers (shown in Table 2 below) containing a deletion/replacement of the NSs STOP codon with a linker section containing nucleotides encoding three alanine residues and the KpnI restriction site. Following this, both this amplicon and the pRVS-GFPANSs plasmid were digested with KpnI. The resulting restriction enzyme fragments were gel purified and ligated to generate the final 40 construction pRVFS-NSs(A3)eGFP. A second NSs-eGFP fusion peptide construction was created to increase the length of the eGFP linker moiety and eliminate the KpnI restriction site contained in the previous fusion peptide construction. To 45 accomplish this, site directed mutagenesis (OuickChange, Stratagene) was employed starting with the pRVFS-NSs(A₃) eGFP backbone and overlapping primers containing the remote cutter restriction enzyme BsmBI and nucleotides encoding ten alanine residues (shown in Table 2 below).

Following PCR amplification, restriction enzyme digestion and re-ligation, the resulting construction contained a perfect in-frame fusion of the C-terminus of NSs and eGFP ORF in the context of the complete full-length RVF S segment genome, preserving the spacing and nucleotide sequence of both the NP and NSs transcription termination signals.

Generation and In Vitro Testing of Recombinant RVF Viruses In all cases, rescue of recombinant viruses was accomplished using cDNA plasmids encoding the virulent RVF virus ZH501 strain. The basic design and construction of the full-length plasmids containing inserts of the complete S segment (pRVS; SEQ ID NO: 11), M segment (pRVM; SEQ ID NO: 12), and L segment (pRVL; SEQ ID NO: 13), and a plasmid containing a deletion of the NSm gene (pRVM- ΔNSm ; SEQ ID NO: 15), have been described previously (Bird et al., Virology 362:10-15, 2007; Gerrard et al., Virology 359:459-465, 2007, each of which is herein incorporated by reference). Maps of the full-length S, M and L plasmids, and plasmids containing NSs and NSm deletions, are shown in FIGS. 5-9.

Anti-genomic sense plasmids representing the three genomic segments were transfected in 1 µg quantities with LT-1 (Mirus) at a ratio of 6:1 and transferred onto sub-confluent (approximately 60-70% confluent) monolayers of BSR-T7/5 cells stably expressing T7 polymerase (Buchholz et al., J. Virol. 73(1):251-259, 1999, herein incorporated by reference). Four or five days post transfection, the cell supernatant was clarified by low speed centrifugation and passaged twice on confluent monolayers of Vero E6 cells. After passage and prior to use in subsequent experiments, the complete genome sequence of each rescued recombinant virus was confirmed by previously described techniques (Bird et al., J. Virol. 81:2805-2816, 2007, herein incorporated by reference).

Primer sequence	es for construction of NSs-eGFP fusion p	roteins
Primer	Sequence	SEQ ID NO:
RVS-829rev/KpnI	aaaaaa <i>GGTACC</i> TGCTGCTGCATCAACCTCAACAAA TCCATC	8
RVS + 827/BglII	aaaaaa <i>AGATCT</i> GATTAGAGGTTAAGGCTG	5
NSsGFP + 10Ala/Fwd	aaaaaa <i>CGTCTC</i> aGCAGCAGCAGCAATGGTGAG CAAGGGCGAGGAG	9
NSsGFP + 10A1a/Rev	aaaaaa <i>CGTCTC</i> aCTGCTGCTGCTGCTGCATCAA CCTCAACAAATCCATC	10

TABLE 2

55

60

Infected Live Cell (Direct) or Fixed Cell (Indirect) Fluorescent Antibody Detection of RVF NSs and eGFP Proteins

Vero E6 cells were seeded on glass coverslips and infected at a multiplicity of infection (MOI) of approximately 1.0 with rZH501-ΔNSs:GFP, rZH501-ΔNSs:GFP-ΔNSm, ⁵ either rZH501-NSs(Ala)₃GFP or rZH501-NSs(Ala)₁₀GFP. At 24 hours post infection, cells were directly visualized by inverted ultraviolet microscopy (live cell) or were fixed in 10% formalin overnight. Following fixation, infected cells were gamma-irradiated $(5.0 \times 10^6 \text{ RAD})$ to inactivate any residual 10virus activity. After inactivation, cells were permeabilized (Triton X-100 0.01%) and incubated with monoclonal antibodies specific for either RVF NSs or eGFP protein following standard techniques.

Results

Rescue of all recombinant viruses used in this study was accomplished by transfection of three anti-genomic sense plasmids, each representing one of the three virus RNA segments, without the requirement of supporting expression plasmids encoding virus structural proteins. Multiple rRVF 20 viruses were generated containing an insertion of the reporter molecule eGFP into the virus S segment (FIG. 1A). Among these, two rRVF viruses were rescued containing an in-frame fusion of the C-terminus of the NSs protein with the N-terminus of eGFP, separated by a peptide linker of either three or 25 ten alanine residues (rZH501-NSs(Ala)₃GFP and rZH501-NSs(Ala)₁₀GFP). Two rRVF viruses were created containing deletions of either the NSs alone or NSs/NSm genes in combination (rZH501-ANSs:GFP and rZH501-ANSs:GFP- Δ NSm). In both of these viruses, the NSs gene was replaced ³⁰ by the reporter molecule eGFP, preserving the native S segment ambisense RNA orientation. Both rRVF viruses were rescued upon the first attempt and grew to high titers routinely exceeding 1.0×10⁶ PFU/mL in Vero E6 cell culture resulting in complete monolayer lysis.

Following passage on Vero E6 cells, cytoplasmic GFP signal was first observed approximately 10-12 hours post infection and appeared to spread rapidly throughout the cell monolayer prior to the first signs of extensive CPE and plaque formation (FIG. 1B).

Recombinant virus containing NSs-GFP fusion peptides (rZH501-NSs(Ala)₃GFP and rZH501-NSs(Ala)₁₀GFP) were also rescued on the first attempt but were found to grow to slightly lower titers (about 5.0×10⁵ PFU/mL). NSs-GFP fusion protein was first localized in the cytoplasm of infected 45 cells followed by perinuclear accumulation and eventual intranuclear migration followed by the formation of filamentous structures by 12-18 hours post-infection (FIGS. 1B and 1C) Stability of the eGFP reporter gene in all recombinant viruses reported here was followed for 15 serial passages 50 (1:100 dilution between each passage) in Vero E6 cells during which time no decrease in the stability of eGFP expression was observed, with all infected cells expressing robust amounts of eGFP protein similar to that seen in early passages.

Example 3

In vivo Immunogenicity and Safety of rRVF Viruses

This example describes a study to determine the immunogenicity and safety of the recombinant RVF viruses described in the examples above.

Animal Immunization and Infection

A total of 66 female Wistar-furth (WF/NSd) (Harlan) rats 65 6-8 weeks of age (approximately 160 g) were used in this study. The animals were housed in micro-isolator pans and

26

provided food and water ad libitum. All pans were kept in HEPA filtration racks following standard barrier care techniques within the BSL-4 laboratory for the duration of the experiment. All animals were inoculated subcutaneously (SQ) in the right hind flank with an inoculum (vaccine or challenge virus) prepared in 200 µL of sterile physiologic saline. A total of eight animals that were administered sterile saline only served as sham inoculated animal controls (three in the pilot study, five in the vaccination/challenge study). All animals were examined daily post inoculation for signs of clinical illness, weight loss and respiratory distress. Animals found either in distress or moribund were immediately anesthetized using isoflurane and then euthanized using Beuthanasia solution (Schering-Plough) following standard tech-15 niques.

Pilot in vivo Immunogenicity and Safety Study

A total of 18 rats were administered 1.0×10³ PFU SQ of either the rZH501-ΔNSs:GFP (nine animals) or rZH501- $\Delta NSs:GFP-\Delta NSm$ (nine animals) with three animals serving as sham inoculated controls. Following vaccination, a small (approximately $25 \,\mu$ L) sample of whole blood was obtained via the tail vein on days 1-4 to detect vaccine virus induced viremia. This whole blood sample was placed directly into $2\times$ non-cellular lysis buffer (Applied Biosystems) for decontamination and transfer to a BSL-2 laboratory following standard protocols (Towner et al., J. Infect. Dis. S2002-S212, 2007, incorporated herein by reference) for subsequent RNA extraction and RVF specific q-RT-PCR. At day 21 post-vaccination, all animals were anesthetized using isoflurane, serum samples were collected for determination of total anti-RVF IgG titers, and the animals were euthanized using Beuthanasia solution (Schering-Plough).

Anti-RVF Virus Total IgG ELISA

Determination of anti-RVF IgG titers from vaccinated and 35 control rats was preformed essentially as described by Madani et al. (Clin. Infect. Dis. 37:1084-1092, 2003) with the following modifications necessary for rat specimens. Standard 96-well microtiter plates were coated overnight at 4° C. with 100 µL of gamma-irradiated RVF infected Vero E6 cell lysate diluted 1:2000 in (0.01M PBS, pH 7.2), or similarly diluted gamma-irradiated uninfected Vero E6 cell lysate, to serve as adsorption controls. Plates were washed 3x (PBS 0.01% Tween-20) and 100 µL duplicate samples of rat sera were diluted 1:100-1:6400 in 4-fold dilutions in skim milk serum diluent and adsorbed for 1 hour at 37° C. Plates were washed 3× (PBS 0.01% Tween-20) and 100 µL of goat anti-Rat IgG HRP conjugate antibody (KPL, Gaithersburg, Md.) diluted 1:2500 was adsorbed for 1 hour at 37° C. After a 3× wash, 100 µL of ABTS substrate (KPL) was added and incubated for 30 minutes at 37° C.

Plates were read at 410 nm with an absorbance correction of 490 nm for plate imperfections. The absorbance of the 1:100, 1:400, 1:1600, and 1:6400 dilutions were added and constituted a SUM_{OD} value for each specimen. The background adsorption of each animal serum to negative control Vero E6 cells was subtracted from the calculated SUM_{OD} value obtained from antigen positive Vero E6 cells and was recorded as an adjusted-SUM_{OD} value for each animal. Final end point dilution titers were determined as the reciprocal of the final serum dilution yielding an adjusted-SUM $_{OD}$ of >0.20. A cut-off value for determining positive versus negative samples was established as the mean sample adjusted- SUM_{OD} +3 standard deviations obtained from the five sham inoculated control animals.

Statistical Analyses

For all calculations, the analysis program XLSTAT (AddinSoft, USA) was utilized. Kaplan-Meier analyses were com-

10

pleted with log-rank and Wilcoxan tests of significance with an α -level setting of 0.05. Analyses of SUM_{OD} and viremia were completed utilizing a one-way ANOVA and a post-hoc Tukey's HSD test of significance with an α -level setting of 0.05.

Results

To gain a primary assessment of the relative in vivo characteristics of the rZH501- Δ NSs:GFP and rZH501- Δ NSs: GFP- Δ NSm recombinant viruses, groups of nine rats were inoculated with each rRVF virus at a dose of 1.0×10^3 PFU (FIG. 4A). Animals were monitored daily for signs of clinical illness and weight loss. At no time post-vaccination did any animal show signs of clinical illness, and all experienced average daily weight changes equivalent to sham inoculated controls of approximately 0-5 g. All vaccinated rats were bled at days 1-4 post-inoculation to determine the titer of vaccine virus induced viremia. Using a highly sensitive q-RT-PCR assay, no animal at any time point analyzed post-vaccination developed a detectable viremia.

All animals were euthanized at day 21 post-vaccination and anti-RVF total IgG antibody titers were evaluated (FIG. 2). Testing revealed that the SUM_{OD} (mean±SEM) for all animals vaccinated with the rZH501-ΔNSs:GFP virus was 2.14 \pm 0.12, which corresponded to end point titers of 1:1600 25 in 66% (6/9) of animals, with the remaining 33% (3/9) having titers equal to 1:400. Among animals receiving the rZH501- $\Delta NSs:GFP-\Delta NSm$ virus, SUM_{OD} (mean±SEM) was 1.24±0.06, with 89% (8/9) developing end-point dilution titers equal to 1:400. As expected, all sham-inoculated animals (N=3) were negative for detectable levels of anti-RVF total IgG antibody SUM_{OD} -0.08±0.06. All vaccinated animals in the rZH501- Δ NSs:GFP and rZH501- Δ NSs:GFP-ΔNSm virus groups developed statistically higher mean anti-RVF total IgG SUM $_{OD}$ values compared with non-vaccinated controls (p-value <0.001 and p-value=0.003, respectively). Animals in the rZH501-ΔNSs:GFP virus group developed significantly higher mean SUM_{OD} values than animals given the rZH501- Δ NSs:GFP- Δ NSm vaccine (p-value=0.004). ₄₀ Plaque reduction neutralization titers (PRNT₅₀) testing was completed on a subset (four animals) chosen randomly from each vaccine virus group with two sham inoculated animals serving as controls. The results showed mean $PRNT_{50}$ titers of 1:1480 (rZH501-ΔNSs:GFP) and 1:280 (rZH501-ΔNSs: 45 GFP- Δ NSm), with sham inoculated control animal titer of <1:10.

Example 4

Follow-Up Vaccination and Virulent Virus Challenge Study

This example describes the efficacy of recombinant RVF viruses comprising a deletion in the NSs ORF, or comprising 55 a deletion in both the NSs and NSm ORFs, following challenge with wild-type virus.

Vaccination and Virus Challenge

A total of 20 rats were vaccinated in two dosage groups of ten animals each with either 1.0×10^3 or 1.0×10^4 PFU SQ of 60 the rZH501- Δ NSs:GFP virus as described above. An additional 20 rats were inoculated in two dosage groups of ten animals each with either 1.0×10^3 or 1.0×10^4 PFU SQ of the rZH501- Δ NSs:GFP- Δ NSm virus as described above. A total of five animals served as sham inoculated controls. On days 2, 65 4 and 7 post-vaccination, a small blood sample (approximately 25 μ L) was collected from the tail vein and added

directly to 2× non-cellular lysis buffer (Applied Biosystems) as described above for subsequent RNA extraction and q-RT-PCR.

At day 26 post-vaccination, all animals were briefly anesthetized using isoflurane vapor (3.0-3.5% atmosphere) (RC² Rodent Anesthesia system, VetEquip) and a 500 μ L sample of whole blood was obtained. Serum was collected and stored at -70° C. for later determination of total anti-RVF IgG titers, PRNT₅₀ and anti-NSs/anti-NP specific antibody. All serum samples were surface decontaminated and inactivated by gamma-irradiation (5.0×10⁶ RAD) following standard BSL-4 safety protocols prior to use in a BSL-2 laboratory.

At day 28 post-vaccination, all rats (vaccinated and sham controls) were challenged with 1.0×10³ PFU SQ of virulent ¹⁵ wild-type RVF virus strain ZH501, previously shown to result in lethal disease in Wistar-furth rats (Anderson et al., *Microb. Pathog.* 5:241-250, 1988; Anderson et al., *Am. J. Trop. Med. Hyg.* 44(5):475-80, 1991; Bird et al., *Virology* 362:10-15, 2007, each of which is herein incorporated by reference). On days 2, 3, 4 and 7 following challenge, a small blood sample was collected from the tail vein for subsequent RNA extraction and RVF specific q-RT-PCR to assess the level of viremia. At day 42 post-challenge, all animals surviving wildtype virus infection were bled via cardiac puncture under ²⁵ general anesthesia (isoflurane vapor, RC² Rodent Anesthesia system, VetEquip) followed by euthanasia (Beuthanasia solution, Schering-Plough).

Anti-RVF Virus Plaque Reduction and Neutralization Testing (PRNT $_{50})$

The stock of RVF virus was diluted to 50 PFU in 300 µL of DMEM (1% Penicillin/Streptomycin) without FBS. Separately, aliquots of serum from vaccinated rats or from sham inoculated controls corresponding to 21 days post-vaccination (pilot study) or 26 days (challenge study) were heat inactivated for 30 min at 56° C. After inactivation, serum dilutions of 1:10, 1:40, 1:160, 1:640, 1:2560 and 1:10240 were made in DMEM (1% Pen/Strep). Diluted rat scrum (300 µL) was mixed with an equal volume of diluted virus and incubated overnight at 4° C. The following day, each mixture of serum+RVF virus was used to infect confluent monolayers of Vero E6 cells in 12-well plates. After a 1 hr adsorption, the mixture was removed and a 1-2 ml nutrient agarose overlay (MEM 1×, 2% FBS, 1% Pen/Strep, 1% SeaPlaque agar) was added to the monolayers. After a five-day incubation, the cells were fixed with 10% formalin overnight. Following fixation, the agarose overlay was removed and the plates were surface decontaminated and gamma-irradiated $(2.0 \times 10^6 \text{ RAD})$ following standard BSL-4 safety procedures. After inactivation, the cell monolayer was stained with 1% crystal violet in PBS 50 and plaques were enumerated. The calculated $PRNT_{50}$ titers correspond to the reciprocal titer of the last dilution resulting in a 50% reduction in the number of plaques when compared to controls

RVF Virus Specific q-RT-PCR

Whole rat blood was assayed for the presence and quantity of RVF specific virus RNA as described previously (Bird et al., *J. Clin. Microbiol.* 45(11):3506-13, 2007, incorporated herein by reference). Quantification of total serum RVF RNA was calculated directly via interpolation from a standard curve generated from serial dilutions of stock RVF virus strain ZH501 of a known titer in whole rat blood extracted and processed in an identical manner with each experimental replicate q-RT-PCR run. Briefly, 25 μ L of whole rat blood (either from vaccinated/challenged animals or stock virus serial dilutions) was added to 300 μ L 2× non-cellular lysis buffer (Applied Biosystems) and total RNA was extracted (ABI 6100 nucleic acid workstation, Applied Biosystems.)

After extraction, cDNA was generated by random hexamer priming (High Capacity cDNA kit, Applied Biosystems) followed by RVF specific q-PCR (Universal q-PCR master mix, Applied Biosystems). Results are reported as RVF PFU equivalents/mL of rat blood.

Results

Immunization Phase

Following the promising findings of robust immunogenicity and in vivo attenuation in the initial pilot study, a larger study was undertaken utilizing multiple doses of each recom-10 binant RVF virus followed by virulent virus challenge. Groups of ten animals each were inoculated with either rZH501- Δ NSs:GFP or rZH501- Δ NSs:GFP- Δ NSm viruses at dosages of 1.0×10^3 or 1.0×10^4 PFU (FIG. 4B). Whole blood samples were assayed at day 2, 4, and 7 post-vaccination for 15 the presence of detectable viremia. As was observed in the pilot study, at no time did any animal develop detectable vaccine viremia. Additionally, no clinical illness was observed among any vaccinated animals, and all experienced weight gains of approximately 1-5 g per day, similar to sham 20 inoculated controls.

At day 26 post-vaccination, serum samples were obtained to determine the level of total anti-RVF IgG, PRNT₅₀, and anti-NP/anti-NSs protein specific antibody production prior to subsequent challenge on day 28. All animals regardless of 25 recombinant virus type or dose, developed high-titered total anti-RVF IgG antibody (FIG. 2). Among rats receiving the rZH501-ΔNSs:GFP virus, the mean SUM_{oD}±SEM was $4.10\pm0.12(1.0\times10^3 \text{ dose group})$ and $4.79\pm0.11(1.0\times10^4 \text{ dose})$ group), which corresponded to 85% (17/20) of animals devel- 30 oping anti-RVF IgG end-point titers of 1:6400. The remaining three animals in the rZH501-ANSs:GFP virus group developed end-point titers equal to 1:1600. In animals receiving the rZH501-ΔNSs:GFP-ΔNSm virus, the mean $SUM_{OD} \pm SEM$ was 3.94±0.12 (1.0×10³ dose group) and 35 4.54 ± 0.11 (1.0×10^4 dose group), which corresponded to 75% (15/20) developing anti-RVF IgG end-point titers of 1:6400, with the remaining 25% (5/20) attaining end-point titers of 1:1600. As was observed in the pilot study, all animals vaccinated with either rZH501-ΔNSs:GFP or rZH501-ΔNSs: 40 GFP-ΔNSm viruses, regardless of dose, developed statistically significant higher mean $\mathrm{SUM}_{\mathrm{OD}}$ values than sham inoculated control animals (p-values all <0.05).

Similarly, PRNT₅₀ titers were found to be elevated above sham inoculated controls among animals inoculated with the 45 rZH501- Δ NSs:GFP virus with mean titers of 1:640 and 1:7040 in the 1.0×10³ and 1.0×10⁴ dose groups, respectively. Mean PRNT₅₀ titers among animals vaccinated with the rZH501- Δ NSs:GFP- Δ NSm were found to be similar with mean titers of 1:1120 and 1:640 in the 1.0×10³ and 1.0×10⁴ 50 dose groups, respectively.

Challenge Phase

On day 28 post-vaccination, all rats were challenged with a known lethal dose $(1.0 \times 10^3 \text{ PFU})$ of virulent wild-type strain ZH501. All animals were monitored daily for signs of clinical 55 illness and weight loss/gain for 42 days post-challenge. At no time post challenge (days 1-42) did any rat that received prior vaccination with either the rZH501- Δ NSs:GFP or rZH501- Δ NSs:GFP- Δ NSm viruses develop clinically detectable illness (ruffled fur, hunched posture or lethargy). At approximately day 2 post-challenge, a majority of animals suffered slight 1-5 g reductions in total body weight that was regained by day 5 post-challenge.

Rat whole blood was obtained on days 2, 3, 4 and 7 postchallenge and assayed for the presence of RVF virus RNA by a highly sensitive q-RT-PCR assay (Bird et al., *J. Clin. Microbial.* 45(11):3506-13, 2007, incorporated herein by refer30

ence). Following challenge, low-level viremia was detected in a total of 3/40 vaccinated animals. Among the 20 animals that were vaccinated with rZH501-ΔNSs:GFP-ΔNSm, two animals developed a peak post-challenge viremia on day 3 of 1.1×10^2 and 7.0×10^1 PFU equivalents/mL of whole blood, respectively (FIG. 4B). In the 20 animals vaccinated with rZH501-ANSs:GFP, one animal was detected with a peak post-challenge viremia on day 4 of 1.5×10¹ PFU equivalents/ mL of whole blood. In all three animals, the detectable viremia was transient and was resolved by day 7 post-challenge. No other vaccinated animals (37 total) had a detectable RVF virus viremia at any time point assayed post challenge. In sharp contrast, the five sham inoculated animals all suffered severe to lethal clinical illness with 3/5 animals succumbing to infection by day 3 post-challenge with peak viremia titers of 1.9×10^7 , 2.7×10^7 , and 3.1×10^7 PFU equivalents/mL. Two sham-inoculated animals did not succumb to infection but did develop severe clinical illness (ruffled fur, hunched back, lethargy) with a peak viremia post-challenge of 2.7×10^4 and 5.8×10^3 PFU equivalents/mL whole blood. As anticipated, both candidate vaccines (rZH501-ANSs:GFP or rZH501- $\Delta NSs:GFP-\Delta NSm$) significantly reduced post-challenge viremia (p-value <0.0001) regardless of dose. Additionally, Kaplan-Meier survivor analysis (log-rank and Wilcoxan tests) of survival post-challenge revealed a significant protective efficacy effect with both rRVF viruses regardless of dose compared with sham-inoculated when controls (p-value < 0.001).

Example 5

Differentiation of Wild Type-Infected and Vaccinated Animals

This example describes how rRVF viruses lacking NSs can be used to differentiate animals that have been infected with the rRVF virus and wild-type virus using methods to detect antibodies specific for NSs and NP.

Anti-RVF NSs and NP Differential Indirect Fluorescent Antibody (IFA) Assays

Plasmid constructions expressing only the RVF nucleoprotein (NP) or non-structural S (NSs) proteins were generated following techniques described previously (Niwa et al., *Gene* 108:193-199, 1991, incorporated herein by reference). Briefly, oligonucleotide primers were designed to anneal within the NP or NSs ORF with the addition of a SacI and BgIII restriction site for cloning into a polymerase II-based expression plasmid, pCAGGS. The resulting PCR amplicons were agarose gel purified, digested with SacI and BgIII, and ligated between the corresponding restriction sites of the pCAGGS vector. Prior to use, the resulting clones, pC-NP and pC-NSs, were sequenced using standard techniques.

Following confirmation of the molecular sequence, each plasmid was transfected separately on Vero E6 cells gown on glass coverslips in 1 µg quantities at a 6:1 ratio with lipofectant solution (LT-1, Mirus). Following a 48-hour incubation, transfected cells expressing either the NP or NSs protein were fixed with 10% formalin. To assess the presence or absence of anti-NP or anti-NSs antibody, serum samples from all vaccinated and the two surviving sham inoculated control animals were adsorbed separately for 1 hour on cells transfected with either NP or NSs. The presence or absence of anti-NP or anti-NSs antibody was visualized by secondary adsorption of an AlexaFluor 594 nm (Giorgi et al., *Virology* 180:738-753, 1991) anti-rat total IgG (Molecular Probes/Invitrogen) antibody. Intra-nuclear localization of NSs protein and rat antibody was confirmed by DAPI counterstain-

ing. To confirm the presence of anti-RVF virus NP and NSs antibodies among naturally infected animals, archived serum samples collected from goats in Saudi Arabia during the outbreak in 2000 were tested essentially as described above with anti-goat specific total IgG (AlexaFluor 488 nm, FITC, ⁵ Molecular Probes/Invitrogen).

Results

Serum obtained from all vaccinated and sham vaccinated animals at day 26 post-vaccination was tested for the presence 10 of anti-NP and anti-NSs specific antibodies utilizing Vero E6 cells transfected with plasmids expressing either NP or NSs proteins. As a positive control, the serum obtained from the two sham vaccinated animals that survived infection, and six additional control rat serum samples (taken from animals inoculated with a sub-lethal dose of RVF virus for validation purposes) were utilized. Control animals surviving infection developed high levels of both anti-NP and anti-NSs antibody with strong immunostaining of both in vitro expressed cytoplasmic NP and filamentous intra-nuclear accumulations of 20 NSs protein (FIG. 3A). No anti-NS or anti-NP antibodies were detected in serum from control rats (FIG. 3C). In concordance with the anti-RVF total IgG data, all vaccinated animals demonstrated high anti-NP specific antibody levels, and as anticipated, no vaccinated animal, regardless of vac- 25 cine virus or dose, developed detectable anti-NSs specific antibody (FIG. 3B). As a further step toward the demonstration of the ability to differentiate naturally infected animals from those vaccinated with the vaccines provided herein, naturally infected livestock were also shown to produce 30 anti-N Ss antibodies similar to those observed with the wild type virus infected rats (FIG. 3D).

Example 6

Safety and Efficacy of Recombinant RVF Virus Vaccines in Pregnant Ewes

The safety and efficacy of recombinant RVF virus vaccines can be evaluated in pregnant ewes according to procedures 40 well known in the art (Morrill et al., Am. J. Vet. Res. 48(7): 1042-1047, 1987; Baskerville et al., Res. Vet. Sci. 52:307-311, 1992, each of which is herein incorporated by reference). By way of example, rRVF viruses are evaluated in healthy, RVF virus sero-negative, crossbred ewes at approximately 12 45 weeks gestation. The ewes are housed in a biological containment facility and fed a daily ration of alfalfa hay and a commercial grain mix ration, with grass hay and water provided ad libitum. Pregnant ewes are administered recombinant RVF virus subcutaneously or intramuscularly at various doses. 50 Mock-infected ewes serve as controls. Ewes are monitored daily for health. At various timepoints post-inoculation, blood, serum or other body fluid samples can be taken to assay RVF virus-induced viremia or anti-RVF virus antibody production as described above, or other desired biological end- 55 points. Lambs born to inoculated ewes are allowed to remain with their dams and suckle.

To test efficacy of the recombinant RVF viruses as vaccines, inoculated and sham-inoculated ewes are administered wild-type RVF virus at various doses. Lambs can also be 60 challenged with live virus to determine whether maternal antibodies against recombinant RVF virus provide protection against natural infection Animals are observed daily for signs of clinical illness, weight loss and respiratory distress. Animals that are in distress or moribund are immediately anes-65 thetized and then euthanized. As described above, at various timepoints following inoculation, small blood samples can be

taken to test for the presence of viral RNA. Serum samples can be collected to determine anti-RVF virus antibody titers.

Example 7

Safety and Efficacy of Recombinant RVF Virus Vaccines in a Rhesus Macaque Model for Human Disease

The safety and efficacy of recombinant RVF virus vaccines can be evaluated in non-human primates, such as rhesus macaques, according to procedures well known in the art (Morrill and Peters, *Vaccine* 21:2994-3002, 2003). By way of example, rRVF viruses are evaluated in adult (5-10 kg) and/or juvenile (1-3 kg) captive-bred rhesus monkeys (*Macaca mulatta*). Animals are housed in individual cages in a biosafety level 3 (BSL-3) biological containment facility maintained at constant room temperature with a 12 hour light/dark photoperiod. Inoculations are given, and rectal temperatures and venous blood samples are taken while the animals are under ketamine-xylazine anesthesia.

Sero-negative monkeys are inoculated intravenously or intramuscularly with various doses of recombinant RVF viruses. Mock-inoculated animals serve as controls. The animals are monitored daily for clinical signs of illness, including weakness, paralysis or any alteration of physical condition. At various timepoints post-inoculation, blood, serum or other body fluid samples can be taken to assay RVF virusinduced vircmia, anti-RVF virus antibody production, or other desired biological endpoints (for example, white blood cell count, red blood cell count, hematocrit, platelet count, AST and ALT). Moribund monkeys are euthanized and necropsied.

To test efficacy of the recombinant RVF viruses as vac-³⁵ cines, inoculated and sham-inoculated monkeys are administered wild-type RVF virus at various doses. Animals are observed daily for signs of clinical illness, weight loss and respiratory distress. Animals that are in distress or moribund are immediately anesthetized and then euthanized. As ⁴⁰ described above, at various timepoints following inoculation, small blood samples can be taken to test for the presence of viral RNA. Serum samples can be collected to determine anti-RVF virus antibody titers.

Example 8

Vaccination of Human Subjects with Recombinant RVF Virus

The safety and efficacy of recombinant RVF virus vaccines can be evaluated in human volunteers according to procedures well known in the art (Pittman et al., *Vaccine* 18:181-189, 2000, herein incorporated by reference). Typically, human volunteers are selected from those having occupations that put them at risk of infection with RVF virus, such as veterinarians in endemic areas. All volunteers are screened to ensure they are in good health. Informed consent is obtained from each volunteer prior to vaccination.

In this example, human volunteers are injected with candidate rRVF vaccine subcutaneously at an appropriate dose. The appropriate dose is the dose approved by the FDA, and can be determined from suitable animal studies conducted prior to human vaccination trials. Other routes of administration are possible, including intramuscular and intravenous. The vaccine can be administered as a single dose, or given in multiple doses, such as two, three or four doses. When administered in multiple doses, the booster doses can be administered at various time intervals, such as months to years. Serum samples can be obtained to determine neutralizing antibody titers and identify responder and non-responders to the vaccine.

Vaccinated volunteers are encouraged to return and report 5 local or systemic reactions. Local reactions are assessed by grading pain and tenderness at the site of inoculation and/or axillary lymph nodes and measuring erythema and induration at the site. Systemic reaction parameters include fever, chills, headache, malaise, myalgia, arthralgia, sore throat, gastric upset, dizziness, photophobia and skin rash. Additional laboratory samples, including complete blood cell count, chemistry profile, β -HCG (in females), urinalysis, blood samples for viremia titrations, and oropharyngeal washing for viral isolated culture can be obtained. Using serum samples

34

obtained from vaccinated individuals, plaque-reduction neutralization tests can be performed to determine how robust the immune response was to the particular rRVF virus. Vaccinated volunteers are also screened for the development of RVF virus infection.

This disclosure provides recombinant RVF viruses comprising deletions in virus virulence genes. The disclosure further provides methods of immunizing subjects at risk of infection with RVF virus with the recombinant viruses. It will be apparent that the precise details of the methods described may be varied or modified without departing from the spirit of the described disclosure. We claim all such modifications and variations that fall within the scope and spirit of the claims below.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 15

```
<210> SEQ ID NO 1
<211> LENGTH: 1690
```

<212> TYPE: DNA <213> ORGANISM: Rift Valley fever virus

<400> SEQUENCE: 1

acacaaagac	cccctagtgc	ttatcaagta	tatcatggat	tactttcctg	tgatatctgt	60
tgatttgcag	agtggtcgtc	gtgttgtgtc	agtggagtac	tttagaggag	atggtcctcc	120
caggatacct	tattctatgg	ttgggccctg	ttgtgtcttt	ctcatgcacc	atcgtcctag	180
tcacgaggtt	cgcttgcgat	tctctgattt	ctacaatgtc	ggagaattcc	cataccgagt	240
cggacttgga	gactttgcat	caaacgttgc	acctccacca	gcgaagcctt	ttcagagact	300
tattgatcta	ataggccata	tgactcttag	tgatttcaca	aggttcccca	atctgaaaga	360
agccatatcc	tggcctcttg	gagaaccctc	actggctttc	tttgacctaa	gctctactag	420
agtgcatagg	aatgatgaca	ttagaaggga	tcagattgcc	actctagcaa	tgaggagttg	480
caagatcacc	aatgatctag	aggactcctt	tgttggctta	cacaggatga	tagcgactga	540
ggccatcctc	agagggattg	acctgtgcct	gttgccaggc	tttgatctca	tgtatgaggt	600
tgctcacgta	cagtgcgttc	ggcttctgca	agcagcaaaa	gaggacattt	ctaatgctgt	660
agttccaaac	tcagccctca	ttgttcttat	ggaggagagc	ctgatgctgc	gctcatcact	720
tcccagcatg	atggggagaa	acaactggat	tccagttatt	cctccaatcc	cagatgttga	780
gatggaatca	gaggaggaga	gtgatgatga	tggatttgtt	gaggttgatt	agaggttaag	840
gctgccccac	cccccacccc	ccaatcccga	ccgtaacccc	aactcccctt	ccccccaacc	900
ccctgggcag	ccacttaggc	tgctgtcttg	taagcctgag	cggctgccat	gacagcagct	960
gacggcttcc	cattagaatc	cacaagtcca	aaggctttca	agaattctct	cctcttctca	1020
tggcttataa	agttgctatt	cactgctgca	ttcattggct	gcgtgaacgt	tgcagcaacc	1080
tcctcttttg	ttctacctcg	gaggtttggg	ttgatgaccc	gggagaactg	cagcagatac	1140
agagagtgag	catctaatat	tgcccttaga	tagtctcctg	gtagagaagg	atccaccatg	1200
ccagcaaagc	tggggtgcat	catatgcctt	gggtatgcag	gggataggcc	gtccatggta	1260
gtcccagtga	caggaagcca	ctcactcaag	acgaccaaag	cctggcatgt	ccagccagcc	1320
agggcggcag	caactcgtga	tagagtcaac	tcatcccggg	aaggattccc	ttcctttagc	1380
ttatacttgt	tgatgagagc	ctccacagtt	getttgeett	ctttcgacat	tttcatcatc	1440
atcctcctgg	gcttgttgcc	acgagttaga	gccagaacaa	tcattttctt	ggcatccttc	1500

-35	
~~	

				-contir	iued		
tcccagtcag	ccccaccata	ctgctttaag	agttcgataa	ctctacgggc	atcaaaccct	1560	
tgataagcaa	actctcggac	ccactgttca	atctcattgc	ggtccactgc	ttgagcagca	1620	
aactggatcg	caagctcttg	atagttgtcc	attattgtaa	tagtgtttgt	atctctaggg	1680	
agctttgtgt						1690	
<210> SEQ : <211> LENG <212> TYPE <213> ORGAN	TH: 3885 : DNA	Valley feve	r virus				
<400> SEQUI	ENCE: 2						
acacaaagac	ggtgcattaa	atgtatgttt	tattaacaat	tctaatctcg	gttctggtgt	60	
gtgaagcggt	tattagagtg	tctctaagct	ccacaagaga	agagacctgc	tttggtgact	120	
ccactaaccc	agagatgatt	gaaggagctt	gggattcact	cagagaggag	gagatgccgg	180	
aggagetete	ctgttctata	tcaggcataa	gagaggttaa	gacctcaagc	caggagttat	240	
acagggcatt	aaaagccatc	attgctgctg	atggcttgaa	caacatcacc	tgccatggta	300	
aggatcctga	ggacaagatt	tccctcataa	agggtcctcc	tcacaaaaag	cgggtgggga	360	
tagttcggtg	tgagagacga	agagatgcta	agcaaatagg	gagagaaacc	atggcaggga	420	
ttgcaatgac	agtccttcca	gccttagcag	tttttgcttt	ggcacctgtt	gtttttgctg	480	
aagaccccca	tctcagaaac	agaccaggga	aggggcacaa	ctacattgac	gggatgactc	540	
aggaggatgc	cacatgcaaa	cctgtgacat	atgctggggc	atgtagcagt	tttgatgtct	600	
tgcttgaaaa	gggaaaattt	ccccttttcc	agtcgtatgc	tcatcataga	actctactag	660	
aggcagttca	cgacaccatc	attgcaaagg	ctgatccacc	tagctgtgac	cttcagagtg	720	
ctcatgggaa	cccctgcatg	aaagagaaac	tcgtgatgaa	gacacactgt	ccaaatgact	780	
accagtcagc	tcattacctc	aacaatgacg	ggaaaatggc	ttcagtcaag	tgccctccta	840	
agtatgagct	cactgaggac	tgcaactttt	gtaggcagat	gacaggtgct	agcctgaaga	900	
aggggtctta	tcctctccaa	gacttgtttt	gtcagtcaag	tgaggatgat	ggatcaaaat	960	
taaaaacaaa	aatgaaaggg	gtctgcgaag	tgggggttca	agcactcaaa	aagtgtgatg	1020	
gccaactcag	cactgcacat	gaggttgtgc	cctttgcagt	gtttaagaac	tcaaagaagg	1080	
tttatcttga	taagettgae	cttaagactg	aggagaatct	gctaccagac	tcatttgtct	1140	
gtttcgagca	taagggacag	tacaaaggaa	caatggactc	tggtcagact	aagagggagc	1200	
tcaaaagctt	tgatatctct	cagtgcccca	agattggagg	acatggtagt	aagaagtgca	1260	
ctggggacgc	agcattttgc	tctgcttatg	agtgcactgc	tcagtacgcc	aatgcctatt	1320	
gttcacatgc	taatgggtca	gggattgtgc	agatacaagt	atcaggggtc	tggaagaagc	1380	
ctttatgtgt	agggtatgag	agagtggttg	tgaagagaga	actctctgcc	aagcccatcc	1440	
agagagttga	gccttgcaca	acttgtataa	ccaaatgtga	gcctcatgga	ttggttgtcc	1500	
gatcaacagg	gttcaagata	tcatcagcag	ttgcttgtgc	tagcggagtt	tgcgtcacag	1560	
gatcgcagag	tccttccacc	gagattacac	tcaagtatcc	agggatatcc	cagtcttctg	1620	
ggggggacat	aggggttcac	atggcacacg	atgatcagtc	agttagctcc	aaaatagtag	1680	
ctcactgccc	tccccaggac	ccgtgcttag	tgcatggctg	catagtgtgt	gctcatggcc	1740	
tgataaatta	ccagtgtcac	actgctctca	gtgcctttgt	tgttgtgttt	gtattcagtt	1800	
ctattgcaat	aatttgttta	gctgttcttt	atagggtgct	taagtgcctg	aagattgccc	1860	
caaggaaagt	tctgaatcca	ctaatgtgga	tcacagcctt	catcagatgg	atatataaga	1920	
2	-		-		-		

-							
agatggttgc c	cagagtggca	gacaacatta	atcaagtgaa	cagggaaata	ggatggatgg	1980	
aaggaggtca g	gttggttcta	gggaaccctg	cccctattcc	tcgtcatgcc	ccaatcccac	2040	
gttatagcac a	atacctgatg	ttattattga	ttgtctcata	tgcatcagca	tgttcagaac	2100	
tgattcaggc a	aagctccaga	atcaccactt	gctctacaga	gggtgttaac	accaagtgta	2160	
gactgtctgg c	cacagcattg	atcagagcag	ggtcagttgg	ggcagaggct	tgtttgatgt	2220	
tgaagggggt c	caaggaagat	caaaccaagt	tcttaaagat	aaaaactgtc	tcaagtgagc	2280	
tatcatgcag g	ggagggccag	agttattgga	ctgggtcctt	tagccctaaa	tgtttgagct	2340	
caaggagatg c	ccaccttgtc	ggggaatgcc	atgtgaatag	gtgtctgtct	tggagggaca	2400	
atgaaacttc a	agcagagttt	tcatttgttg	gggaaagcac	gaccatgcga	gagaataagt	2460	
gttttgagca a	atgtggagga	tgggggtgtg	ggtgtttcaa	tgtgaaccca	tcttgcttat	2520	
ttgtgcacac g	gtatctgcag	tcagttagaa	aagaggccct	tagagttttt	aactgtatcg	2580	
actgggtgca t	aaactcact	ctagagatca	cagactttga	tggctctgtt	tcaacaatag	2640	
acttgggagc a	atcatctagc	cgtttcacaa	actggggttc	agttagcctc	tcactggacg	2700	
cagagggcat c	ctcaggctca	aatagctttt	ctttcattga	gagcccaggc	aaagggtatg	2760	
caattgttga t	gagccattc	tcagaaattc	ctcggcaagg	gttcttgggg	gagatcaggt	2820	
gcaattcaga g	gtcctcagtc	ctgagtgctc	atgaatcatg	ccttagggca	ccaaacctta	2880	
tctcatacaa g	gcccatgata	gatcaattgg	agtgcacaac	aaatctgatt	gatccctttg	2940	
ttgtctttga g	gaggggttct	ctgccacaga	caaggaatga	taaaaccttt	gcagcttcaa	3000	
aaggaaatag a	aggtgttcaa	gctttctcta	agggctctgt	acaagctgat	ctaactctga	3060	
tgtttgacaa t	tttgaggtg	gactttgtgg	gagcagccgt	atcttgtgat	gccgccttct	3120	
taaatttgac a	aggttgctat	tcttgcaatg	caggggccag	ggtctgcctg	tctatcacat	3180	
ccacaggaac t	ggatetete	tctgcccaca	ataaggatgg	gtctctgcat	atagtccttc	3240	
catcagagaa t	cggaacaaaa	gaccagtgtc	agatactaca	cttcactgtg	cctgaagtag	3300	
aggaggagtt t	atgtactct	tgtgatggag	atgagcggcc	tctgttggtg	aaggggaccc	3360	
tgatagccat t	gatccattt	gatgataggc	gggaagcagg	gggggaatca	acagttgtga	3420	
atccaaaatc t	ggatettgg	aatttctttg	actggttttc	tggactcatg	agttggtttg	3480	
gagggcctct t	caaaactata	ctcctcattt	gcctgtatgt	tgcattatca	attgggctct	3540	
ttttcctcct t	atatatctt	ggaagaacag	gcctctctaa	aatgtggctt	gctgccacta	3600	
agaaggcctc a	atagatcagt	acgtgtaaaa	gcaatatgtt	gaaataagta	gacacaagca	3660	
aacctaatta t	gtaagtgtt	gtacagatag	gtcaaattat	tggaatatcc	aagcttagaa	3720	
acttatgcaa t	caatacttta	gatgtaagct	tagttgtaat	ttggggtggt	ggggtgaggc	3780	
agcagcagtc t	caagtgett	gtgaatattc	tagttggcgt	aatcgtcttt	tgccagatta	3840	
gctgggaatt a	aaactaactc	tttgaagttg	caccggtctt	tgtgt		3885	
<210> SEQ ID NO 3 <211> LENGTH: 6404 <212> TYPE: DNA <213> ORGANISM: Rift Valley fever virus							

<213> ORGANISM: Rift Valley fever vi <400> SEQUENCE: 3

acacaaaggc gcccaatcat ggattetata ttateaaaac agetggttga caagaetggt 60 tttgttagag tgecaatcaa geattttgae tgtacaatge taaetetgge aetteeaaca 120 tttgatgttt eeaagatggt agatagaatt aceatagaet teaatetgga tgatatacaa 180

-continued

ggagcatctg	aaataggctc	aactttgcta	ccctccatgt	cgatagatgt	ggaagatatg	240
gccaattttg	ttcacgattt	cacctttggc	cacttagctg	acaagactga	cagactgtta	300
atgcgtgagt	ttcccatgat	gaatgacggg	tttgatcatt	tgagccctga	catgatcatt	360
aaaactacat	ctggcatgta	caacatcgtt	gagttcacca	cctttagggg	agatgaaaga	420
ggtgcattcc	aggctgccat	gactaaactc	gctaagtatg	aggttccttg	tgagaacaga	480
tctcagggca	ggactgttgt	tctttatgtt	gttagtgctt	atcggcatgg	tgtatggtct	540
aatctggagc	tagaggactc	tgaagcagag	gagatggttt	ataggtacag	acttgctctt	600
agtgtgatgg	atgagctaag	gaccttgttc	ccagaactgt	catccacaga	tgaggaacta	660
gggaagactg	agagagagtt	gctagccatg	gtctcctcca	tccaaataaa	ttggtcagtc	720
acagaatctg	tgtttccacc	cttcagcaga	gaaatgtttg	acaggtttag	atcctcccct	780
cccgattcag	agtatatcac	gaggatagtg	agcagatgcc	tcataaattc	tcaagagaaa	840
ctcatcaata	gttccttctt	tgctgaaggg	aatgataagg	ctctgagatt	ttcaaaaaac	900
gctgaagagt	gttccttggc	agtagagaga	gccttaaatc	agtatagagc	agaagacaac	960
cttagggacc	tcaatgacca	caagtcaact	attcagctgc	ctccctggct	gtcctatcat	1020
gatgtcgatg	gcaaagatct	gtgccctctt	cagggattag	atgtgagagg	ggaccatccc	1080
atgtgcaact	tgtggaggga	agtggtcacc	tctgcaaacc	tagaggagat	tgagaggatg	1140
cacgatgatg	cagcagcaga	acttgagttt	gctctttcgg	gagtaaagga	caggccagat	1200
gagagaaaca	gataccatag	agtccaccta	aatatgggct	cagatgatag	tgtctacata	1260
gctgctttag	gagttaatgg	aaagaagcat	aaagcagaca	ctttagtgca	acaaatgaga	1320
gacaggagta	aacagccttt	ctccccagac	cacgatgtgg	atcacatatc	tgaatttctc	1380
tctgcatgct	ctagtgactt	gtgggcaaca	gatgaggacc	tgtacaaccc	tctctcttgt	1440
gataaagagc	ttagattggc	agcccagagg	attcatcagc	catccttgtc	agaaaggggt	1500
ttcaatgaga	tcataacaga	gcactacaaa	ttcatgggaa	gtaggatagg	ttcatggtgc	1560
caaatggtca	gcttgatagg	agctgagcta	tcagcttctg	ttaaacaaca	tgtcaagcct	1620
aactactttg	tgattaaacg	actactaggt	tctgggattt	tcttgctaat	caagcccact	1680
tccagcaaaa	gccatatatt	tgtgtcttt	gcaattaagc	gctcttgctg	ggcctttgat	1740
ctctccactt	ccagggtttt	caagccctac	atagatgctg	gggatctgtt	agttactgac	1800
tttgtttctt	ataagctaag	caagcttacc	aacctctgca	agtgcgtttc	attaatggag	1860
tcctccttct	cattctgggc	agaagcattt	ggaattccaa	gctggaactt	tgttggtgac	1920
ttgttcaggt	cttcagactc	tgcagcaatg	gatgcctcat	acatgggcaa	actttcttta	1980
ttaacccttt	tggaagacaa	agcagcaact	gaagagttac	agactattgc	aagatatata	2040
atcatggagg	gctttgtctc	gcccccagaa	atcccaaaac	ctcacaagat	gacctctaag	2100
tttcctaagg	ttctcaggtc	agagctgcag	gtttacttat	taaactgctt	atgcagaact	2160
atccagagaa	tagcaggtga	gcccttcatt	cttaagaaga	aggatgggtc	tatatcctgg	2220
ggtggcatgt	tcaatccttt	ttcagggcgt	ccactgcttg	atatgcaacc	actcatcagc	2280
tgttgttaca	atggttactt	taaaaataaa	gaagaagaga	ctgagccttc	gtccctttct	2340
gggatgtata	agaaaatcat	agaacttgag	caccttagac	cacagtcaga	tgccttcttg	2400
ggttacaaag	atccagaact	tcccagaatg	catgagttca	gtgtttccta	cttgaaggag	2460
gcttgcaatc	atgctaagct	agtcttgagg	agcctctatg	gacagaattt	catggagcag	2520
atagacaacc	agattattcg	agageteagt	gggttgactc	tagaaaggtt	ggccacactt	2580

-continued

aaggccacaa	gcaactttaa	tgagaattgg	tatgtctata	aggatgtagc	agacaaaaac	2640
tacacaaggg	ataaattatt	agtgaagatg	tcaaaatatg	cctctgaggg	aaagagccta	2700
gctatccaga	agtttgagga	ttgtatgagg	cagatagagt	cacaaggatg	catgcatatt	2760
tgtttgttta	agaaacaaca	gcatggaggt	ctgagagaga	tctatgtgat	gggtgcagag	2820
gaaagaattg	ttcaatcggt	ggtggagaca	atagccaggt	ccatagggaa	gttctttgct	2880
tctgataccc	tctgtaaccc	ccccaataaa	gtgaaaattc	ctgagacaca	tggcatcagg	2940
gcccggaagc	aatgtaaggg	gcctgtgtgg	acttgtgcaa	catcagatga	tgcaaggaag	3000
tggaaccaag	gccattttgt	tacaaagttt	gccctcatgc	tgtgtgagtt	cacctctcct	3060
aaatggtggc	cgctgatcat	taggggatgc	tcaatgttta	ccaggaaaag	gatgatgatg	3120
aatttgaatt	atcttaagat	cctggatggt	catcgggagc	ttgatattag	agatgacttt	3180
gtgatggatc	tcttcaaagc	ttatcatggc	gaggcagaag	ttccatgggc	ctttaaaggc	3240
aaaacatatt	tggaaaccac	aacagggatg	atgcagggaa	tactgcatta	tacttcctca	3300
ctattacaca	ccattcacca	agaatacatc	cggtccttgt	cctttaagat	attcaacctg	3360
aaggttgctc	ctgagatgag	caagggcctg	gtttgtgaca	tgatgcaagg	atcagatgat	3420
agtagtatgc	taatcagctt	cccagctgat	gatgagaagg	ttcttaccag	atgcaaagtg	3480
gccgcagcta	tatgcttccg	catgaagaag	gagctgggag	tgtaccttgc	catttacccc	3540
tcagagaagt	ccacagcaaa	cacagatttt	gtgatggagt	acaattctga	attttatttc	3600
cacacccagc	atgttagacc	aacgatcagg	tggattgcag	cttgttgcag	cctgccagaa	3660
gtggaaacac	tagtagcccg	ccaggaagag	gcctctaacc	taatgacttc	agttactgag	3720
ggaggtgggt	cattctcctt	agctgcaatg	attcagcaag	ctcagtgcac	tctccattac	3780
atgctgatgg	gcatgggagt	gtctgagcta	ttettagagt	ataagaaggc	agtgctgaag	3840
tggaatgacc	ctggcctggg	tttcttcctg	cttgacaatc	cttatgcgtg	cggattggga	3900
ggtttcagat	ttaatctctt	caaagctatc	accagaactg	atttgcagaa	gctatatgct	3960
ttcttcatga	agaaggtcaa	gggeteaget	gctagggact	gggcagatga	agatgtcacc	4020
atcccagaaa	cgtgtagcgt	gagcccaggt	ggcgctctaa	ttettagete	ctctctaaag	4080
tggggatcta	ggaagaagtt	tcagaaattg	agagaccgtt	tgaacatacc	agagaactgg	4140
attgaactaa	taaatgagaa	tccagaggtg	ctctatcggg	ctcccagaac	aggcccagaa	4200
atattgttgc	gcattgcaga	gaaagtccat	ageccaggtg	ttgtgtcatc	attgtcttct	4260
ggcaatgcag	tttgtaaagt	catggcctca	gctgtatact	tcttatcagc	aacaattttt	4320
gaggacactg	gacgtcctga	gttcaacttc	ttggaggatt	ctaagtacag	cttgctacaa	4380
aagatggctg	catattctgg	ctttcatggt	tttaatgata	tggagccaga	agatatatta	4440
ttcttattcc	cgaatattga	ggaattagaa	tcactggatt	ctatagttta	caacaaggga	4500
gaaatagaca	tcatcccaag	agtcaacatc	agggatgcaa	cccaaaccag	ggtcactatc	4560
tttaatgagc	agaagaccct	ccggacatct	ccagagaagt	tggtgtcaga	caagtggttt	4620
gggactcaga	agagtaggat	aggcaaaaca	accttcctgg	ctgaatggga	aaagctaaag	4680
aaaattgtaa	agtggttgga	agacactcca	gaagcaactc	tagctcacac	cccactgaat	4740
aaccatattc	aagttaggaa	tttctttgct	agaatggaaa	gcaagcctag	aacagtcaga	4800
ataacaggag	ctccagtaaa	gaagaggtca	ggggttagta	agatagctat	ggttatccgt	4860
gacaatttct	cccggatggg	ccatcttcga	ggtgtagaag	accttgctgg	cttcactcgt	4920
agtgtgtcag	ctgaaattct	caagcacttt	ctattctgta	tactacaagg	tccatacagt	4980

-continued

gagagetata agetacaget aatetacaga gteetaaget cagtgteaaa egttgagata 5040 aaggaatcag atggtaagac aaaaaccaac ttgattggaa tccttcagag atttctagat 5100 ggtgatcacg ttgtccccat aattgaagag atgggagccg gaacagtggg tggattcatc 5160 aagagacaac aatctaaagt tgtgcagaac aaagtggtct attatggagt tgggatttgg 5220 agaggettea tggatggata teaggteeat etagagatag aaaatgaeat aggaeageee 5280 ccaaggetta ggaatgteae aactaactgt cagageagee catgggaeet gagtatteea 5340 ataaggcaat gggcagaaga catgggggtc acaaacaacc aggattattc ctctaaatct 5400 agcagaggggg ccagatattg gatgcattca ttcaggatgc aaggacctag caagccattt 5460 ggatgcccag tttatattat taagggtgat atgtcagatg tcatcagact gagaaaggag 5520 gaggtggaga tgaaagtacg gggctctact ctcaacttgt acaccaagca ccattctcat 5580 caggacetae acattetate ttacaetgea teagacaatg ateteagtee aggeatttee 5640 aagtcaatat cagatgaggg ggtggctcaa gccctgcaat tatttgagag ggagccaagc 5700 aactgctggg tgagatgtga gtctgtagcc ccaaaattta tatcagccat ccttgagata 5760 tgtgagggga agagacagat aaggggaatt aacagaacca gactctcaga gattgtgaga 5820 atttgttctg aatcttccct aagatcaaaa gtcggatcta tgttctcatt tgtcgccaat 5880 gtcgaggagg cccatgatgt tgattatgat gcgttaatgg atctaatgat agaggatgcc 5940 aagaacaatg cattcagtca tgttgttgac tgcatagagt tggatgttag tggcccttac 6000 gagatggagt cttttgatac atctgatgtc aatctctttg ggccagccca ttacaaggac 6060 atcagttcat tatctatgat tgctcatccc ttaatggata agtttgttga ttatgctatt 6120 tctaagatgg ggagagcctc agttaggaaa gttctagaaa caggtcggtg ctccagcaaa 6180 gactatgatt tatcaaaggt tctcttcaga actctacaga gaccagaaga aagcattagg 6240 atagatgatc tggaattata tgaggagaca gatgtggcgg atgacatgct aggctaagac 6300 caataagcaa agtcaggctt agatttaggg atactatgct agtattggaa tccatgtggg 6360 6404 ttctgatact agcatagtgc tacaatattg ggcggtcttt gtgt <210> SEQ ID NO 4 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 4 33 aaaaaaggta ccgatatact tgataagcac tag <210> SEO ID NO 5 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 5 30 aaaaaaagat ctgattagag gttaaggctg <210> SEO ID NO 6 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide

-continued

46

-continued	
<400> SEQUENCE: 6	
aaaaaaggta ccatggtgag caagggcgag gag	33
<210> SEQ ID NO 7 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 7	
aaaaaaagat ctttacttgt acagctcgtc catg	34
<210> SEQ ID NO 8 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 8	
aaaaaaggta cctgctgctg catcaacctc aacaaatcca tc	42
<210> SEQ ID NO 9 <211> LENGTH: 49 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 9	
aaaaaacgtc tcagcagcag cagcagcaat ggtgagcaag ggcgaggag	49
<210> SEQ ID NO 10 <211> LENGTH: 53 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 10	
aaaaaacgtc tcactgctgc tgctgctgct gcatcaacct caacaaatcc atc	53
<210> SEQ ID NO 11 <211> LENGTH: 4594 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Plasmid	
<400> SEQUENCE: 11	
acacaaagct ccctagagat acaaacacta ttacaataat ggacaactat caagagcttg	60
cgatccagtt tgctgctcaa gcagtggacc gcaatgagat tgaacagtgg gtccgagagt	120
ttgettatea agggtttgat geeegtagag ttategaaet ettaaageag tatggtggg	180
ctgactggga gaaggatgcc aagaaaatga ttgttctggc tctaactcgt ggcaacaagc	240 300
ccaggaggat gatgatgaaa atgtcgaaag aaggcaaagc aactgtggag gctctcatca acaagtataa gctaaaggaa gggaatcctt cccgggatga gttgactcta tcacgagttg	360
ctgccgccct ggctggctgg acatgccagg ctttggtcgt cttgagtgag tggcttcctg	420
tcactgggac taccatggac ggcctatccc ctgcataccc aaggcatatg atgcacccca	480
gctttgctgg catggtggat ccttctctac caggagacta tctaagggca atattagatg	540

-continued

ctcactctct	gtatctgctg	cagttctccc	gggtcatcaa	cccaaacctc	cgaggtagaa	600
caaaagagga	ggttgctgca	acgttcacgc	agccaatgaa	tgcagcagtg	aatagcaact	660
ttataagcca	tgagaagagg	agagaattct	tgaaagcctt	tggacttgtg	gattctaatg	720
ggaagccgtc	agctgctgtc	atggcagccg	ctcaggctta	caagacagca	gcctaagtgg	780
ctgcccaggg	ggttgggggg	aaggggagtt	ggggttacgg	tcgggattgg	ggggtggggg	840
gtggggcagc	cttaacctct	aatcaacctc	aacaaatcca	tcatcatcac	tctcctcctc	900
tgattccatc	tcaacatctg	ggattggagg	aataactgga	atccagttgt	ttctccccat	960
catgctggga	agtgatgagc	gcagcatcag	gctctcctcc	ataagaacaa	tgagggctga	1020
gtttggaact	acagcattag	aaatgtcctc	ttttgctgct	tgcagaagcc	gaacgcactg	1080
tacgtgagca	acctcataca	tgagatcaaa	gcctggcaac	aggcacaggt	caatccctct	1140
gaggatggcc	tcagtcgcta	tcatcctgtg	taagccaaca	aaggagtcct	ctagatcatt	1200
ggtgatcttg	caactcctca	ttgctagagt	ggcaatctga	tcccttctaa	tgtcatcatt	1260
cctatgcact	ctagtagagc	ttaggtcaaa	gaaagccagt	gagggttctc	caagaggcca	1320
ggatatggct	tctttcagat	tggggaacct	tgtgaaatca	ctaagagtca	tatggcctat	1380
tagatcaata	agtctctgaa	aaggettege	tggtggaggt	gcaacgtttg	atgcaaagtc	1440
tccaagtccg	actcggtatg	ggaattctcc	gacattgtag	aaatcagaga	atcgcaagcg	1500
aacctcgtga	ctaggacgat	ggtgcatgag	aaagacacaa	cagggcccaa	ccatagaata	1560
aggtatcctg	ggaggaccat	ctcctctaaa	gtactccact	gacacaacac	gacgaccact	1620
ctgcaaatca	acagatatca	caggaaagta	atccatgata	tacttgataa	gcactagggg	1680
gtctttgtgt	gggtcggcat	ggcatctcca	cctcctcgcg	gtccgacctg	ggcatccgaa	1740
ggaggacgtc	gtccactcgg	atggctaagg	gagagctcgg	atccggctgc	taacaaagcc	1800
cgaaaggaag	ctgagttggc	tgctgccacc	gctgagcaat	aactagcata	accccttggg	1860
gcctctaaac	gggtcttgag	gggtttttg	ctgaaaggag	gaactatatc	cggatcgaga	1920
tcctctaggt	acaagcctaa	ttgtgtagca	tctggcttac	tgaagcagac	cctatcatct	1980
ctctcgtaaa	ctgccgtcag	agtcggtttg	gttggacgaa	ccttctgagt	ttctggtaac	2040
gccgtcccgc	acccggaaat	ggtcagcgaa	ccaatcagca	gggtcatcgc	tagccagatc	2100
ctctacgccg	gacgcatcgt	ggccggcatc	accggcgcca	caggtgcggt	tgetggegee	2160
tatatcgccg	acatcaccga	tggggaagat	cgggctcgcc	acttcgggct	catgageget	2220
tgtttcggcg	tgggtatggt	ggcaggcccc	gtggccgggg	gactgttggg	cgccatctcc	2280
ttgcaccatt	ccttgcggcg	gcggtgctca	acggcctcaa	cctactactg	ggctgcttcc	2340
taatgcagga	gtcgcataag	ggagagcgtc	gatatggtgc	actctcagta	caatctgctc	2400
tgatgccgca	tagttaagcc	agccccgaca	cccgccaaca	cccgctgacg	cgccctgacg	2460
ggcttgtctg	ctcccggcat	ccgcttacag	acaagctgtg	acaaagggcc	tcgtgatacg	2520
cctatttta	taggttaatg	tcatgataat	aatggtttct	tagacgtcag	gtggcacttt	2580
tcggggaaat	gtgcgcggaa	cccctatttg	tttattttc	taaatacatt	caaatatgta	2640
tccgctcatg	agacaataac	cctgataaat	gcttcaataa	tattgaaaaa	ggaagagtat	2700
gagtattcaa	catttccgtg	tcgcccttat	tcccttttt	gcggcatttt	gccttcctgt	2760
ttttgctcac	ccagaaacgc	tggtgaaagt	aaaagatgct	gaagatcagt	tgggtgcacg	2820
agtgggttac	atcgaactgg	atctcaacag	cggtaagatc	cttgagagtt	ttcgccccga	2880

agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 2940

tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt

tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg

-continued

cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 3120 aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 3180 tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 3240 tgtagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 3300 ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 3360 3420 ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 3480 cqqtatcatt qcaqcactqq qqccaqatqq taaqccctcc cqtatcqtaq ttatctacac gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 3540 actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 3600 aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 3660 caaaatccct taacqtqaqt tttcqttcca ctqaqcqtca qaccccqtaq aaaaqatcaa 3720 aggatettet tgagateett tttttetgeg egtaatetge tgettgeaaa caaaaaaaace 3780 accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt 3840 aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 3900 ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 3960 agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 4020 accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga 4080 gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 4140 tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 4200 cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 4260 4320 cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 4380 ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 4440 taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 4500 gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagggggat 4560 ctcgatcccg cgaaattaat acgactcact atag 4594 <210> SEQ ID NO 12 <211> LENGTH: 6789 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic plasmid <400> SEQUENCE: 12 acacaaagac ggtgcattaa atgtatgttt tattaacaat tctaatctcg gttctggtgt 60 gtgaagcggt tattagagtg tctctaagct ccacaagaga agagacctgc tttggtgact 120 ccactaaccc agagatgatt gaaggagctt gggattcact cagagaggag gagatgccgg 180 aggagetete etgttetata teaggeataa gagaggttaa gaeeteaage eaggagttat 240 acagggcatt aaaagccatc attgctgctg atggcttgaa caacatcacc tgccatggta 300 aggateetga ggacaagatt teeetcataa agggteetee teacaaaaag egggtgggga 360 tagttcggtg tgagagacga agagatgcta agcaaatagg gagagaaacc atggcaggga 420

3000

3060

ttgcaatgac agto	cttcca gccttagcag	tttttgcttt	ggcacctgtt	gtttttgctg	480
aagaccccca tctc	cagaaac agaccaggga	aggggcacaa	ctacattgac	gggatgactc	540
aggaggatgc caca	atgcaaa cctgtgacat	atgctggggc	atgtagcagt	tttgatgtct	600
tgcttgaaaa ggga	aaaattt ccccttttcc	agtcgtatgc	tcatcataga	actctactag	660
aggcagttca cgac	accatc attgcaaagg	ctgatccacc	tagctgtgac	cttcagagtg	720
ctcatgggaa cccc	stgcatg aaagagaaac	tcgtgatgaa	gacacactgt	ccaaatgact	780
accagtcagc tcat	tacctc aacaatgacg	ggaaaatggc	ttcagtcaag	tgccctccta	840
agtatgagct cact	gaggac tgcaactttt	gtaggcagat	gacaggtgct	agcctgaaga	900
aggggtetta teet	ctccaa gacttgtttt	gtcagtcaag	tgaggatgat	ggatcaaaat	960
taaaaacaaa aatg	yaaaggg gtctgcgaag	tgggggttca	agcactcaaa	aagtgtgatg	1020
gccaactcag cact	gcacat gaggttgtgc	cctttgcagt	gtttaagaac	tcaaagaagg	1080
tttatcttga taag	gettgae ettaagaetg	aggagaatct	gctaccagac	tcatttgtct	1140
gtttcgagca taag	yggacag tacaaaggaa	caatggactc	tggtcagact	aagagggagc	1200
tcaaaagctt tgat	atctct cagtgcccca	agattggagg	acatggtagt	aagaagtgca	1260
ctggggacgc agca	attttgc tctgcttatg	agtgcactgc	tcagtacgcc	aatgcctatt	1320
gttcacatgc taat	gggtca gggattgtgc	agatacaagt	atcaggggtc	tggaagaagc	1380
ctttatgtgt aggg	ytatgag agagtggttg	tgaagagaga	actctctgcc	aagcccatcc	1440
agagagttga gcct	tgcaca acttgtataa	ccaaatgtga	gcctcatgga	ttggttgtcc	1500
gatcaacagg gtto	caagata tcatcagcag	ttgcttgtgc	tagcggagtt	tgcgtcacag	1560
gatcgcagag tcct	tccacc gagattacac	tcaagtatcc	agggatatcc	cagtettetg	1620
gggggggacat aggg	ggttcac atggcacacg	atgatcagtc	agttagctcc	aaaatagtag	1680
ctcactgccc tccc	ccaggac ccgtgtttag	tgcatggctg	catagtgtgt	gctcatggcc	1740
tgataaatta ccag	ytgtcac actgctctca	gtgcctttgt	tgttgtgttt	gtattcagtt	1800
ctattgcaat aatt	tgttta gctgttcttt	atagggtgct	taagtgcctg	aagattgccc	1860
caaggaaagt tctg	gaatcca ctaatgtgga	tcacageett	catcagatgg	atatataaga	1920
agatggttgc caga	agtggca gacaacatta	atcaagtgaa	cagggaaata	ggatggatgg	1980
aaggaggtca gttg	ggttcta gggaaccctg	cccctattcc	tcgtcatgcc	ccaatcccac	2040
gttatagcac atac	cctgatg ttattattga	ttgtctcata	tgcatcagca	tgttcagaac	2100
tgattcaggc aago	ctccaga atcaccactt	gctctacaga	gggtgttaac	accaagtgta	2160
gactgtctgg caca	agcattg atcagagcag	ggtcagttgg	ggcagaggct	tgtttgatgt	2220
tgaagggggt caag	ygaagat caaaccaagt	tcttaaagat	aaaaactgtc	tcaagtgagc	2280
tatcatgcag ggag	yggccag agttattgga	ctgggtcctt	tagccctaaa	tgtttgagct	2340
caaggagatg ccac	ecttgtc ggggaatgec	atgtgaatag	gtgtctgtct	tggagggaca	2400
atgaaacttc agca	agagttt tcatttgttg	gggaaagcac	gaccatgcga	gagaataagt	2460
gttttgagca atgt	ggagga tgggggtgtg	ggtgtttcaa	tgtgaaccca	tcttgcttat	2520
ttgtgcacac gtat	ctgcag tcagttagaa	aagaggccct	tagagttttt	aactgtatcg	2580
actgggtgca taaa	actcact ctagagatca	cagactttga	tggctctgtt	tcaacaatag	2640
acttgggagc atca	atctagc cgtttcacaa	actggggttc	agttagcctc	tcactggacg	2700
cagagggcat ctca	aggetea aatagetttt	ctttcattga	gagcccaggt	aaagggtatg	2760
caattgttga tgag	gecatte teagaaatte	ctcggcaagg	gttcttgggg	gagatcaggt	2820

gcaattc	aga	gtcctcagtc	ctgagtgctc	atgaatcatg	ccttagggca	ccaaacctta	2880
tctcata	caa	gcccatgata	gatcaattgg	agtgcacaac	aaatctgatt	gatccctttg	2940
ttgtctt	tga	gaggggttct	ctgccacaga	caaggaatga	taaaaccttt	gcagcttcaa	3000
aaggaaa	tag	aggtgttcaa	gctttctcta	agggctctgt	acaagctgat	ctaactctga	3060
tgtttga	caa	ttttgaggtg	gactttgtgg	gagcagccgt	atcttgtgat	gccgccttct	3120
taaattt	gac	aggttgctat	tcttgcaatg	cagggggccag	ggtctgcctg	tctatcacat	3180
ccacagg	aac	tggatctctc	tctgcccaca	ataaggatgg	gtctctgcat	atagtccttc	3240
catcaga	gaa	tggaacaaaa	gaccagtgtc	agatactaca	cttcactgtg	cctgaagtag	3300
aggagga	gtt	tatgtactct	tgtgatggag	atgagcggcc	tctgttggtg	aaggggaccc	3360
tgatagc	cat	tgatccattt	gatgataggc	gggaagcagg	gggggaatca	acagttgtga	3420
atccaaa	atc	tggatcttgg	aatttctttg	actggttttc	tggactcatg	agttggtttg	3480
gagggcc	tct	taaaactata	ctcctcattt	gcctgtatgt	tgcattatca	attgggctct	3540
ttttcct	cct	tatatatctt	ggaagaacag	gcctctctaa	aatgtggctt	gctgccacta	3600
agaaggc	ctc	atagatcagt	acgtgtaaaa	gcaatatgtt	gaaataagta	gacacaagca	3660
aacctaa	tta	tgtaagtgtt	gtacagatag	gtcaaattat	tggaatatcc	aagcttagaa	3720
acttatg	caa	taatacttta	gatgtaagct	tagttgtaat	ttggggtggt	ggggtgaggc	3780
agcagca	gtc	tcaagtgctt	gtgaatattc	tagttggcgt	aatcgtcttt	tgccagatta	3840
gctggga	att	aaactaactc	tttgaagttg	caccggtctt	tgtgtgggtc	ggcatggcat	3900
ctccacc	tcc	tcgcggtccg	acctgggcat	ccgaaggagg	acgtcgtcca	ctcggatggc	3960
taaggga	gag	ctcggatccg	gctgctaaca	aagcccgaaa	ggaagctgag	ttggctgctg	4020
ccaccgc	tga	gcaataacta	gcataacccc	ttggggcctc	taaacgggtc	ttgaggggtt	4080
ttttgct	gaa	aggaggaact	atatccggat	cgagateete	taggtacaag	cctaattgtg	4140
tagcatc	tgg	cttactgaag	cagaccctat	catctctctc	gtaaactgcc	gtcagagtcg	4200
gtttggt	tgg	acgaaccttc	tgagtttctg	gtaacgccgt	cccgcacccg	gaaatggtca	4260
gcgaacc	aat	cagcagggtc	atcgctagcc	agatcctcta	cgccggacgc	atcgtggccg	4320
gcatcac	cgg	cgccacaggt	gcggttgctg	gcgcctatat	cgccgacatc	accgatgggg	4380
aagatcg	ggc	tcgccacttc	gggctcatga	gcgcttgttt	cggcgtgggt	atggtggcag	4440
gccccgt	ggc	cggggggactg	ttgggcgcca	tctccttgca	ccattccttg	cggcggcggt	4500
gctcaac	ggc	ctcaacctac	tactgggctg	cttcctaatg	caggagtcgc	ataagggaga	4560
gcgtcga	tat	ggtgcactct	cagtacaatc	tgctctgatg	ccgcatagtt	aagccagccc	4620
cgacacc	cgc	caacacccgc	tgacgcgccc	tgacgggctt	gtctgctccc	ggcatccgct	4680
tacagac	aag	ctgtgacaaa	gggcctcgtg	atacgcctat	ttttataggt	taatgtcatg	4740
ataataa	tgg	tttcttagac	gtcaggtggc	acttttcggg	gaaatgtgcg	cggaacccct	4800
atttgtt	tat	ttttctaaat	acattcaaat	atgtatccgc	tcatgagaca	ataaccctga	4860
taaatgc	ttc	aataatattg	aaaaaggaag	agtatgagta	ttcaacattt	ccgtgtcgcc	4920
cttattc	cct	ttttgcggc	attttgcctt	cctgtttttg	ctcacccaga	aacgctggtg	4980
aaagtaa	aag	atgctgaaga	tcagttgggt	gcacgagtgg	gttacatcga	actggatctc	5040
aacagcg	gta	agatccttga	gagttttcgc	cccgaagaac	gttttccaat	gatgagcact	5100
tttaaag	ttc	tgctatgtgg	cgcggtatta	tcccgtattg	acgccgggca	agagcaactc	5160
ggtcgcc	gca	tacactattc	tcagaatgac	ttggttgagt	actcaccagt	cacagaaaag	5220

US 8,673,629 B2

55

catcttacgg atggcatgac agtaagagaa ttatgcagtg ctgccataac catgagtgat 5280

aacactgogg ccaacttact totgacaacg atoggaggac cgaaggagot aacogotttt

-continued

ttgcacaaca tggggggatca	tgtaactcgc	cttgatcgtt	gggaaccgga	gctgaatgaa	5400				
gccataccaa acgacgagcg	tgacaccacg	atgcctgtag	caatggcaac	aacgttgcgc	5460				
aaactattaa ctggcgaact	acttactcta	gcttcccggc	aacaattaat	agactggatg	5520				
gaggcggata aagttgcagg	accacttctg	cgctcggccc	ttccggctgg	ctggtttatt	5580				
gctgataaat ctggagccgg	tgagcgtggg	tctcgcggta	tcattgcagc	actggggcca	5640				
gatggtaagc cctcccgtat	cgtagttatc	tacacgacgg	ggagtcaggc	aactatggat	5700				
gaacgaaata gacagatcgc	tgagataggt	gcctcactga	ttaagcattg	gtaactgtca	5760				
gaccaagttt actcatatat	actttagatt	gatttaaaac	ttcattttta	atttaaaagg	5820				
atctaggtga agatcctttt	tgataatctc	atgaccaaaa	tcccttaacg	tgagttttcg	5880				
ttccactgag cgtcagaccc	cgtagaaaag	atcaaaggat	cttcttgaga	tcctttttt	5940				
ctgcgcgtaa tctgctgctt	gcaaacaaaa	aaaccaccgc	taccagcggt	ggtttgtttg	6000				
ccggatcaag agctaccaac	tctttttccg	aaggtaactg	gcttcagcag	agcgcagata	6060				
ccaaatactg tccttctagt	gtagccgtag	ttaggccacc	acttcaagaa	ctctgtagca	6120				
ccgcctacat acctcgctct	gctaatcctg	ttaccagtgg	ctgctgccag	tggcgataag	6180				
tcgtgtctta ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	gcggtcgggc	6240				
tgaacggggg gttcgtgcac	acageceage	ttggagcgaa	cgacctacac	cgaactgaga	6300				
tacctacagc gtgagctatg	agaaagcgcc	acgetteecg	aagggagaaa	ggcggacagg	6360				
tatccggtaa gcggcagggt	cggaacagga	gagcgcacga	gggagcttcc	aggggggaaac	6420				
gcctggtatc tttatagtcc	tgtcgggttt	cgccacctct	gacttgagcg	tcgatttttg	6480				
tgatgctcgt caggggggggg	gagcctatgg	aaaaacgcca	gcaacgcggc	cttttacgg	6540				
tteetggeet tttgetggee	ttttgctcac	atgttctttc	ctgcgttatc	ccctgattct	6600				
gtggataacc gtattaccgc	ctttgagtga	gctgataccg	ctcgccgcag	ccgaacgacc	6660				
gagcgcagcg agtcagtgag	cgaggaagcg	gaagagcgcc	caatacgcaa	accgcctctc	6720				
cccgcgcgtt ggccgattca	ttaatgcagg	gggatctcga	tcccgcgaaa	ttaatacgac	6780				
tcactatag					6789				
<210> SEQ ID NO 13 <211> LENGTH: 9575 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Plasmid									
<400> SEQUENCE: 13		****			60				
acacaaaggc gcccaatcat									
tttgttagag tgccaatcaa					120				
tttgatgttt ccaagatggt					180				
ggagcatctg aaataggctc					240				
gccaattttg ttcacgattt					300				
atgcgtgagt ttcccatgat					360				
aaaactacat ctggcatgta	caacatcgtt	gagttcacca	cctttagggg	agatgaaaga	420				
ggtgcattcc aggctgccat	gactaaactc	gctaagtatg	aggttccttg	tgagaacaga	480				

5340

				0011011	1404	
tctcagggca	ggactgttgt	tctttatgtt	gttagtgctt	atcggcatgg	tgtatggtct	540
aatctggagc	tagaggactc	tgaagcagag	gagatggttt	ataggtacag	acttgctctt	600
agtgtgatgg	atgagctaag	gaccttgttc	ccagaactgt	catccacaga	tgaggaacta	660
gggaagactg	agagagagtt	gctagccatg	gtctcctcca	tccaaataaa	ttggtcagtc	720
acagaatctg	tgtttccacc	cttcagcaga	gaaatgtttg	acaggtttag	atcctcccct	780
cccgattcag	agtatatcac	gaggatagtg	agcagatgcc	tcataaattc	tcaagagaaa	840
ctcatcaata	gttccttctt	tgctgaaggg	aatgataagg	ctctgagatt	ttcaaaaaac	900
gctgaagagt	gttccttggc	agtagagaga	gccttaaatc	agtatagagc	agaagacaac	960
cttagggacc	tcaatgacca	caagtcaact	attcagctgc	ctccctggct	gtcctatcat	1020
gatgtcgatg	gcaaagatct	gtgccctctt	cagggattag	atgtgagagg	ggaccatccc	1080
atgtgcaact	tgtggaggga	agtggtcacc	tctgcaaacc	tagaggagat	tgagaggatg	1140
cacgatgatg	cagcagcaga	acttgagttt	gctctttcgg	gagtaaagga	caggccagat	1200
gagagaaaca	gataccatag	agtccaccta	aatatgggct	cagatgatag	tgtctacata	1260
gctgctttag	gagttaatgg	aaagaagcat	aaagcagaca	ctttagtgca	acaaatgaga	1320
gacaggagta	aacagccttt	ctccccagac	cacgatgtgg	atcacatatc	tgaatttctc	1380
tctgcatgct	ctagtgactt	gtgggcaaca	gatgaggacc	tgtacaaccc	tctctcttgt	1440
gataaagagc	ttagattggc	agcccagagg	attcatcagc	catccttgtc	agaaaggggt	1500
ttcaatgaga	tcataacaga	gcactacaaa	ttcatgggaa	gtaggatagg	ttcatggtgc	1560
caaatggtca	gcttgatagg	agctgagcta	tcagcttctg	ttaaacaaca	tgtcaagcct	1620
aactactttg	tgattaaacg	actactaggt	tctgggattt	tcttgctaat	caagcccact	1680
tccagcaaaa	gccatatatt	tgtgtcttt	gcaattaagc	gctcttgctg	ggcctttgat	1740
ctctccactt	ccagggtttt	caagccctac	atagatgctg	gggatctgtt	agttactgac	1800
tttgtttctt	ataagctaag	caagcttacc	aacctctgca	agtgcgtttc	attaatggag	1860
tceteettet	cattctgggc	agaagcattt	ggcattccaa	gctggaactt	tgttggtgac	1920
ttgttcaggt	cttcagactc	tgcagcaatg	gatgcctcat	acatgggcaa	actttcttta	1980
ttaacccttt	tggaagacaa	agcagcaact	gaagagttac	agactattgc	aagatatata	2040
atcatggagg	gctttgtctc	gcccccagaa	atcccaaaac	ctcacaagat	gacctctaag	2100
tttcctaagg	ttctcaggtc	agagctgcag	gtttacttat	taaactgctt	atgcagaact	2160
atccagagaa	tagcaggtga	gcccttcatt	cttaagaaga	aggatgggtc	tatatcctgg	2220
ggtggcatgt	tcaatccttt	ttcagggcgt	ccactgcttg	atatgcaacc	actcatcagc	2280
tgttgttaca	atggttactt	taaaaataaa	gaagaagaga	ctgagccttc	gtccctttct	2340
gggatgtata	agaaaatcat	agaacttgag	caccttagac	cacagtcaga	tgccttcttg	2400
ggttacaaag	atccagaact	tcccagaatg	catgagttca	gtgtttccta	cttgaaggag	2460
gcttgcaatc	atgctaagct	agtcttgagg	agcctctatg	gacagaattt	catggagcag	2520
atagacaacc	agattattcg	agagctcagt	gggttgactc	tagaaaggtt	ggccacactt	2580
aaggccacaa	gcaactttaa	tgagaattgg	tatgtctata	aggatgtagc	agacaaaaac	2640
tacacaaggg	ataaattatt	agtgaagatg	tcaaaatatg	cctctgaggg	aaagagccta	2700
gctatccaga	agtttgagga	ttgtatgagg	cagatagagt	cacaaggatg	catgcatatt	2760
tgtttgttta	agaaacaaca	gcatggaggt	ctgagagaga	tctatgtgat	gggtgcagag	2820
gaaagaattg	ttcaatcggt	ggtggagaca	atagccaggt	ccatagggaa	gttctttgct	2880

tctgataccc	tctgtaaccc	ccccaataaa	gtgaaaattc	ctgagacaca	tggcatcagg	2940
gcccggaagc	aatgtaaggg	gcctgtgtgg	acttgtgcaa	catcagatga	tgcaaggaag	3000
tggaaccaag	gccattttgt	tacaaagttt	gccctcatgc	tgtgtgagtt	cacctctcct	3060
aaatggtggc	cgctgatcat	taggggatgc	tcaatgttta	ccaggaaaag	gatgatgatg	3120
aatttgaatt	atcttaagat	cctggatggt	catcgggagc	ttgatattag	agatgacttt	3180
gtgatggatc	tcttcaaagc	ttatcatggc	gaggcagaag	ttccatgggc	ctttaaaggc	3240
aaaacatatt	tggaaaccac	aacagggatg	atgcagggaa	tactgcatta	tacttcctca	3300
ctattacaca	ccattcacca	agaatacatc	cggtccttgt	cctttaagat	attcaacctg	3360
aaggttgctc	ctgagatgag	caagggcctg	gtttgtgaca	tgatgcaagg	atcagatgat	3420
agtagtatgc	taatcagctt	cccagctgat	gatgagaagg	ttcttaccag	atgcaaagtg	3480
gccgcagcta	tatgcttccg	catgaagaag	gagctgggag	tgtaccttgc	catttacccc	3540
tcagagaagt	ccacagcaaa	cacagatttt	gtgatggagt	acaattctga	attttatttc	3600
cacacccagc	atgttagacc	aacgatcagg	tggattgcag	cttgttgcag	cctgccagaa	3660
gtggaaacac	tagtagcccg	ccaggaagag	gcctctaacc	taatgacttc	agttactgag	3720
ggaggtgggt	catteteett	agctgcaatg	attcagcaag	ctcagtgcac	tctccattac	3780
atgctgatgg	gcatgggagt	gtctgagcta	ttcttagagt	ataagaaggc	agtgctgaag	3840
tggaatgacc	ctggcctggg	tttcttcctg	cttgacaatc	cttatgcgtg	cggattggga	3900
ggtttcagat	ttaatctctt	caaagctatc	accagaactg	atttgcagaa	gctatatgct	3960
ttcttcatga	agaaggtcaa	gggeteaget	gctagggact	gggcagatga	agatgtcacc	4020
atcccagaaa	cgtgtagcgt	gagcccaggt	ggcgctctaa	ttcttagctc	ctctctaaag	4080
tggggatcta	ggaagaagtt	tcagaaattg	agagaccgtt	tgaacatacc	agagaactgg	4140
attgaactaa	taaatgagaa	tccagaggtg	ctctatcggg	ctcccagaac	aggcccagaa	4200
atattgttgc	gcattgcaga	gaaagtccat	agcccaggtg	ttgtgtcatc	attgtcttct	4260
ggcaatgcag	tttgtaaagt	catggcctca	gctgtatact	tcttatcagc	aacaattttt	4320
gaggacactg	gacgtcctga	gttcaacttc	ttggaggatt	ctaagtacag	cttgctacaa	4380
aagatggctg	catattctgg	ctttcatggt	tttaatgata	tggagccaga	agatatatta	4440
ttcttattcc	cgaatattga	ggaattagaa	tcactggatt	ctatagttta	caacaaggga	4500
gaaatagaca	tcatcccaag	agtcaacatc	agggatgcaa	cccaaaccag	ggtcactatc	4560
tttaatgagc	agaagaccct	ccggacatct	ccagagaagt	tggtgtcaga	caagtggttt	4620
gggactcaga	agagtaggat	aggcaaaaca	accttcctgg	ctgaatggga	aaagctaaag	4680
aaaattgtaa	agtggttgga	agacactcca	gaagcaactc	tagctcacac	cccactgaat	4740
aaccatattc	aagttaggaa	tttctttgct	agaatggaaa	gcaagcctag	aacagtcaga	4800
ataacaggag	ctccagtaaa	gaagaggtca	ggggttagta	agatagctat	ggttatccgt	4860
gacaatttct	cccggatggg	ccatcttcga	ggtgtagaag	accttgctgg	cttcactcgt	4920
agtgtgtcag	ctgaaattct	caagcacttt	ctattctgta	tactacaagg	tccatacagt	4980
gagagctata	agctacagct	aatctacaga	gtcctaagct	cagtgtcaaa	cgttgagata	5040
aaggaatcag	atggtaagac	aaaaaccaac	ttgattggaa	tccttcagag	atttctagat	5100
ggtgatcacg	ttgtccccat	aattgaagag	atgggagccg	gaacagtggg	tggattcatc	5160
aagagacaac	aatctaaagt	tgtgcagaac	aaagtggtct	attatggagt	tgggatttgg	5220
agaggettea	tggatggata	tcaggtccat	ctagagatag	aaaatgacat	aggacagccc	5280

ccaaggctta ggaatgtcac	aactaactgt	cagagcagcc	catgggacct	gagtattcca	5340
ataaggcaat gggcagaaga	catggggggtc	acaaacaacc	aggattattc	ctctaaatct	5400
agcagagggg ccagatatte	gatgcattca	ttcaggatgc	aaggacctag	caagccattt	5460
ggatgcccag tttatattat	taagggtgat	atgtcagatg	tcatcagact	gagaaaggag	5520
gaggtggaga tgaaagtac	gggctctact	ctcaacttgt	acaccaagca	ccattctcat	5580
caggacctac acattctato	ttacactgca	tcagacaatg	atctcagtcc	aggcattttc	5640
aagtcaatat cagatgaggg	ggtggctcaa	gccctgcaat	tatttgagag	ggagccaagc	5700
aactgctggg tgagatgtga	gtctgtagcc	ccaaaattta	tatcagccat	ccttgagata	5760
tgtgagggga agagacagat	aaggggaatt	aacagaacca	gactctcaga	gattgtgaga	5820
atttgttctg aatcttccct	aagatcaaaa	gtcggatcta	tgttctcatt	tgtcgccaat	5880
gtcgaggagg cccatgatgt	tgattatgat	gcgttaatgg	atctaatgat	agaggatgcc	5940
aagaacaatg cattcagtca	tgttgttgac	tgcatagagt	tggatgttag	tggcccttac	6000
gagatggagt cttttgatad	atctgatgtc	aatctctttg	ggccagccca	ttacaaggac	6060
atcagttcat tatctatgat	tgeteateee	ttaatggata	agtttgttga	ttatgctatt	6120
tctaagatgg ggagagccto	agttaggaaa	gttctagaaa	caggtcggtg	ctccagcaaa	6180
gactatgatt tatcaaaggt	tctcttcaga	actctacaga	gaccagaaga	aagcattagg	6240
atagatgatc tggaattata	tgaggagaca	gatgtggcgg	atgacatgct	aggctaagac	6300
caataagcaa agtcaggctt	agatttaggg	atactatgct	agtattggaa	tccatgtggg	6360
ttctgatact agcatagtgo	tacaatattg	ggcggtcttt	gtgtgggtcg	gcatggcatc	6420
tccacctcct cgcggtccga	cctgggcatc	cgaaggagga	cgtcgtccac	tcggatggct	6480
aagggagcaa gcttagcggt	caccgctgag	caataactag	cataacccct	tggggcctct	6540
aaacgggtct tgaggggttt	tttaagccga	attcgtaatc	atgtcatagc	tgtttcctgt	6600
gtgaaattgt tatccgctca	caattccaca	caacatacga	gccggaagca	taaagtgtaa	6660
agcctggggt gcctaatgag	tgagctaact	cacattaatt	gcgttgcgct	cactgcccgc	6720
tttccagtcg ggaaacctgt	cgtgccagct	gcattaatga	atcggccaac	gcgcggggag	6780
aggeggtttg egtattggge	gctcttccgc	tteetegete	actgactcgc	tgcgctcggt	6840
cgttcggctg cggcgagcgg	tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	6900
atcaggggat aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	6960
taaaaaggcc gcgttgctgg	cgtttttcca	taggeteege	ccccctgacg	agcatcacaa	7020
aaatcgacgc tcaagtcaga	u ggtggcgaaa	cccgacagga	ctataaagat	accaggcgtt	7080
teeccetgga ageteeetee	tgcgctctcc	tgttccgacc	ctgccgctta	ccggatacct	7140
gteegeettt eteeettege	gaagegtgge	gctttctcat	agctcacgct	gtaggtatct	7200
cagtteggtg taggtegtte	gctccaagct	gggctgtgtg	cacgaacccc	ccgttcagcc	7260
cgaccgctgc gccttatccc	gtaactatcg	tcttgagtcc	aacccggtaa	gacacgactt	7320
atcgccactg gcagcagcca	ctggtaacag	gattagcaga	gcgaggtatg	taggcggtgc	7380
tacagagttc ttgaagtggt	ggcctaacta	cggctacact	agaagaacag	tatttggtat	7440
ctgcgctctg ctgaagccac	ttaccttcgg	aaaaagagtt	ggtagetett	gatccggcaa	7500
acaaaccacc gctggtagco	gtggttttt	tgtttgcaag	cagcagatta	cgcgcagaaa	7560
aaaaggatct caagaagatc	ctttgatctt	ttctacgggg	tctgacgctc	agtggaacga	7620
	taatcataaa	attatcaaaa	aggatettea	cctagatcct	7680

	tgaagtt ttaaatcaat				7740			
	ttaatca gtgaggcaco				7800			
	ctccccg tcgtgtagat				7860			
ccccagtgct gcaa	atgatac cgcgagacco	acgeteaceg	gctccagatt	tatcagcaat	7920			
aaaccagcca gcco	ggaaggg ccgagcgcaq	g aagtggteet	gcaactttat	ccgcctccat	7980			
ccagtctatt aatt	tgttgcc gggaagctag	g agtaagtagt	tcgccagtta	atagtttgcg	8040			
caacgttgtt gcca	attgcta caggcatcgt	ggtgtcacgc	tcgtcgtttg	gtatggcttc	8100			
attcagctcc ggtt	teecaac gateaaggee	g agttacatga	tcccccatgt	tgtgcaaaaa	8160			
agcggttagc tcct	ttcggtc ctccgatcgt	tgtcagaagt	aagttggccg	cagtgttatc	8220			
actcatggtt atgg	gcagcac tgcataatto	c tottactgto	atgccatccg	taagatgctt	8280			
ttctgtgact ggtg	gagtact caaccaagto	e attetgagaa	tagtgtatgc	ggcgaccgag	8340			
ttgetettge eege	gcgtcaa tacgggataa	a taccgcgcca	catagcagaa	ctttaaaagt	8400			
gctcatcatt ggaa	aaacgtt cttcggggcg	g aaaactctca	aggatcttac	cgctgttgag	8460			
atccagttcg atgt	taaccca ctcgtgcaco	c caactgatct	tcagcatctt	ttactttcac	8520			
cagcgtttct gggt	tgagcaa aaacaggaaq	g gcaaaatgcc	gcaaaaaagg	gaataagggc	8580			
gacacggaaa tgtt	tgaatac tcatactctt	cctttttcaa	tattattgaa	gcatttatca	8640			
gggttattgt ctca	atgagcg gatacatatt	: tgaatgtatt	tagaaaaata	aacaaatagg	8700			
ggttccgcgc acat	tttcccc gaaaagtgco	acctgacgtc	taagaaacca	ttattatcat	8760			
gacattaacc tata	aaaaata ggcgtatcad	gaggeeettt	cgtctcgcgc	gtttcggtga	8820			
tgacggtgaa aaco	ctctgac acatgcagct	cccggagacg	gtcacagctt	gtctgtaagc	8880			
ggatgccggg agca	agacaag cccgtcagg	g cgcgtcagcg	ggtgttggcg	ggtgtcgggg	8940			
ctggcttaac tate	gcggcat cagagcagat	: tgtactgaga	gtgcaccatt	cgacgctctc	9000			
ccttatgcga ctco	ctgcatt aggaagcago	c ccagtagtag	gttgaggccg	ttgagcaccg	9060			
ccgccgcaag gaat	tggtgca tgcaaggaga	a tggcgcccaa	cagtcccccg	gccacgggggc	9120			
ctgccaccat acco	cacgccg aaacaagcgo	tcatgagccc	gaagtggcga	gcccgatctt	9180			
ccccatcggt gate	gtcggcg atataggcgo	c cagcaaccgc	acctgtggcg	ccggtgatgc	9240			
cggccacgat gcgt	teeggeg tagaggatet	ggctagcgat	gaccetgetg	attggttcgc	9300			
tgaccatttc cggg	gtgcggg acggcgttad	c cagaaactca	gaaggttcgt	ccaaccaaac	9360			
cgactctgac ggca	agtttac gagagagato	g atagggtctg	cttcagtaag	ccagatgcta	9420			
cacaattagg ctto	gtacata ttgtcgttag	g aacgcggcta	caattaatac	ataaccttat	9480			
gtatcataca cata	acgattt aggtgacact	: atagaataca	agctagcttg	ggctgcaggt	9540			
cgacttctag agga	atectaa taegaetead	tatag			9575			
<210> SEQ ID NO 14 <211> LENGTH: 4534 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic plasmid <400> SEQUENCE: 14								
	tagagat acaaacacta	a ttacaataat	qqacaactat	caagagettg	60			
	tgeteaa geagtggaed				120			
	Jarran Jeageggaed	Jenacgagac		22~9~9~9c	120			

ttgcttatca agggtttgat gcccgtagag ttatcgaact cttaaagcag tatggtgggg 180

			0011011	iucu		
ctgactggga gaaggat	gcc aagaaaatga	ttgttctggc	tctaactcgt	ggcaacaagc	240	
ccaggaggat gatgatg	aaa atgtcgaaag	aaggcaaagc	aactgtggag	gctctcatca	300	
acaagtataa gctaaag	gaa gggaatcctt	cccgggatga	gttgactcta	tcacgagttg	360	
ctgccgccct ggctggc	tgg acatgccagg	ctttggtcgt	cttgagtgag	tggcttcctg	420	
tcactgggac taccatg	gac ggcctatccc	ctgcataccc	aaggcatatg	atgcacccca	480	
gctttgctgg catggtg	gat ccttctctac	caggagacta	tctaagggca	atattagatg	540	
ctcactctct gtatctg	ctg cagttctccc	gggtcatcaa	cccaaacctc	cgaggtagaa	600	
caaaagagga ggttgct	gca acgttcacgc	agccaatgaa	tgcagcagtg	aatagcaact	660	
ttataagcca tgagaag	agg agagaattct	tgaaagcctt	tggacttgtg	gattctaatg	720	
ggaagccgtc agctgct	gtc atggcagccg	ctcaggctta	caagacagca	gcctaagtgg	780	
ctgcccaggg ggttggg	ggg aagggggagtt	ggggttacgg	tcgggattgg	aaaataaaaa	840	
gtgggggcagc cttaacc	tct aatcagatct	ttacttgtac	agctcgtcca	tgccgagagt	900	
gateceggeg geggtea	cga actccagcag	gaccatgtga	tcgcgcttct	cgttggggtc	960	
tttgctcagg gcggact	ggg tgctcaggta	gtggttgtcg	ggcagcagca	cgggggccgtc	1020	
gccgatgggg gtgttct	gct ggtagtggtc	ggcgagctgc	acgctgccgt	cctcgatgtt	1080	
gtggcggatc ttgaagt	tca ccttgatgcc	gttcttctgc	ttgtcggcca	tgatatagac	1140	
gttgtggctg ttgtagt	tgt actccagctt	gtgccccagg	atgttgccgt	cctccttgaa	1200	
gtcgatgccc ttcagct	cga tgcggttcac	cagggtgtcg	ccctcgaact	tcacctcggc	1260	
gcgggtcttg tagttgc	cgt cgtccttgaa	gaagatggtg	cgctcctgga	cgtagccttc	1320	
gggcatggcg gacttga	aga agtcgtgctg	cttcatgtgg	tcggggtagc	ggctgaagca	1380	
ctgcacgccg taggtca	ggg tggtcacgag	ggtgggccag	ggcacgggca	gcttgccggt	1440	
ggtgcagatg aacttca	ggg tcagcttgcc	gtaggtggca	tcgccctcgc	cctcgccgga	1500	
cacgctgaac ttgtggc	cgt ttacgtcgcc	gtccagctcg	accaggatgg	gcaccacccc	1560	
ggtgaacagc tcctcgc	cct tgctcaccat	ggtaccgata	tacttgataa	gcactagggg	1620	
gtctttgtgt gggtcgg	cat ggcatctcca	cctcctcgcg	gtccgacctg	ggcatccgaa	1680	
ggaggacgtc gtccact	cgg atggctaagg	gagagetegg	atccggctgc	taacaaagcc	1740	
cgaaaggaag ctgagtt	ggc tgctgccacc	gctgagcaat	aactagcata	accccttggg	1800	
gcctctaaac gggtctt	gag gggttttttg	ctgaaaggag	gaactatatc	cggatcgaga	1860	
tcctctaggt acaagcc	taa ttgtgtagca	tctggcttac	tgaagcagac	cctatcatct	1920	
ctctcgtaaa ctgccgt	cag agtcggtttg	gttggacgaa	ccttctgagt	ttctggtaac	1980	
gccgtcccgc acccgga	aat ggtcagcgaa	ccaatcagca	gggtcatcgc	tagccagatc	2040	
ctctacgccg gacgcat	cgt ggccggcatc	accggcgcca	caggtgcggt	tgctggcgcc	2100	
tatatcgccg acatcac	cga tggggaagat	cgggctcgcc	acttcgggct	catgagcgct	2160	
tgtttcggcg tgggtat	ggt ggcaggcccc	gtggccgggg	gactgttggg	cgccatctcc	2220	
ttgcaccatt ccttgcg	gcg gcggtgctca	acggcctcaa	cctactactg	ggctgcttcc	2280	
taatgcagga gtcgcat	aag ggagagcgtc	gatatggtgc	actctcagta	caatctgctc	2340	
tgatgccgca tagttaa	gcc agccccgaca	cccgccaaca	cccgctgacg	cgccctgacg	2400	
ggettgtetg etecegg	cat ccgcttacag	acaagctgtg	acaaagggcc	tcgtgatacg	2460	
cctattttta taggtta	atg tcatgataat	aatggtttct	tagacgtcag	gtggcacttt	2520	
tcggggaaat gtgcgcg	gaa cccctatttg	tttattttc	taaatacatt	caaatatgta	2580	

-continued

tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat 2640 2700 gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg 2760 agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga 2820 agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 2880 tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 2940 tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 3000 cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 3060 3120 aqqaccqaaq qaqctaaccq cttttttqca caacatqqqq qatcatqtaa ctcqccttqa togttgggaa ooggagotga atgaagodat accaaacgad gagogtgada ocacgatgod 3180 tgtagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 3240 ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 3300 qqcccttccq qctqqctqqt ttattqctqa taaatctqqa qccqqtqaqc qtqqqtctcq 3360 cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 3420 gacgggggggt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 3480 actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 3540 aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 3600 caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 3660 aggatettet tgagateett tttttetgeg egtaatetge tgettgeaaa eaaaaaaaee 3720 accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt 3780 aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 3840 ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 3900 3960 agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt accggataag gegeageggt egggetgaae ggggggtteg tgeaeaeage eeagettgga 4020 gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 4080 tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 4140 cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 4200 4260 cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 4320 cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt ctttcctqcq ttatcccctq attctqtqqa taaccqtatt accqcctttq aqtqaqctqa 4380 4440 taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagggggat 4500 4534 ctcgatcccg cgaaattaat acgactcact atag <210> SEQ ID NO 15 <211> LENGTH: 6652 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE:

<223> OTHER INFORMATION: Synthetic plasmid

<400> SEQUENCE: 15

acacaaagac ggtgcattaa accatggcag ggattgcaat gacagtcctt ccagccttag 60 cagtttttgc tttggcacct gttgttttg ctgaagaccc ccatctcaga aacagaccag 120

		-continued				
ggaaggggca	caactacatt	gacgggatga	ctcaggagga	tgccacatgc	aaacctgtga	180
catatgctgg	ggcatgtagc	agttttgatg	tcttgcttga	aaagggaaaa	tttccccttt	240
tccagtcgta	tgctcatcat	agaactctac	tagaggcagt	tcacgacacc	atcattgcaa	300
aggetgatee	acctagctgt	gaccttcaga	gtgctcatgg	gaacccctgc	atgaaagaga	360
aactcgtgat	gaagacacac	tgtccaaatg	actaccagtc	agctcattac	ctcaacaatg	420
acgggaaaat	ggcttcagtc	aagtgccctc	ctaagtatga	gctcactgag	gactgcaact	480

tccagtcgta	tgctcatcat	agaactctac	tagaggcagt	tcacgacacc	atcattgcaa	300
aggctgatcc	acctagctgt	gaccttcaga	gtgctcatgg	gaacccctgc	atgaaagaga	360
aactcgtgat	gaagacacac	tgtccaaatg	actaccagtc	agctcattac	ctcaacaatg	420
acgggaaaat	ggcttcagtc	aagtgccctc	ctaagtatga	gctcactgag	gactgcaact	480
tttgtaggca	gatgacaggt	gctagcctga	agaaggggtc	ttatcctctc	caagacttgt	540
tttgtcagtc	aagtgaggat	gatggatcaa	aattaaaaac	aaaaatgaaa	ggggtctgcg	600
aagtgggggt	tcaagcactc	aaaaagtgtg	atggccaact	cagcactgca	catgaggttg	660
tgccctttgc	agtgtttaag	aactcaaaga	aggtttatct	tgataagctt	gaccttaaga	720
ctgaggagaa	tctgctacca	gactcatttg	tctgtttcga	gcataaggga	cagtacaaag	780
gaacaatgga	ctctggtcag	actaagaggg	agctcaaaag	ctttgatatc	tctcagtgcc	840
ccaagattgg	aggacatggt	agtaagaagt	gcactgggga	cgcagcattt	tgctctgctt	900
atgagtgcac	tgctcagtac	gccaatgcct	attgttcaca	tgctaatggg	tcagggattg	960
tgcagataca	agtatcaggg	gtctggaaga	agcctttatg	tgtagggtat	gagagagtgg	1020
ttgtgaagag	agaactctct	gccaagccca	tccagagagt	tgagccttgc	acaacttgta	1080
taaccaaatg	tgagcctcat	ggattggttg	tccgatcaac	agggttcaag	atatcatcag	1140
cagttgcttg	tgctagcgga	gtttgcgtca	caggatcgca	gagtccttcc	accgagatta	1200
cactcaagta	tccagggata	tcccagtctt	ctggggggga	cataggggtt	cacatggcac	1260
acgatgatca	gtcagttagc	tccaaaatag	tageteactg	ccctccccag	gacccgtgtt	1320
tagtgcatgg	ctgcatagtg	tgtgctcatg	gcctgataaa	ttaccagtgt	cacactgctc	1380
tcagtgcctt	tgttgttgtg	tttgtattca	gttctattgc	aataatttgt	ttagctgttc	1440
tttatagggt	gcttaagtgc	ctgaagattg	ccccaaggaa	agttctgaat	ccactaatgt	1500
ggatcacagc	cttcatcaga	tggatatata	agaagatggt	tgccagagtg	gcagacaaca	1560
ttaatcaagt	gaacagggaa	ataggatgga	tggaaggagg	tcagttggtt	ctagggaacc	1620
ctgcccctat	tcctcgtcat	gccccaatcc	cacgttatag	cacatacctg	atgttattat	1680
tgattgtctc	atatgcatca	gcatgttcag	aactgattca	ggcaagctcc	agaatcacca	1740
cttgctctac	agagggtgtt	aacaccaagt	gtagactgtc	tggcacagca	ttgatcagag	1800
cagggtcagt	tggggcagag	gcttgtttga	tgttgaaggg	ggtcaaggaa	gatcaaacca	1860
agttcttaaa	gataaaaact	gtctcaagtg	agctatcatg	cagggagggc	cagagttatt	1920
ggactgggtc	ctttagccct	aaatgtttga	gctcaaggag	atgccacctt	gtcggggaat	1980
gccatgtgaa	taggtgtctg	tcttggaggg	acaatgaaac	ttcagcagag	ttttcatttg	2040
ttggggaaag	cacgaccatg	cgagagaata	agtgttttga	gcaatgtgga	ggatgggggt	2100
gtgggtgttt	caatgtgaac	ccatcttgct	tatttgtgca	cacgtatctg	cagtcagtta	2160
gaaaagaggc	ccttagagtt	tttaactgta	tcgactgggt	gcataaactc	actctagaga	2220
tcacagactt	tgatggctct	gtttcaacaa	tagacttggg	agcatcatct	agccgtttca	2280
caaactgggg	ttcagttagc	ctctcactgg	acgcagaggg	catctcaggc	tcaaatagct	2340
tttctttcat	tgagagccca	ggtaaagggt	atgcaattgt	tgatgagcca	ttctcagaaa	2400
ttcctcggca	agggttcttg	ggggagatca	ggtgcaattc	agagtcctca	gtcctgagtg	2460
ctcatgaatc	atgccttagg	gcaccaaacc	ttatctcata	caagcccatg	atagatcaat	2520

tggagtgcac	aacaaatctg	attgatccct	ttgttgtctt	tgagaggggt	tctctgccac	2580
agacaaggaa	tgataaaacc	tttgcagctt	caaaaggaaa	tagaggtgtt	caagctttct	2640
ctaagggctc	tgtacaagct	gatctaactc	tgatgtttga	caattttgag	gtggactttg	2700
tgggagcagc	cgtatcttgt	gatgccgcct	tcttaaattt	gacaggttgc	tattcttgca	2760
atgcaggggc	cagggtctgc	ctgtctatca	catccacagg	aactggatct	ctctctgccc	2820
acaataagga	tgggtetetg	catatagtcc	ttccatcaga	gaatggaaca	aaagaccagt	2880
gtcagatact	acacttcact	gtgcctgaag	tagaggagga	gtttatgtac	tcttgtgatg	2940
gagatgagcg	gcctctgttg	gtgaagggga	ccctgatagc	cattgatcca	tttgatgata	3000
ggcgggaagc	agggggggaa	tcaacagttg	tgaatccaaa	atctggatct	tggaatttct	3060
ttgactggtt	ttctggactc	atgagttggt	ttggagggcc	tcttaaaact	atactcctca	3120
tttgcctgta	tgttgcatta	tcaattgggc	tctttttcct	ccttatatat	cttggaagaa	3180
caggcctctc	taaaatgtgg	cttgctgcca	ctaagaaggc	ctcatagatc	agtacgtgta	3240
aaagcaatat	gttgaaataa	gtagacacaa	gcaaacctaa	ttatgtaagt	gttgtacaga	3300
taggtcaaat	tattggaata	tccaagctta	gaaacttatg	caataatact	ttagatgtaa	3360
gcttagttgt	aatttggggt	ggtggggtga	ggcagcagca	gtctcaagtg	cttgtgaata	3420
ttctagttgg	cgtaatcgtc	ttttgccaga	ttagctggga	attaaactaa	ctctttgaag	3480
ttgcaccggt	ctttgtgtgg	gtcggcatgg	catctccacc	teetegeggt	ccgacctggg	3540
cateegaagg	aggacgtcgt	ccactcggat	ggctaaggga	gcaagcttag	cggtcaccgc	3600
tgagcaataa	ctagcataac	cccttggggc	ctctaaacgg	gtcttgaggg	gttttttaag	3660
ccgaattcgt	aatcatgtca	tagctgtttc	ctgtgtgaaa	ttgttatccg	ctcacaattc	3720
cacacaacat	acgagccgga	agcataaagt	gtaaagcctg	gggtgcctaa	tgagtgagct	3780
aactcacatt	aattgcgttg	cgctcactgc	ccgctttcca	gtcgggaaac	ctgtcgtgcc	3840
agctgcatta	atgaatcggc	caacgcgcgg	ggagaggcgg	tttgcgtatt	gggcgctctt	3900
ccgcttcctc	gctcactgac	tcgctgcgct	cggtcgttcg	gctgcggcga	gcggtatcag	3960
ctcactcaaa	ggcggtaata	cggttatcca	cagaatcagg	ggataacgca	ggaaagaaca	4020
tgtgagcaaa	aggccagcaa	aaggccagga	accgtaaaaa	ggccgcgttg	ctggcgtttt	4080
tccataggct	ccgcccccct	gacgagcatc	acaaaaatcg	acgctcaagt	cagaggtggc	4140
gaaacccgac	aggactataa	agataccagg	cgtttccccc	tggaagctcc	ctcgtgcgct	4200
ctcctgttcc	gaccetgeeg	cttaccggat	acctgtccgc	ctttctccct	tcgggaagcg	4260
tggcgctttc	tcatagctca	cgctgtaggt	atctcagttc	ggtgtaggtc	gttcgctcca	4320
agctgggctg	tgtgcacgaa	ccccccgttc	agcccgaccg	ctgcgcctta	tccggtaact	4380
atcgtcttga	gtccaacccg	gtaagacacg	acttatcgcc	actggcagca	gccactggta	4440
acaggattag	cagagcgagg	tatgtaggcg	gtgctacaga	gttcttgaag	tggtggccta	4500
actacggcta	cactagaaga	acagtatttg	gtatctgcgc	tctgctgaag	ccagttacct	4560
tcggaaaaag	agttggtagc	tcttgatccg	gcaaacaaac	caccgctggt	agcggtggtt	4620
tttttgtttg	caagcagcag	attacgcgca	gaaaaaaagg	atctcaagaa	gatcctttga	4680
tcttttctac	ggggtctgac	gctcagtgga	acgaaaactc	acgttaaggg	attttggtca	4740
tgagattato	aaaaaggatc	ttcacctaga	tccttttaaa	ttaaaaatga	agttttaaat	4800
caatctaaag	tatatatgag	taaacttggt	ctgacagtta	ccaatgctta	atcagtgagg	4860
cacctatctc	agcgatctgt	ctatttcgtt	catccatagt	tgcctgactc	cccgtcgtgt	4920

-continued

agataactac	gatacgggag	ggcttaccat	ctggccccag	tgctgcaatg	ataccgcgag	4980
acccacgctc	accggctcca	gatttatcag	caataaacca	gccagccgga	agggccgagc	5040
gcagaagtgg	tcctgcaact	ttatccgcct	ccatccagtc	tattaattgt	tgccgggaag	5100
ctagagtaag	tagttcgcca	gttaatagtt	tgcgcaacgt	tgttgccatt	gctacaggca	5160
tcgtggtgtc	acgctcgtcg	tttggtatgg	cttcattcag	ctccggttcc	caacgatcaa	5220
ggcgagttac	atgatccccc	atgttgtgca	aaaaagcggt	tageteette	ggtcctccga	5280
tcgttgtcag	aagtaagttg	gccgcagtgt	tatcactcat	ggttatggca	gcactgcata	5340
attctcttac	tgtcatgcca	tccgtaagat	gcttttctgt	gactggtgag	tactcaacca	5400
agtcattctg	agaatagtgt	atgcggcgac	cgagttgctc	ttgcccggcg	tcaatacggg	5460
ataataccgc	gccacatagc	agaactttaa	aagtgctcat	cattggaaaa	cgttcttcgg	5520
ggcgaaaact	ctcaaggatc	ttaccgctgt	tgagatccag	ttcgatgtaa	cccactcgtg	5580
cacccaactg	atcttcagca	tcttttactt	tcaccagcgt	ttctgggtga	gcaaaaacag	5640
gaaggcaaaa	tgccgcaaaa	aagggaataa	gggcgacacg	gaaatgttga	atactcatac	5700
tcttcctttt	tcaatattat	tgaagcattt	atcagggtta	ttgtctcatg	agcggataca	5760
tatttgaatg	tatttagaaa	aataaacaaa	taggggttcc	gcgcacattt	ccccgaaaag	5820
tgccacctga	cgtctaagaa	accattatta	tcatgacatt	aacctataaa	aataggcgta	5880
tcacgaggcc	ctttcgtctc	gcgcgtttcg	gtgatgacgg	tgaaaacctc	tgacacatgc	5940
agctcccgga	gacggtcaca	gcttgtctgt	aagcggatgc	cgggagcaga	caagcccgtc	6000
agggcgcgtc	agcgggtgtt	ggcgggtgtc	ggggctggct	taactatgcg	gcatcagagc	6060
agattgtact	gagagtgcac	cattcgacgc	tctcccttat	gcgactcctg	cattaggaag	6120
cagcccagta	gtaggttgag	gccgttgagc	accgccgccg	caaggaatgg	tgcatgcaag	6180
gagatggcgc	ccaacagtcc	cccggccacg	gggcctgcca	ccatacccac	gccgaaacaa	6240
gcgctcatga	gcccgaagtg	gcgagcccga	tcttccccat	cggtgatgtc	ggcgatatag	6300
gcgccagcaa	ccgcacctgt	ggcgccggtg	atgccggcca	cgatgcgtcc	ggcgtagagg	6360
atctggctag	cgatgaccct	gctgattggt	tcgctgacca	tttccgggtg	cgggacggcg	6420
ttaccagaaa	ctcagaaggt	tcgtccaacc	aaaccgactc	tgacggcagt	ttacgagaga	6480
gatgataggg	tctgcttcag	taagccagat	gctacacaat	taggcttgta	catattgtcg	6540
ttagaacgcg	gctacaatta	atacataacc	ttatgtatca	tacacatacg	atttaggtga	6600
cactatagaa	tacaagcttg	ggctgcaggt	cgactaatac	gactcactat	ag	6652

The invention claimed is:

1. A collection of plasmids comprising:

- (i) a plasmid encoding a full-length anti-genomic copy of the L segment of RVF virus;
- (ii) a plasmid encoding a full-length anti-genomic copy of the M segment of RVF virus, or an anti-genomic copy of the M segment of RVF virus comprising a complete deletion of the NSm ORF; and
- (iii) a plasmid encoding an anti-genomic copy of the S 60 segment of RVF virus, wherein the S segment comprises a complete deletion of the NSS ORF,
- wherein the nucleotide sequence of the L segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 13, the nucleotide sequence of the M segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 12 or SEQ ID NO: 15, or the

nucleotide sequence of the S segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 14.

2. The collection of claim **1**, wherein the plasmids further comprise a T7 promoter and a hepatitis delta virus ribozyme.

3. The collection of claim **1**, wherein the nucleotide sequence of the S segment plasmid comprises SEQ ID NO: 14.

4. The collection of claim **1**, wherein the nucleotide sequence of the M segment plasmid comprises SEQ ID NO: 12 or SEQ ID NO: 15.

5. The collection of claim **1**, wherein the nucleotide sequence of the L segment plasmid comprises SEQ ID NO: 13.

6. An isolated host cell comprising the collection of claim 1.

7. The isolated host cell of claim 6, wherein the cell expresses T7 polymerase.

8. A method of preparing a recombinant RVF virus for immunization of a subject, comprising:

(i) transfecting cultured cells with the collection of plas- 5 mids of claim 1;

(ii) incubating the cells for 1 to 5 days; and

(iii) collecting recombinant RVF virus from the cell supernatant.

9. The method of claim **8**, wherein the cells express T7 10 polymerase.

10. A recombinant RVF virus, wherein the genome of the recombinant RVF virus comprises a full-length L segment, a full-length M segment and a full-length S segment, wherein the S segment encodes a NS s-reporter gene fusion protein. 15

11. The recombinant RVF virus of claim 10, wherein the reporter gene is fused to the C-terminus of NSs.

12. A reverse genetics system for producing recombinant RVF virus consisting of three plasmids, wherein a first plasmid encodes an anti-genomic copy of a S segment, a second 20 plasmid encodes an anti-genomic copy of a M segment and a third plasmid encodes an anti-genomic copy of a L segment of RVF virus, and wherein each plasmid comprises a T7 promoter and a hepatitis delta virus ribozyme,

wherein the nucleotide sequence of the S segment plasmid 25 is at least 95% identical to the nucleotide sequence of SEQ ID NO: 11 or SEQ ID NO: 14, the nucleotide sequence of the M segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 12 or SEQ ID NO: 15, or the nucleotide sequence of the L 30 segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 13.

13. The reverse genetics system of claim **12**, wherein the nucleotide sequence of the S segment plasmid comprises SEQ ID NO: 11 or SEQ ID NO: 14.

14. The reverse genetics system of claim 12, wherein the nucleotide sequence of the M segment plasmid comprises SEQ ID NO: 12 or SEQ ID NO: 15.

15. The reverse genetics system of claim **12**, wherein the nucleotide sequence of the L segment plasmid comprises 40 SEQ ID NO: 13.

16. An immunogenic composition comprising the recombinant RVF virus of claim 10 and a pharmaceutically acceptable carrier.

76

17. The collection of claim 1, wherein the nucleotide sequence of the L segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 13, the nucleotide sequence of the M segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 12 or SEQ ID NO: 15, and the nucleotide sequence of the S segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 12 or SEQ ID NO: 15, and the nucleotide sequence of the S segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 14.

18. The collection of claim **17**, wherein the nucleotide sequence of the L segment plasmid comprises SEQ ID NO: 13, the nucleotide sequence of the M segment plasmid comprises SEQ ID NO: 12 or SEQ ID NO: 15, and the nucleotide sequence of the S segment plasmid comprises SEQ ID NO: 14.

19. The reverse genetics system of claim **12**, wherein the nucleotide sequence of the S segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 11 or SEQ ID NO: 14, the nucleotide sequence of the M segment plasmid is at least 95% identical to the nucleotide sequence of SEQ ID NO: 12 or SEQ ID NO: 15, and the nucleotide sequence of the L segment plasmid is at least 95% identical to the nucleotide sequence of the nucleotide sequence of SEQ ID NO: 13.

20. The reverse genetics system of claim **19**, wherein the nucleotide sequence of the S segment plasmid comprises SEQ ID NO: 11 or SEQ ID NO: 14, the nucleotide sequence of the M segment plasmid comprises SEQ ID NO: 12 or SEQ ID NO: 15, and the nucleotide sequence of the L segment plasmid comprises SEQ ID NO: 13.

21. A method of immunizing a subject against RVF virus infection, comprising administering to the subject the immunogenic composition of claim **16**.

22. The method of claim **21**, wherein the subject is live- $_{35}$ stock.

23. The method of claim 21, wherein the subject is a human.

24. The method of claim **21**, wherein the immunogenic composition is administered in a single dose.

25. The method of claim **21**, wherein the immunogenic composition is administered intravenously, intramuscularly or subcutaneously.

* * * * *