

US008524247B2

# (12) United States Patent

# Wu et al.

## (54) RABIES VIRUS-BASED RECOMBINANT IMMUNOCONTRACEPTIVE COMPOSITIONS AND METHODS OF USE

- (75) Inventors: Xianfu Wu, Atlanta, GA (US); Charles Rupprecht, Lawrenceville, GA (US)
- (73) Assignee: The United States of America as represented by the Secretary of the Department of Health and Human Services, Centers for Disease Control and Prevention, Washington, DC (US)
- (\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 6 days.
- (21) Appl. No.: 13/062,680
- (22) PCT Filed: Aug. 20, 2009
- (86) PCT No.: PCT/US2009/054502
  § 371 (c)(1),
  (2), (4) Date: Mar. 7, 2011
- (87) PCT Pub. No.: WO2010/033337

PCT Pub. Date: Mar. 25, 2010

### (65) **Prior Publication Data**

US 2011/0165189 A1 Jul. 7, 2011

## **Related U.S. Application Data**

- (60) Provisional application No. 61/097,748, filed on Sep. 17, 2008.
- (51) Int. Cl. *A61K 39/12* (2006.01) *C12N 7/01* (2006.01) *A61P 37/00* (2006.01)
- (58) Field of Classification Search None

See application file for complete search history.

## (56) **References Cited**

### U.S. PATENT DOCUMENTS

| 4,608,251    | Α   | 8/1986  | Mia                        |
|--------------|-----|---------|----------------------------|
| 5,403,586    | Α   | 4/1995  | Russell-Jones et al.       |
| 5,484,592    | Α   | 1/1996  | Meloen et al.              |
| 5,759,551    | Α   | 6/1998  | Ladd et al.                |
| 6,027,727    | Α   | 2/2000  | Harris et al.              |
| 6,284,733    | B1  | 9/2001  | Meloen et al.              |
| 6,911,206    | B1  | 6/2005  | Campos et al.              |
| 2002/0131981 | A1  | 9/2002  | Dietzschold et al.         |
| 2003/0099671 | A1* | 5/2003  | Fu 424/224.1               |
| 2003/0113346 | A1* | 6/2003  | Dietzchold et al 424/204.1 |
| 2004/0191266 | A1  | 9/2004  | Miller et al.              |
| 2004/0202674 | A1  | 10/2004 | Brown et al.               |
| 2005/0239701 | A1* | 10/2005 | Baker et al 514/12         |
| 2006/0013821 | A1  | 1/2006  | Miller et al.              |

# (10) Patent No.: US 8,524,247 B2

# (45) **Date of Patent:** Sep. 3, 2013

## FOREIGN PATENT DOCUMENTS

| WO | WO 88/05308       | 7/1988     |
|----|-------------------|------------|
| WO | WO 93/25231       | 12/1993    |
| WO | WO 94/11019       | 5/1994     |
| WO | WO 2006/017276 A2 | 2/2006     |
| WO | WO 2007/047459 A1 | 4/2007     |
|    | OTHER PU          | BLICATIONS |

Smith et al. (Virology. 2006; 353: 344-356).\* Bradley et al., "Vaccines for Fertility Regulation of Wild and Domestic Species," *J. Biotechnol.*, 73:91-101, 1999.

trc Species," J. Biotechnol., 73:91-101, 1999.
Brown et al., "Evidence for a Long-Lasting Single Administration Contraceptive Vaccine in Wild Grey Seals," J. Reprod. Immunol. vol. 35:43-51, 1997.

Brown et al., "Temporal Trends in Antibody Production in Captive Grey, Harp and Hooded Seals to a Single Administration Immunocontraceptive Vaccine," *J. Reprod. Immunol.*, vol. 35:53-64, 1997.

Cat Contraceptive Vaccine Status, available online at http://www.vetmed.vt.edu/research/cmmid/docs/contravaccine.pdf, 2 pages, Jun. 2006.

Choudhury et al., "Feasibility and Challenges in the Development of Immunocontraceptive Vaccine Based on Zona Pellucida Glycoproteins," *Society of Reproduction and Fertility Supplement*, vol. 63:479-493, 2007.

Cooper and Larsen, "Immunocontraception of Mammalian Wildlife: Ecological and Immunogenetic Issues," *Reproduction*, vol. 132:821-828, 2006.

Delves et al., "Antifertility Vaccines," *Trends Immunol*. vol. 23:213-219, 2002.

Dietzschold et al., "Characterization of an Antigenic Determinant of the Glycoprotein that Correlates with Pathogenicity of Rabies Virus," *Proc. Natl. Acad. Sci.*, vol. 80:70-74, 1983.

Gorman et al., "Evaluation of a Porcine Zona Pellucida Vaccine for the Immunocontraception of Domestic Kittens (*Felis catus*)," *Theriogenology*, vol. 58:135-149, 2002.

Gupta, et al., "Molecular Characterization of Zona Pellucida Glycoproteins: Role in Fertilization and Regulation of Fertility," available online at http://www.nii.res.in/res-reports-2004/resrep043. pdf, 4 pages, Jun. 28, 2006.

Gupta et al., "Potential of Canine Zona Pellucida Glycoproteins-Based Immunocontraceptive Vaccines," Proc. Third Intl. Symp. On Non-Surgical Contraceptive Methods for Pet Population Control, available online at www.acc-d.org, Nov. 10, 2006.

Hardy and Mobbs, "Expression of Recombinant Mouse Sperm Protein sp56 and Assessment of Its Potential for Use as an Antigen in an Immunocontraceptive Vaccine," *Mol. Reprod. Dev.*, vol. 52(2):216-224, 1999.

Hardy et al., "Mouse-specific immunocontraceptive polyepitope vaccines," *Reproduction Supplement* 60:19-30, 2002.

## (Continued)

Primary Examiner - Shanon A Foley

(74) Attorney, Agent, or Firm — Klarquist Sparkman, LLP

# (57) **ABSTRACT**

Described herein are recombinant rabies viruses comprising a heterologous nucleic acid sequence encoding an immunocontraceptive protein, such as gonadotropin-releasing hormone (GnRH) or zona pellucida 3 (ZP3). The recombinant rabies viruses disclosed herein are recovered by reverse genetics, replicate efficiently, elicit rabies virus neutralizing antibodies and immunocontraceptive peptide-specific antibodies in vaccinated animals, and protect vaccinated animals against wildtype rabies virus challenge. Further provided is a method of immunizing a non-human animal against rabies virus infection and simultaneously inhibiting fertility of the animal, comprising administering an immunogenic composition comprising one or more of the recombinant rabies viruses described herein.

## 18 Claims, 10 Drawing Sheets

#### (56) **References Cited**

## OTHER PUBLICATIONS

Ivanovo et al., "Contraceptive Potential of Porcine Zona Pellucida in Cats." *Theriogenology*, vol. 43:969-981, 1995.

Miller, "Immunocontraception and Possible Application in Wildlife Damage Management," Wildlife Damage Management, Internet Center for Great Plains Wildlife Damage Control Workshop Proceedings, University of Nebraska—Lincoln, available online at http:// digitalcommons.unl.edu/gpwdcwp/445, 1995.

Naz et al., "Recent Advances in Contraceptive Vaccine Development: A Mini-Review," *Hum. Reprod.*, vol. 20(12):3271-3283, 2005.

O'Hern et al., "Colinear Synthesis of an Antigen-Specific B-cell Epitope with a 'Promiscuous' Tetanus Toxin T-cell Epitope: A Synthetic Peptide Immunocontraceptive," *Vaccine*, vol. 16(15):1761-1766, 1997.

O'Rand et al., "Reversible Immunocontraception in Male Monkeys Immunized with Eppin," Science, vol. 306:1189-1190, 2004. Rath et al., "Characterization of Immune Response in Mice to Plasmid DNA Encoding Dog Zona Pellucida Glycoprotein-3," *Vaccine*, vol. 21:1913-1923, 2003.

Tuffereau et al., "Arginine or Lysine in Position 333 of ERA and CVS Glycoprotein is Necessary for Rabies Virulence in Adult Mice," *Virol.*, vol. 172:206-212, 1989.

Wu and Rupprecht, "Glycoprotein Gene Relocation in Rabies Virus," *Virus Res.* vol. 131:95-99, 2008.

Wu et al., "Both Viral Transcription and Replication are Reduced when the Rabies Virus Nucleoprotein is not Phosphorylated," *J. Virol.*, vol. 76(9):4153-4161, 2002.

Wu et al., "Are All Lyssavirus Genes Equal for Phylogenetic Analyses?" *Virus Res.*, vol. 129:91-103, 2007.

Yamada et al., "Multigenic Relation to the Attenuation of Rabies Virus," *Microbiol. Immunol.*, vol. 50(1):25-32, 2006.

Zhu and Naz, "Fertilization Antigen-1: cDNA Cloning, Testis-Specific Expression, and Immunocontraceptive Effects," *Proc. Natl. Acad. Sci.*, vol. 94:4704-4709, 1997.

\* cited by examiner







FIG. 2B





FIG. 4











FIG. 5C



FIG. 6



FIG. 7A



FIG. 7B



FIG. 8A

FIG. 8B



FIG. 9



FIG. 10A FIG. 10B FIG. 10C FIG. 10D

## RABIES VIRUS-BASED RECOMBINANT IMMUNOCONTRACEPTIVE COMPOSITIONS AND METHODS OF USE

### CROSS REFERENCE TO RELATED APPLICATIONS

This is the U.S. National Stage of International Application No. PCT/US2009/054502, filed Aug. 20, 2009, which was published in English under PCT Article 21(2), which in turn <sup>10</sup> claims the benefit of U.S. Provisional Application No. 61/097,748, filed Sep. 17, 2008, which is herein incorporated by reference in its entirety.

#### FIELD

This disclosure concerns recombinant rabies viruses as immunocontraceptive compositions for control of wild and domestic animal population growth, as well as protection of  $_{20}$  animals against rabies virus infection.

#### BACKGROUND

Rabies is a major threat to public health, causing between 25 50,000 and 60,000 human deaths each year (World Health Organization, April 2003). Humans get infected with the rabies virus mostly through bites from rabid domestic and wildlife animals. In developing countries, dogs are responsible for about 94% of human rabies deaths. Dog rabies is still 30 epizootic in most countries of Africa, Asia and South America, and in these countries dogs are responsible for most human deaths from the disease. Controlling rabies virus infection in domestic and wildlife animals, therefore, not only reduces the mortality in these animals but also reduces the 35 risks of human exposure.

The rabies virus is transmitted through broken skin by the bite or scratch of an infected animal. Exposure to rabies virus results in its penetration of peripheral, unmyelinated nerve endings, followed by spreading through retrograde axonal 40 transport, replication occurring exclusively in the neurons, and finally arrival in the central nervous system (CNS). Infection of the CNS causes cellular dysfunction and death (Rupprecht and Dietzschold, *Lab Invest.* 57:603, 1987). Since rabies virus spreads directly from cell to cell, it largely evades 45 immune recognition (Clark and Prabhakar, Rabies, In: Olson et al., eds., "Comparative Pathology of Viral Disease," 2:165, Boca Raton, Fla., CRC Press, 1985).

Population control of dogs with outdated methods of capture, restraint and euthanasia are inhumane and not accept- 50 able to the public. Canine rabies prevention and control, and appropriate population management of free-ranging dogs are paramount for eventual disease elimination. Various approaches have been proposed to interrupt canine reproductive cycles, including surgical spay/neuter of animals, chemi-55 cal sterilization, and immunocontraception. For example, gonadotropin releasing hormone (GnRH) has been considered as one approach as an immunocontraceptive peptide for dogs. However, studies to date have shown that GnRH needs to be synthesized and conjugated with a carrier protein (or 60 adjuvant) to be immunogenic. Necessary scale-up of production may become problematic to meet the regulatory and economic demands for modern vaccine supply. Thus, it is desirable to construct a vaccine that can induce appropriate dual immunological responses against both rabies virus and immunocontraceptive targets, after a single administration in animals.

Moreover, over the past 30 years, immunocontraceptive studies have not generated a single commercial product. Technical limitations are one of the main factors. Therefore, there is a long unfelt need for a novel rabies virus vaccine, engineered with the ability to express a suitable immunocontraceptive gene. This type of vaccine would be an ideal candidate for both rabies prevention and population control of wild and domestic animals, including dogs.

#### SUMMARY OF THE DISCLOSURE

Recombinant rabies viruses comprising heterologous nucleic acid sequences encoding immunocontraceptive proteins are disclosed herein. The recombinant rabies viruses are 15 recovered using reverse genetics, replicate efficiently in culture, and elicit high titers of rabies virus neutralizing antibodies, elicit immunocontraceptive protein-specific antibodies and confer protection against rabies virus challenge in vaccinated animals.

Provided herein is a recombinant rabies virus in which the genome of the recombinant rabies virus includes a heterologous nucleic acid sequence encoding an immunocontraceptive protein. In some embodiments, the immunocontraceptive protein is gonadotropin-releasing hormone (GnRH) or zona pellucida 3 (ZP3), such as dog ZP3. In some embodiments, the genome of the recombinant rabies virus comprises a nucleic acid sequence encoding ZP3 and a nucleic acid sequence encoding GnRH.

Also provided are immunogenic compositions comprising one or more of the recombinant rabies viruses described herein. Further provided is an immunogenic composition comprising a first recombinant rabies virus and a second recombinant rabies virus, wherein the genome of the first recombinant rabies virus comprises a GnRH nucleic acid sequence and the genome of the second recombinant rabies virus comprises a ZP3 nucleic acid sequence.

Further provided are methods of immunizing a non-human animal against rabies virus infection and inhibiting fertility of the animal, by administering to the animal a therapeutically effective amount of an immunogenic composition comprising one or more of the recombinant rabies viruses disclosed herein.

The foregoing and other features and advantages will become more apparent from the following detailed description of several embodiments, which proceeds with reference to the accompanying figures.

#### BRIEF DESCRIPTION OF THE FIGURES

FIG. **1** is a schematic depiction of four recombinant ERAZP3 viruses. G\* denotes the mutation at amino acid 333 of glycoprotein (G). ZP—indicates a dog zona pellucida gene.

FIG. 2A is a schematic depiction of the rabies virus glycoprotein. Arrows indicate locations where either one or two copies of GnRH were inserted. Recombinant viruses with GnRH inserted at each of these locations were successfully recovered by reverse genetics (Ecto=ectodomain; SP=signal peptide; TM=transmembrane; IIb, II, IIa, WB+ and III refer to antigenic sites). FIG. 2B is a schematic depiction of recombinant rabies virus ERA-3-GnRH.

FIG. **3**A is a table listing exemplary recombinant rabies viruses comprising dog ZP3 (DZP3), GnRH or both. The virus descriptions indicate the location of insertion of ZP3 and/or GnRH in the virus genome (G3=glycoprotein with the G333 mutation). FIG. **3**B is a graph showing survival of unvaccinated mice (control) or mice vaccinated with either

65

ERA-N-GnRH (virus #5), ERA-3-GnRH (virus #7) or ERA-G3-2GnRH (virus #8). Each group of mice was subsequently challenged with a lethal dose of rabies virus.

FIG. 4 is an image of a protein gel showing GnRH or 2GnRH peptide conjugated to keyhole limpet hemocyanin (KLH). The proteins were separated on 4-12% SDS-PAGE gels. GnRH-KLH and 2GnRH-KLH are shown in lanes 2 and 4, respectively. Lanes 1 and 6 contain molecular weight markers. Lanes 3 and 5 show KLH standard.

FIG. 5A is a schematic of the parental ERA and rearranged ERAg3p genomes. To generate ERAg3p, the G gene in the ERA genome was relocated ahead of the P gene, and was mutated at amino acid residue 333 from AGA (denoted as G) to GAG (denoted as G\*). FIG. 5B is a one-step growth curve showing growth characteristics of the rearranged ERAg3p 15 virus. The recovered virus ERAg3p grew as well as the parental ERA virus. FIG. 5C is a line graph comparing virulence of ERA and ERAg3p. ERAg3p did not cause death in any 3-week old mice after intracerebral injection.

FIG. 6 is a schematic showing insertion sites of GnRH or 2GnRH coding sequence into the G gene in ERAg3p rabies 20 virus ERA G protein. An Arg to Glu change at amino acid peptide; TM=transmembrane; virus. SP=signal CT=cytoplasmic tail; N=amino terminus of glycoprotein; and C=carboxyl-terminus of glycoprotein.

FIG. 7A is a schematic showing insertion sites of GnRH into the ERAg3p genome to generate ERA-N-GnRH, ERA- 25 N-2GnRH, ERA-IIa-GnRH and ERA-C-GnRH. FIG. 7B is a line graph showing recovery and growth characteristics of the GnRH-carrying ERAg3p viruses. Recombinant virus was successfully recovered from 4 out of the 12 constructs. Recovered viruses contained GnRH inserted at the amino 30 terminus immediate after the signal sequence, the IIa antigenic site, or the junction between the ectodomain and transmembrane domain of glycoprotein.

FIG. 8A is an image of an electrophoretic gel showing purified ERA-N-2GnRH (lane 1), ERA-N-GnRH (lane 2) 35 and ERA-IIa-GnRH (lane 3). Purified virus was separated on 4-12% SDS-PAGE gels. Lanes 4 and 5 contain purified glycoprotein and purified nucleoprotein from rabies virus ERA as controls. FIG. 8B is an image of a Northern blot of purified ERA-N-2GnRH (lane 2) and ERA-N-GnRH (lane 3). Lanes 1 40 and 4 contain RNA molecular weight marker.

FIG. 9 is a line graph showing safety and potency of the GnRH-carrying ERAg3p viruses in a mouse model. No obvious side-effects were observed after intramuscular injection of ERA-N-2GnRH, ERA-N-GnRH or ERA-IIa-GnRH in 45 mice. Three weeks post-inoculation, all mice survived challenge with a lethal dose of approximately 2.5-10.0 MICLD<sub>50</sub> dog/coyote street rabies virus. The control mice (placebo injected) died between 8 and 10 days after challenge. The surviving mice remained healthy before termination of the 50 experiment at 2 months.

FIGS. 10A-10D are Western blots showing reaction of GnRH-KLH and 2GnRH-KLH conjugates against mouse serum immunized with GnRH-carrying ERA viruses and GonaCon<sup>™</sup> serum. For each blot, Lanes 1 and 2 contain 55 GnRH-KLH and 2GnRH-KLH, respectively. Shown are mouse serum from rabies virus ERA-IIa-GnRH immunization (A); mouse serum from RV ERA-N-GnRH immunization (B); mouse serum from ERA-N-2GnRH immunization (C); and rabbit serum against GonaCon<sup>TM</sup>(D). No differences 60 were detected between mouse and rabbit serum against the GnRH conjugates.

#### SEQUENCE LISTING

The nucleic and amino acid sequences listed in the accompanying sequence listing are shown using standard letter abbreviations for nucleotide bases, and three letter code for amino acids, as defined in 37 C.F.R. 1.822. Only one strand of each nucleic acid sequence is shown, but the complementary strand is understood as included by any reference to the displayed strand. The Sequence Listing is submitted as an ASCII text file, created on Feb. 28, 2011, 158 KB, which is incorporated by reference herein. In the accompanying sequence listing:

SEQ ID NO: 1 is the nucleotide sequence of recombinant rabies virus ERA recovered by reverse genetics. Mutation of nucleotides 4370-4372 from aga to gag introduces an Arg to Glu amino acid change in the G protein.

SEQ ID NO: 2 is the amino acid sequence of the rabies virus ERA N protein.

SEQ ID NO: 3 is the amino acid sequence of the rabies virus ERA P protein.

SEQ ID NO: 4 is the amino acid sequence of the rabies virus ERA M protein.

SEQ ID NO: 5 is the amino acid sequence of the rabies residue 352 is an attenuating mutation.

SEQ ID NO: 6 is the amino acid sequence of the rabies virus ERA L protein.

SEQ ID NOs: 7 and 8 are the nucleotide and amino acid sequences, respectively, of dog zona pellucida 3 (ZP3)

SEQ ID NOs: 9-26 are the nucleotide sequences of the oligonucleotides use to generate fragment A of dog ZP3.

SEQ ID NOs: 27-46 are nucleotide sequences of the oligonucleotides used to generate fragment B of dog ZP3.

SEQ ID NOs: 47 and 48 are the nucleotide and amino acid sequences, respectively, of GnRH.

SEQ ID NOs: 49 and 50 are the nucleotide and amino acid sequences, respectively, of rabies virus ERA G protein with a single copy of GnRH inserted immediately following the 19 amino acid G protein signal sequence. This construct is referred to as G-N-GnRH.

SEQ ID NOs: 51 and 52 are the nucleotide and amino acid sequences, respectively, of rabies virus ERA G protein with two copies of GnRH inserted immediately following the 19 amino acid G protein signal sequence. This construct is referred to as G-N-2GnRH.

SEQ ID NOs: 53 and 54 are the nucleotide and amino acid sequences, respectively, of rabies virus ERA G protein with a single copy of GnRH inserted immediately following amino acid 221 of the G protein (IIa site). This construct is referred to as GnRH-p3 or G-IIa-GnRH.

SEQ ID NO: 55 is the amino acid sequence of GnRH peptide 1780.

SEQ ID NO: 56 is the amino acid sequence of GnRH peptide 1781.

SEQ ID NO: 57 is the nucleotide sequence of 2GnRH (two tandem copies of the GnRH coding sequence).

SEQ ID NOs: 58 and 59 are the nucleotide sequences of primers used for insertion of the GnRH coding sequence into the rabies virus G gene.

SEQ ID NOs: 60 and 61 are the nucleotide sequences of primers used for insertion of the tandem GnRH (2GnRH) coding sequence into the rabies virus G gene.

SEQ ID NO: 62 is the nucleotide sequence of dog ZP3, deposited under GenBank Accession No. NM\_001003224 on Aug. 5, 2004.

SEQ ID NOs: 63 and 64 are the nucleotide and amino acid sequences, respectively, of rabies virus ERA G protein with one copy of GnRH inserted at the junction of the ectodomain and the transmembrane domain (following nucleotide 1374, amino acid 458) of glycoprotein. This construct is referred to as G-C-GnRH.

60

## DETAILED DESCRIPTION

## I. Introduction

Rabies is a major public health concern globally. In most 5 instances, humans are infected with rabies virus through the bite of a rabid domestic or wild animal. In developing countries, dogs are responsible for approximately 94% of human deaths due to rabies. Stray or unvaccinated dogs are the pri-10mary reservoir for rabies in Latin American, Asian and African countries. Furthermore, in the United States, there are currently millions of stray or feral cats. Thus, there is a global need to both prevent rabies and control the population of rabies susceptible animals, particularly dogs. 15

Previous methods of animal population control have included the use of immunocontraceptive vaccines. Immunocontraception involves stimulating immune responses against gametes or reproductive hormones to prevent conception. Immunocontraception is a humane method for population 20 control of pest and overabundant populations of mammalian wildlife (such as raccoons or deer). A number of studies have focused on the use of zona pellucida glycoprotein 3 (ZP3), which is the main receptor used by sperm for fertilization of an egg. However, administration of ZP3, or other immuno-25 contraceptive protein, has previously required co-administration of an adjuvant and/or booster doses to elicit a sufficient immune response against the protein such that fertilization is inhibited. Thus, current methods of immunocontraception have significant limitations, particularly for wild animal 30 854287-9); Kendrew et al. (eds.), The Encyclopedia of populations.

The immunogenic compositions and methods disclosed herein provide a means of simultaneously protecting vaccinated animals against rabies and controlling animal populations by inhibiting fertility. Recombinant rabies viruses comprising at least one heterologous nucleic acid sequence encoding an immunocontraceptive protein are described herein. In particular examples, the immunocontraceptive protein is GnRH or ZP3. In some cases, the recombinant rabies viruses comprise both GnRH and ZP3. Alternatively, animals 40 enhances the immune response to an antigen. Adjuvants can can be immunized with two different recombinant rabies viruses, one comprising GnRH, and a second comprising ZP3. Because the immunocontraceptive protein is encoded in the genome of the rabies virus, when recombinant rabies virus particles are produced, the immunocontraceptive peptides are 45 incorporated into the virion (structural protein) or are contained within the virion (non-structural protein). By incorporating the immunocontraceptive protein into the rabies virus particle, an adjuvant is not required to elicit a sufficient immune response against both rabies virus and the immunocontraceptive protein.

#### II. Abbreviations

| CMV  | Cytomegalovirus                                       |
|------|-------------------------------------------------------|
| CTVT | Canine transmissible venereal tumor                   |
| DFA  | Direct fluorescent assay                              |
| DNA  | Deoxyribonucleic acid                                 |
| ERA  | Evelyn-Rokitnicki-Abelseth                            |
| FFU  | Focus-forming units                                   |
| FITC | Fluorescein isothiocyanate                            |
| FSH  | Follicle stimulating hormone                          |
| G    | Rabies virus glycoprotein                             |
| G*   | Glycoprotein with an Arg to Glu change at residue 333 |
| GnRH | Gonadotropin-releasing hormone                        |
| HPLC | High performance liquid chromatography                |
|      |                                                       |

| i.c.                | Intracerebral                               |
|---------------------|---------------------------------------------|
| i.m.                | Intramuscular                               |
| IRES                | Internal ribosome entry site                |
| KLH                 | Keyhole limpet hemocyanin                   |
| L                   | Rabies virus RNA-dependent RNA polymerase   |
| LH                  | Luteinizing hormone                         |
| М                   | Rabies virus matrix protein                 |
| MALDI               | Matrix-assisted laser desorption/ionization |
| MICLD <sub>50</sub> | Mouse intracerebral lethal dose 50          |
| N                   | Rabies virus nucleoprotein                  |
| NA                  | Neutralizing antibody                       |
| NLS                 | Nuclear localization signal                 |
| Р                   | Rabies virus phosphoprotein                 |
| PAGE                | Polyacrylamide gel electrophoresis          |
| PVDF                | Polyvinylidene diflouride                   |
| pZP                 | Porcine zona pellucida                      |
| RNA                 | Ribonucleic acid                            |
| RNP                 | Ribonucleoprotein                           |
| RV                  | Rabies virus                                |
| SDS                 | Sodium dodecyl sulfate                      |
| UV                  | Ultraviolet                                 |
| VNA                 | Virus neutralizing antibody                 |
| ZP                  | Zona pellucida                              |
|                     | <u>.</u>                                    |

#### III. Terms

Unless otherwise noted, technical terms are used according to conventional usage. Definitions of common terms in molecular biology may be found in Benjamin Lewin, Genes V, published by Oxford University Press, 1994 (ISBN 0-19-Molecular Biology, published by Blackwell Science Ltd., 1994 (ISBN 0-632-02182-9); and Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995 (ISBN 1-56081-569-8).

In order to facilitate review of the various embodiments of the disclosure, the following explanations of specific terms are provided:

Adjuvant: A substance or vehicle that non-specifically include a suspension of minerals (alum, aluminum hydroxide, or phosphate) on which antigen is adsorbed; or water-inoil emulsion in which antigen solution is emulsified in mineral oil (for example, Freund's incomplete adjuvant), sometimes with the inclusion of killed mycobacteria (Freund's complete adjuvant) to further enhance antigenicity. Immunostimulatory oligonucleotides (such as those including a CpG motif) can also be used as adjuvants (for example, see U.S. Pat. Nos. 6,194,388; 6,207,646; 6,214,806; 6,218, 371; 6,239,116; 6,339,068; 6,406,705; and 6,429,199). Adjuvants also include biological molecules, such as costimulatory molecules. Exemplary biological adjuvants include IL-2, RANTES, GM-CSF, TNF-α, IFN-γ, G-CSF, LFA-3, CD72, B7-1, B7-2, OX-40L and 41 BBL.

Administer: As used herein, administering a composition to a subject means to give, apply or bring the composition into contact with the subject. Administration can be accomplished by any of a number of routes, such as, for example, topical, oral, subcutaneous, intramuscular, intraperitoneal, intravenous, intrathecal and intramuscular. In some embodiments described herein, an immunogenic composition is administered to an animal by an oral route.

Animal: Living multi-cellular vertebrate organisms, a category that includes, for example, mammals and birds. The 65 term mammal includes both human and non-human mammals. The term "animal" includes both human and veterinary subjects, for example, humans, non-human primates, dogs, cats, horses, raccoons, bats, rats, mice, foxes, squirrels, opossum, coyotes, wolves and cows. As used herein, "subject" is interchangeable with "animal." As used herein a "domestic animal" refers to any animal that has been tamed by humans, often for use as work animals, a food source or as pets. Many 5 domestic animals are selectively bred such that they differ from animals in the wild. As used herein, "wild animal" refers any animal living in a natural, undomesticated state.

Antibody: A protein (or protein complex) that includes one or more polypeptides substantially encoded by immunoglo-10 bulin genes or fragments of immunoglobulin genes. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy 15 chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively.

The basic immunoglobulin (antibody) structural unit is generally a tetramer. Each tetramer is composed of two iden- 20 tical pairs of polypeptide chains, each pair having one "light" (about 25 kDa) and one "heavy" (about 50-70 kDa) chain. The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms "variable light chain" ( $V_L$ ) 25 and "variable heavy chain" ( $V_H$ ) refer, respectively, to these light and heavy chains.

As used herein, the term "antibody" includes intact immunoglobulins as well as a number of well-characterized fragments. For instance, Fabs, Fvs, and single-chain Fvs (SCFvs) 30 that bind to target protein (or epitope within a protein or fusion protein) would also be specific binding agents for that protein (or epitope). These antibody fragments are as follows: (1) Fab, the fragment which contains a monovalent antigenbinding fragment of an antibody molecule produced by diges- 35 tion of whole antibody with the enzyme papain to yield an intact light chain and a portion of one heavy chain; (2) Fab', the fragment of an antibody molecule obtained by treating whole antibody with pepsin, followed by reduction, to yield an intact light chain and a portion of the heavy chain; two Fab' 40 fragments are obtained per antibody molecule; (3) (Fab')<sub>2</sub>, the fragment of the antibody obtained by treating whole antibody with the enzyme pepsin without subsequent reduction; (4) F(ab')<sub>2</sub>, a dimer of two Fab' fragments held together by two disulfide bonds; (5) Fv, a genetically engineered fragment 45 containing the variable region of the light chain and the variable region of the heavy chain expressed as two chains; and (6) single chain antibody, a genetically engineered molecule containing the variable region of the light chain, the variable region of the heavy chain, linked by a suitable polypeptide 50 linker as a genetically fused single chain molecule. Methods of making these fragments are routine (see, for example, Harlow and Lane, Using Antibodies: A Laboratory Manual, CSHL, New York, 1999).

Antibodies for use in the methods and compositions of this 55 disclosure can be monoclonal or polyclonal. Merely by way of example, monoclonal antibodies can be prepared from murine hybridomas according to the classical method of Kohler and Milstein (*Nature* 256:495-97, 1975) or derivative methods thereof. Detailed procedures for monoclonal anti- 60 body production are described in Harlow and Lane, *Using Antibodies: A Laboratory Manual*, CSHL, New York, 1999.

Antibody binding affinity: The strength of binding between a single antibody binding site and a ligand (e.g., an antigen or epitope). The affinity of an antibody binding site X for a 65 ligand Y is represented by the dissociation constant ( $K_d$ ), which is the concentration of Y that is required to occupy half

of the binding sites of X present in a solution. A smaller ( $K_d$ ) indicates a stronger or higher-affinity interaction between X and Y and a lower concentration of ligand is needed to occupy the sites. In general, antibody binding affinity can be affected by the alteration, modification and/or substitution of one or more amino acids in the epitope recognized by the antibody paratope.

In one example, antibody binding affinity is measured by end-point titration in an Ag-ELISA assay. Antibody binding affinity is substantially lowered (or measurably reduced) by the modification and/or substitution of one or more amino acids in the epitope recognized by the antibody paratope if the end-point titer of a specific antibody for the modified/substituted epitope differs by at least 4-fold, such as at least 10-fold, at least 100-fold or greater, as compared to the unaltered epitope.

Antigen: A compound, composition, or substance that can stimulate the production of antibodies or a T-cell response in an animal, including compositions that are injected or absorbed into an animal. An antigen reacts with the products of specific humoral or cellular immunity, including those induced by heterologous immunogens.

Attenuated: In the context of a live virus, such as a rabies virus, the virus is attenuated if its ability to infect a cell or subject and/or its ability to produce disease is reduced (for example, eliminated). Typically, an attenuated virus retains at least some capacity to elicit an immune response following administration to an immunocompetent subject. In some cases, an attenuated virus is capable of eliciting a protective immune response without causing any signs or symptoms of infection.

cDNA (complementary DNA): A piece of DNA lacking internal, non-coding segments (introns) and regulatory sequences that determine transcription. cDNA is synthesized in the laboratory by reverse transcription from messenger RNA extracted from cells.

Epitope: An antigenic determinant. These are particular chemical groups, such as contiguous or non-contiguous peptide sequences, on a molecule that are antigenic, that is, that elicit a specific immune response. An antibody binds a particular antigenic epitope based on the three dimensional structure of the antibody and the matching (or cognate) three dimensional structure of the epitope.

Fertility: Refers to the ability of an animal to produce offspring. As used herein "inhibiting fertility" refers to reducing the rate of, or preventing, reproduction.

Fixed: A fixed rabies virus is a strain of rabies virus that has undergone serial passage in a host to stabilize virulence of the virus. Fixed rabies viruses include, but are not limited to CVS, ERA, PV, SAD-B19 and HEP-Flury strains (Anilionis et al., *Nature* 294:275-278, 1981; Morimoto et al., *Viral.* 173:465-477, 1989).

Fusion protein: A protein generated by expression of a nucleic acid sequence engineered from nucleic acid sequences encoding at least a portion of two different (heterologous) proteins. To create a fusion protein, the nucleic acid sequences must be in the same reading frame and contain to internal stop codons.

Gonadotropin-releasing hormone (GnRH): A peptide hormone responsible for the release of follicle stimulating hormone (FSH) and luteinizing hormone (LH) from the anterior pituitary. GnRH is synthesized and released by the hypothalamus and travels to the pituitary to mediate release of FSH and LH. The GnRH precursor protein is 92 amino acids and is processed to a decapeptide in mammals. GnRH is also known as GNRH1, luteinizing hormone releasing hormone (LHRH), progonadoliberin-1 and progonadoliberin-1 precursor. The term "GnRH" includes GnRH analogs and variants, including GnRH molecules containing substitutions, deletions, or insertions. The nucleotide and amino acid sequences of mammalian GnRH are set forth herein as SEQ ID NOs: 47 and 48, respectively.

Heterologous: As used herein, a "heterologous nucleic acid sequence" is a nucleic acid sequence that is derived from a different source or species. In some embodiments described herein, the heterologous nucleic acid sequence is a nucleic acid sequence encoding ZP3. In other embodiments, the hetrologous nucleic acid sequence is a nucleic acid sequence encoding GnRH. In the context of a recombinant rabies virus, a heterologous nucleic acid sequence is any nucleic acid sequence that is not derived from the rabies virus.

Hybridization: Oligonucleotides and their analogs hybridize by hydrogen bonding, which includes Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary bases. Generally, nucleic acid consists of nitrogenous bases that are either pyrimidines (cytosine (C), uracil (U), and thymine (T)) or purines (adenine 20 (A) and guanine (G)). These nitrogenous bases form hydrogen bonds between a pyrimidine and a purine, and the bonding of the pyrimidine to the purine is referred to as "base pairing." More specifically, A will hydrogen bond to T or U, and G will bond to C. "Complementary" refers to the base 25 pairing that occurs between to distinct nucleic acid sequences or two distinct regions of the same nucleic acid sequence.

"Specifically hybridizable" and "specifically complementary" are terms that indicate a sufficient degree of complementarity such that stable and specific binding occurs 30 between the oligonucleotide (or its analog) and the DNA or RNA target. The oligonucleotide or oligonucleotide analog need not be 100% complementary to its target sequence to be specifically hybridizable. An oligonucleotide or analog is specifically hybridizable when binding of the oligonucleotide 35 or analog to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA, and there is a sufficient degree of complementarity to avoid non-specific binding of the oligonucleotide or analog to non-target sequences under conditions where specific binding is desired, 40 for example under physiological conditions in the case of in vivo assays or systems. Such binding is referred to as specific hybridization.

Hybridization conditions resulting in particular degrees of stringency will vary depending upon the nature of the hybrid-45 ization method of choice and the composition and length of the hybridizing nucleic acid sequences. Generally, the temperature of hybridization and the ionic strength (especially the Na<sup>+</sup> and/or Mg<sup>++</sup> concentration) of the hybridization buffer will determine the stringency of hybridization, though 50 wash times also influence stringency. Calculations regarding hybridization conditions required for attaining particular degrees of stringency are discussed by Sambrook et al. (ed.), *Molecular Cloning: A Laboratory Manual*, 2<sup>nd</sup> ed., vol. 1-3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 55 N.Y., 1989, chapters 9 and 11; and Ausubel et al. *Short Protocols in Molecular Biology*, 4<sup>th</sup> ed., John Wiley & Sons, Inc., 1999.

For purposes of the present disclosure, "stringent conditions" encompass conditions under which hybridization will 60 only occur if there is less than 25% mismatch between the hybridization molecule and the target sequence. "Stringent conditions" may be broken down into particular levels of stringency for more precise definition. Thus, as used herein, "moderate stringency" conditions are those under which mol-65 ecules with more than 25% sequence mismatch will not hybridize; conditions of "medium stringency" are those

under which molecules with more than 15% mismatch will not hybridize, and conditions of "high stringency" are those under which sequences with more than 10% mismatch will not hybridize. Conditions of "very high stringency" are those under which sequences with more than 6% mismatch will not hybridize.

"Specific hybridization" refers to the binding, duplexing, or hybridizing of a molecule only or substantially only to a particular nucleotide sequence when that sequence is present in a complex mixture (for example, total cellular DNA or RNA). Specific hybridization may also occur under conditions of varying stringency.

Immune response: A response of a cell of the immune system, such as a B-cell, T-cell, macrophage or polymorphonucleocyte, to a stimulus such as an antigen. An immune response can include any cell of the body involved in a host defense response, including for example, an epithelial cell that secretes an interferon or a cytokine. An immune response includes, but is not limited to, an innate immune response or inflammation. As used herein, a protective immune response refers to an immune response that protects a subject from infection (prevents infection or prevents the development of disease associated with infection).

Immunize: To render a subject protected from a disease (for example, an infectious disease), such as by vaccination.

Immunocontraceptive protein: Refers to a protein or protein fragment (also referred to as an "antigen") capable of eliciting an immune response in a subject that results in inhibition or loss of fertility in the subject.

Immunogen: A compound, composition, or substance which is capable, under appropriate conditions, of stimulating an immune response, such as the production of antibodies or a T-cell response in an animal, including compositions that are injected or absorbed into an animal.

Immunogenic composition: A term used herein to mean a composition useful for stimulating or eliciting a specific immune response (or immunogenic response) in a vertebrate. The immunogenic composition includes a recombinant rabies virus, such as a recombinant rabies virus expressing a heterologous protein (such as ZP3 and/or GnRH). In some embodiments, the immunogenic response is protective or provides protective immunity, in that it enables the vertebrate animal to better resist infection with or disease progression from the organism against which the immunogenic composition is directed (e.g., rabies virus). When the immunogenic compositions comprise an immunocontraceptive peptide, the immunogenic response elicited prevents or decreases the risk of pregnancy in female animals.

Without wishing to be bound by a specific theory, it is believed that an immunogenic response induced by an immunogenic composition may arise from the generation of an antibody specific to one or more of the epitopes provided in the immunogenic composition. Alternatively, the response may comprise a T-helper or cytotoxic cell-based response to one or more of the epitopes provided in the immunogenic composition. All three of these responses may originate from naïve or memory cells. One specific example of a type of immunogenic composition is a vaccine.

In some embodiments, an "effective amount" or "immunestimulatory amount" of an immunogenic composition is an amount which, when administered to a subject, is sufficient to engender a detectable immune response. Such a response may comprise, for instance, generation of an antibody specific to one or more of the epitopes provided in the immunogenic composition. Alternatively, the response may comprise a T-helper or CTL-based response to one or more of the epitopes provided in the immunogenic composition. All three

of these responses may originate from naïve or memory cells. In other embodiments, a "protective effective amount" of an immunogenic composition is an amount which, when administered to an animal, is sufficient to confer protective immunity upon the animal.

Inhibiting or treating a disease: Inhibiting the full development of a disease or condition, for example, in a subject who is at risk for a disease. A specific example of diseases is rabies. "Treatment" refers to a therapeutic intervention that ameliorates a sign or symptom of a disease or pathological condition 10 after it has begun to develop. As used herein, the term "ameliorating," with reference to a disease, pathological condition or symptom, refers to any observable beneficial effect of the treatment. The beneficial effect can be evidenced, for example, by a delayed onset of clinical symptoms of the 15 disease in a susceptible subject, a reduction in severity of some or all clinical symptoms of the disease, a slower progression of the disease, a reduction in the number of relapses of the disease, an improvement in the overall health or wellbeing of the subject, or by other parameters well known in the 20 art that are specific to the particular disease.

Isolated: An "isolated" or "purified" biological component (such as a nucleic acid, peptide, protein, protein complex, or particle) has been substantially separated, produced apart from, or purified away from other biological components in 25 the cell of the organism in which the component naturally occurs, that is, other chromosomal and extra-chromosomal DNA and RNA, and proteins. Nucleic acids, peptides and proteins that have been "isolated" or "purified" thus include nucleic acids and proteins purified by standard purification 30 methods. The term also embraces nucleic acids, peptides and proteins prepared by recombinant expression in a host cell, as well as chemically synthesized nucleic acids or proteins. The term "isolated" or "purified" does not require absolute purity; rather, it is intended as a relative term. Thus, for example, an 35 isolated biological component is one in which the biological component is more enriched than the biological component is in its natural environment within a cell, or other production vessel. Preferably, a preparation is purified such that the biological component represents at least 50%, such as at least 40 70%, at least 90%, at least 95%, or greater, of the total biological component content of the preparation.

Label: A detectable compound or composition that is conjugated directly or indirectly to another molecule to facilitate detection of that molecule. Specific, non-limiting examples 45 of labels include fluorescent tags, enzymatic linkages, and radioactive isotopes.

Nucleic acid molecule: A polymeric form of nucleotides, which may include both sense and anti-sense strands of RNA, cDNA, genomic DNA, and synthetic forms and mixed poly-<sup>50</sup> mers of the above. A nucleotide refers to a ribonucleotide, deoxynucleotide or a modified form of either type of nucleotide. The term "nucleic acid molecule" as used herein is synonymous with "nucleic acid" and "polynucleotide." A nucleic acid molecule is usually at least 10 bases in length, <sup>55</sup> unless otherwise specified. The term includes single- and double-stranded forms of DNA. A polynucleotide may include either or both naturally occurring and modified nucleotides linked together by naturally occurring and/or nonnaturally occurring nucleotide linkages.

Open reading frame (ORF): A series of nucleotide triplets (codons) coding for amino acids without any internal termination codons. These sequences are usually translatable into a peptide/polypeptide/protein/polyprotein.

Operably linked: A first nucleic acid sequence is operably 65 linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship

with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence is the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein coding regions, in the same reading frame. If introns are present, the operably linked DNA sequences may not be contiguous.

Pharmaceutically acceptable carriers: The pharmaceutically acceptable carriers useful in this disclosure are conventional. *Remington's Pharmaceutical Sciences*, by E. W. Martin, Mack Publishing Co., Easton, Pa., 15th Edition (1975), describes compositions and formulations suitable for pharmaceutical delivery of one or more therapeutic compounds or molecules, proteins or antibodies that bind these proteins, and additional pharmaceutical agents.

In general, the nature of the carrier will depend on the particular mode of administration being employed. For instance, parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle. For solid compositions (for example, powder, pill, tablet, or capsule forms), conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch, or magnesium stearate. In addition to biologically-neutral carriers, pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.

Plasmid: A circular nucleic acid molecule capable of autonomous replication in a host cell.

Polypeptide: A polymer in which the monomers are amino acid residues joined together through amide bonds. When the amino acids are alpha-amino acids, either the L-optical isomer or the D-optical isomer can be used, the L-isomers being preferred for many biological uses. The terms "polypeptide" or "protein" as used herein are intended to encompass any amino acid molecule and include modified amino acid molecules. The term "polypeptide" is specifically intended to cover naturally occurring proteins, as well as those which are recombinantly or synthetically produced.

Conservative amino acid substitutions are those substitutions that, when made, least interfere with the properties of the original protein, that is, the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. Examples of conservative substitutions are shown below.

| Or<br>Re | iginal<br>sidue | Conservative<br>Substitutions |
|----------|-----------------|-------------------------------|
| Al       | a               | Ser                           |
| Ar       | g               | Lys                           |
| As       | sn -            | Gln, His                      |
| As       | sp              | Glu                           |
| Су       | /S              | Ser                           |
| Gl       | n               | Asn                           |
| Gl       | u               | Asp                           |
| Hi       | s               | Asn; Gln                      |
| Ile      |                 | Leu, Val                      |
| Le       | u               | Ile; Val                      |
| Ly       | s               | Arg; Gln; Glu                 |
| M        | et              | Leu; Ile                      |
| Ph       | e               | Met; Leu; Tyr                 |
| Se       | r               | Thr                           |
| Th       | ır              | Ser                           |
| Tr       | р               | Tyr                           |
|          |                 |                               |

| -continued |               |  |
|------------|---------------|--|
| Original   | Conservative  |  |
| Residue    | Substitutions |  |
| Tyr        | Trp; Phe      |  |
| Val        | Ile; Leu      |  |

Conservative substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.

Amino acids are typically classified in one or more categories, including polar, hydrophobic, acidic, basic and aromatic, 15 according to their side chains. Examples of polar amino acids include those having side chain functional groups such as hydroxyl, sulfhydryl, and amide, as well as the acidic and basic amino acids. Polar amino acids include, without limitation, asparagine, cysteine, glutamine, histidine, selenocys- 20 teine, serine, threonine, tryptophan and tyrosine. Examples of hydrophobic or non-polar amino acids include those residues having nonpolar aliphatic side chains, such as, without limitation, leucine, isoleucine, valine, glycine, alanine, proline, methionine and phenylalanine Examples of basic amino acid 25 residues include those having a basic side chain, such as an amino or guanidino group. Basic amino acid residues include, without limitation, arginine, homolysine and lysine. Examples of acidic amino acid residues include those having an acidic side chain functional group, such as a carboxy group. Acidic amino acid residues include, without limitation aspartic acid and glutamic acid. Aromatic amino acids include those having an aromatic side chain group. Examples of aromatic amino acids include, without limitation, biphenylalanine, histidine, 2-napthylalananine, pentafluoropheny- 35 lalanine, phenylalanine, tryptophan and tyrosine. It is noted that some amino acids are classified in more than one group, for example, histidine, tryptophan, and tyrosine are classified as both polar and aromatic amino acids. Additional amino acids that are classified in each of the above groups are known 40 to those of ordinary skill in the art.

Substitutions which in general are expected to produce the greatest changes in protein properties will be non-conservative, for instance changes in which (a) a hydrophilic residue, for example, seryl or threonyl, is substituted for (or by) a 45 hydrophobic residue, for example, leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, for example, lysyl, arginyl, or histadyl, is substituted for (or by) an electronegative residue, for 50 example, glutamyl or aspartyl; or (d) a residue having a bulky side chain, for example, phenylalanine, is substituted for (or by) one not having a side chain, for example, glycine.

Probes and primers: A probe comprises an isolated nucleic acid molecule attached to a detectable label or other reporter 55 molecule. Typical labels include radioactive isotopes, enzyme substrates, co-factors, ligands, chemiluminescent or fluorescent agents, haptens, and enzymes. Methods for labeling and guidance in the choice of labels appropriate for various purposes are discussed, for example, in Sambrook et al. 60 (ed.), *Molecular Cloning: A Laboratory Manual*, 2<sup>nd</sup> ed., vol. 1-3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989 and Ausubel et al. *Short Protocols in Molecular Biology*, 4<sup>th</sup> ed., John Wiley & Sons, Inc., 1999.

Primers are short nucleic acid molecules, for instance DNA 65 oligonucleotides 6 nucleotides or more in length, for example that hybridize to contiguous complementary nucleotides or a

sequence to be amplified. Longer DNA oligonucleotides may be about 10, 12, 15, 20, 25, 30, or 50 nucleotides or more in length. Primers can be annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, and then the primer extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification of a nucleic acid sequence, for example, by the polymerase chain reaction (PCR) or other nucleic-acid amplification methods known in the art. Other examples of amplification include strand displacement amplification, as disclosed in U.S. Pat. No. 5,744,311; transcription-free isothermal amplification, as disclosed in U.S. Pat. No. 6,033, 881; repair chain reaction amplification, as disclosed in WO 90/01069; ligase chain reaction amplification, as disclosed in EP-A-320 308; gap filling ligase chain reaction amplification, as disclosed in U.S. Pat. No. 5,427,930; and NASBA<sup>™</sup> RNA transcription-free amplification, as disclosed in U.S. Pat. No. 6.025.134.

Methods for preparing and using nucleic acid probes and primers are described, for example, in Sambrook et al. (ed.), Molecular Cloning: A Laboratory Manual, 2<sup>nd</sup> ed., vol. 1-3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; Ausubel et al. Short Protocols in Molecular Biology, 4<sup>th</sup> ed., John Wiley & Sons, Inc., 1999; and Innis et al. PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc., San Diego, Calif., 1990. Amplification primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, © 1991, Whitehead Institute for Biomedical Research, Cambridge, Mass.). One of ordinary skill in the art will appreciate that the specificity of a particular probe or primer increases with its length. Thus, in order to obtain greater specificity, probes and primers can be selected that comprise at least 20, 25, 30, 35, 40, 45, 50 or more consecutive nucleotides of a target nucleotide sequences.

Protein: A biological molecule, particularly a polypeptide, expressed by a gene and comprised of amino acids.

Purified: The term "purified" does not require absolute purity; rather, it is intended as a relative term. Thus, for example, a purified protein preparation is one in which the subject protein is more pure than in its natural environment within a cell. Generally, a protein preparation is purified such that the protein represents at least 50% of the total protein content of the preparation.

Rabies virus (RV): A member of the Rhabdoviridae family having a non-segmented RNA genome with negative sense polarity. Rabies virus is the prototype of the *Lyssavirus* genus. The rabies virus Evelyn-Rokitnicki-Abelseth (ERA) strain is a strain derived from the Street-Alabama-Dufferin (SAD) strain, first isolated from a rabid dog in Alabama (USA) in 1935. The ERA strain was derived after multiple passages of SAD RV in mouse brains, baby hamster kidney (BHK) cells, and chicken embryos. The complete genomic sequence of the ERA strain is disclosed in PCT Publication No. WO 2007/ 047459, and the sequence of the ERA strain recovered by reverse genetics is set forth herein as SEQ ID NO: 1.

Recombinant: A recombinant nucleic acid, protein or virus is one that has a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, for example, by genetic engineering techniques. In some embodiments, recombinant rabies virus is generated using reverse genetics, such as the reverse genetics system described in PCT Publication No. WO 2007/ 047459. In some examples, the recombinant rabies viruses comprise one or more mutations in a viral virulence factors, such as glycoprotein. In other examples, the recombinant rabies viruses comprise a heterologous gene, such as a 5 sequence encoding an immunocontraceptive peptide (for example, ZP3 or GnRH).

Reverse genetics: Refers to the process of introducing mutations (such as deletions, insertions or point mutations) into the genome of an organism or virus in order to determine 10 the phenotypic effect of the mutation. For example, introduction of a mutation in a specific viral gene enables one to determine the function of the gene.

Sequence identity: The similarity between two nucleic acid sequences, or two amino acid sequences, is expressed in 15 terms of the similarity between the sequences, otherwise referred to as sequence identity. Sequence identity is frequently measured in terms of percentage identity (or similarity or homology); the higher the percentage, the more similar the two sequences are. 20

Methods of alignment of sequences for comparison are well known in the art. Various programs and alignment algorithms are described in: Smith and Waterman (*Adv. Appl. Math.*, 2:482, 1981); Needleman and Wunsch (*J. Mol. Biol.*, 48:443, 1970); Pearson and Lipman (*Proc. Natl. Acad. Sci.*, 25 85:2444, 1988); Higgins and Sharp (*Gene*, 73:237-44, 1988); Higgins and Sharp (*CABIOS*, 5:151-53, 1989); Corpet et al. (*Nuc. Acids Res.*, 16:10881-90, 1988); Huang et al. (*Comp. Appls. Biosci.*, 8:155-65, 1992); and Pearson et al. (*Meth. Mol. Biol.*, 24:307-31, 1994). Altschul et al. (*Nature Genet.*, 30 6:119-29, 1994) presents a detailed consideration of sequence alignment methods and homology calculations.

The alignment tools ALIGN (Myers and Miller, CABIOS 4:11-17, 1989) or LFASTA (Pearson and Lipman, 1988) may be used to perform sequence comparisons (Internet Pro- 35 gram© 1996, W. R. Pearson and the University of Virginia, "fasta20u63" version 2.0u63, release date December 1996). ALIGN compares entire sequences against one another, while LFASTA compares regions of local similarity. These alignment tools and their respective tutorials are available on 40 the Internet at the NCSA website. Alternatively, for comparisons of amino acid sequences of greater than about 30 amino acids, the "Blast 2 sequences" function can be employed using the default BLOSUM62 matrix set to default parameters, (gap existence cost of 11, and a per residue gap cost of 45 1). When aligning short peptides (fewer than around 30 amino acids), the alignment should be performed using the "Blast 2 sequences" function, employing the PAM30 matrix set to default parameters (open gap 9, extension gap 1 penalties). The BLAST sequence comparison system is available, for 50 instance, from the NCBI web site; see also Altschul et al., J. Mol. Biol., 215:403-10, 1990; Gish and States, Nature Genet., 3:266-72, 1993; Madden et al., Meth. Enzymol., 266:131-41, 1996; Altschul et al., Nucleic Acids Res., 25:3389-402, 1997; and Zhang and Madden, Genome Res., 7:649-56, 1997. 55

Orthologs (equivalent to proteins of other species) of proteins are in some instances characterized by possession of greater than 75% sequence identity counted over the fulllength alignment with the amino acid sequence of specific protein using ALIGN set to default parameters. Proteins with <sup>60</sup> even greater similarity to a reference sequence will show increasing percentage identities when assessed by this method, such as at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, or at least 98% sequence identity. In addition, sequence identity can be compared over the full <sup>65</sup> length of one or both binding domains of the disclosed fusion proteins.

When significantly less than the entire sequence is being compared for sequence identity, homologous sequences will typically possess at least 80% sequence identity over short windows of 10-20, and may possess sequence identities of at least 85%, at least 90%, at least 95%, or at least 99% depending on their similarity to the reference sequence. Sequence identity over such short windows can be determined using LFASTA; methods are described at the NCSA website. One of skill in the art will appreciate that these sequence identity ranges are provided for guidance only; it is entirely possible that strongly significant homologs could be obtained that fall outside of the ranges provided. Similar homology concepts apply for nucleic acids as are described for protein. An alternative indication that two nucleic acid molecules are closely related is that the two molecules hybridize to each other under stringent conditions.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences, due to the degeneracy of the genetic code. It is 20 understood that changes in nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that each encode substantially the same protein.

Therapeutically effective amount: A quantity of a specified agent sufficient to achieve a desired effect in a subject being treated with that agent. For example, this may be the amount of a recombinant rabies virus useful for eliciting an immune response in a subject and/or for preventing infection by rabies virus. Ideally, in the context of the present disclosure, a therapeutically effective amount of a recombinant rabies virus is an amount sufficient to increase resistance to, prevent, ameliorate, and/or treat infection caused by rabies virus in a subject without causing a substantial cytotoxic effect in the subject. The effective amount of a recombinant rabies virus useful for increasing resistance to, preventing, ameliorating, and/or treating infection in a subject will be dependent on, for example, the subject being treated, the manner of administration of the therapeutic composition and other factors. In some embodiments, the recombinant rabies viruses described herein comprise a nucleic acid sequence encoding an immunocontraceptive protein. For these compositions, a therapeutically effective amount may also refer to the amount of the recombinant rabies virus needed to inhibit fertility, such as preventing or reducing the rate of pregnancy in female animals.

Vector: A nucleic acid molecule as introduced into a host cell, thereby producing a transformed host cell. A vector may include nucleic acid sequences that permit it to replicate in a host cell, such as an origin of replication (DNA sequences that participate in initiating DNA synthesis). A vector may also include one or more selectable marker genes and other genetic elements known in the art.

Virus: Microscopic infectious organism that reproduces inside living cells. A virus typically consists essentially of a core of a single nucleic acid surrounded by a protein coat, and has the ability to replicate only inside a living cell. "Viral replication" is the production of additional virus by the occurrence of at least one viral life cycle. A virus may subvert the host cells' normal functions, causing the cell to behave in a manner determined by the virus. For example, a viral infection may result in a cell producing a cytokine, or responding to a cytokine, when the uninfected cell does not normally do so.

Zona pellucida 3 (ZP3): A glycoprotein expressed on the surface of an egg that serves as the primary receptor for sperm fertilization. ZP3 is also known as zona pellucida glycoprotein 3, zona pellucida protein C (ZPC), sperm receptor and zona pellucida sperm-binding protein 3. As used herein, ZP3

refers to a ZP3 from any animal species, including, but not limited to human, dog, pig, mouse or rat. Exemplary sequences of ZP3 are provided herein, including dog ZP3 (SEQ ID NO: 7 and SEQ ID NO: 62). The term "ZP3" includes ZP3 analogs and variants, including mutated or trun-5 cated ZP3.

Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The singular terms "a," "an," and "the"  $\ ^{10}$ include plural referents unless context clearly indicates otherwise. Similarly, the word "or" is intended to include "and" unless the context clearly indicates otherwise. Hence "comprising A or B" means including A, or B, or A and B. It is further to be understood that all base sizes or amino acid sizes, 15 and all molecular weight or molecular mass values, given for nucleic acids or polypeptides are approximate, and are provided for description. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods 20 and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including explanations of terms, will control. In addition, the materials, methods, and 25 examples are illustrative only and not intended to be limiting.

# IV. Overview of Several Embodiments

It is disclosed herein that recombinant rabies viruses com- 30 prising a heterologous sequence encoding an immunocontraceptive peptide can be successfully recovered using a previously described reverse genetics system. In some examples, the immunocontraceptive peptide is GnRH or ZP3. Studies in non-human animals demonstrate that the recombinant rabies 35 viruses described herein elicit high titers of neutralizing antibody specific for rabies virus, induce immunocontraceptive peptide-specific antibodies, protect animals against rabies virus challenge and produce no adverse side effects. It is believed they will provide contraceptive effects in animals to 40 which they are administered.

Provided herein is a recombinant rabies virus, wherein the genome of the recombinant rabies virus comprises a heterologous nucleic acid sequence encoding an immunocontraceptive protein. In some embodiments, the immunocontra- 45 ceptive protein is gonadotropin-releasing hormone (GnRH) or zona pellucida 3 (ZP3). In some embodiments, the genome of the recombinant rabies virus comprises a nucleic acid sequence encoding GnRH and a nucleic acid sequence encoding ZP3. Generally, the recombinant rabies viruses are gen- 50 erated using a reverse genetics system, such as the system disclosed in PCT Publication No. WO 2007/047459. However, any recombinant rabies viruses comprising a heterologous nucleic acid sequence encoding an immunocontraceptive peptide is contemplated.

In some embodiments, the genome of the recombinant rabies virus is derived from the rabies virus ERA strain. In particular examples, the ERA strain comprises the nucleotide sequence set forth as SEQ ID NO: 1. Although the ERA strain is exemplified herein, any suitable strain of rabies virus can be 60 used. An appropriate rabies virus strain can be selected by one of skill in the art. Examples of rabies virus strains include, but are not limited to CVS, ERA, PV, SAD-B19 and HEP-Flury, SAG1, SAG2 and RC-HL.

In some embodiments, the genome of the recombinant 65 rabies virus is engineered such that the rabies virus gene sequences are rearranged. In some examples, the glycopro-

tein (G) gene is relocated between the N and P genes, such that the rabies virus genes are in the following order: 3'-N-G-P-M-L-S' (see FIG. 5A). This type of virus, when derived from the ERA strain, is referred to herein as ERAg3p. Although relocation of the G gene is exemplified herein, any other rearrangements of the rabies virus genes are contemplated, as long as recombinant virus can be recovered using reverse genetics.

In some embodiments, the rabies virus strain is an attenuated strain. In some examples, the glycoprotein of the recombinant rabies virus comprises a Glu at amino acid position 333 (corresponding to residue 352 of SEQ ID NO: 5). Other rabies virus attenuating mutations are known in the art and can be used with the compositions and methods provided herein.

The ZP3 nucleic acid sequence can be a ZP3 sequence from any animal species, such as human, pig, rat, mouse or dog. In some embodiments, the ZP3 nucleic acid sequence is a dog ZP3 nucleic acid sequence. In some examples, the dog ZP3 nucleic acid sequence is SEQ ID NO: 7. In some embodiments, the GnRH nucleic acid sequence is SEO ID NO: 47. The ZP3 nucleic acid sequence incorporated into the recombinant rabies virus need not be 100% identical to a ZP3 nucleic acid sequence known in the art or disclosed herein. Similarly, the GnRH nucleic acid sequence incorporated into the recombinant rabies virus can be from any animal species, and need not be 100% identical to a GnRH nucleic acid sequence known in the art or disclosed herein. Rather, the ZP3 or GnRH nucleic acid sequence need only be capable of eliciting an immune response in the animal in which the recombinant rabies virus is administered. In some embodiments, the ZP3 nucleic acid sequence is at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or 100% identical to SEQ ID NO: 7. In some embodiments, the GnRH nucleic acid sequence is at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or 100% identical to SEQ ID NO: 47.

In some embodiments, the recombinant rabies viruses comprise a single copy of the ZP3 or GnRH nucleic acid sequence, or a single copy of each sequence. In other embodiments, the recombinant rabies viruses comprise multiple copies of the ZP3 or GnRH nucleic acid sequence (or another immunocontraceptive peptide), such as two, three, four, five, six, seven, eight or nine copies of one or both of the ZP3 and GnRH nucleic acid sequences. When multiple copies of the ZP3 and/or GnRH nucleic acid sequence are used, the copies can be inserted in the genome of the recombinant rabies virus such that the sequences are contiguous. Alternatively, the multiple copies of the ZP3 or GnRH nucleic acid sequences can be inserted at different positions within the rabies virus genome, such as in different genes, or at different sites within the same gene.

In some embodiments, the heterologous sequence encoding the immunocontraceptive peptide is inserted within or adjacent to the rabies virus glycoprotein gene. In particular examples, the heterologous sequence is inserted following the signal sequence of glycoprotein. In other embodiments, the heterologous sequence is inserted at or near (such as immediately following) antigenic site IIa of glycoprotein. In other embodiments, the heterologous sequence is inserted between the ectodomain and transmembrane domain of glycoprotein. In particular examples, the heterologous nucleic acid sequence is inserted following the signal sequence (nucleotides 1-57 of SEQ ID NO: 49) of the glycoprotein gene. In some cases, when the GnRH sequence is inserted at this site, the glycoprotein gene comprises the nucleic acid sequence of SEQ ID NO: 49 (single copy of GnRH) or SEQ ID NO: 51 (two tandem copies of GnRH). In some examples, when the GnRH sequence is inserted at antigenic site IIa (nucleotide 663 of SEQ ID NO: 53) of the glycoprotein gene, the glycoprotein gene comprises the nucleic acid sequence of SEQ ID NO: 53. In some examples, when the GnRH sequence is inserted at the junction of the ectodomain and <sup>5</sup> transmembrane domain of glycoprotein (following nucleotide 1374 of SEQ ID NO: 63), the glycoprotein gene comprises the nucleic acid sequence of SEQ ID NO: 63. In other specific examples, the ZP3 nucleic acid sequence is inserted between the rabies virus P and M genes. In some embodi-<sup>10</sup> ments, the recombinant rabies virus is a rabies virus listed in FIG. **3**A or Table 3.

Also provided herein are immunogenic compositions comprising one or more of the recombinant rabies viruses described herein. Further provided is an immunogenic composition comprising a first recombinant rabies virus and a second recombinant rabies virus, wherein the genome of the first recombinant rabies virus comprises a GnRH nucleic acid sequence and the genome of the second recombinant rabies virus comprises a ZP3 nucleic acid sequence. The first recom- 20 binant rabies varies can be any recombinant rabies virus comprising a nucleic acid sequence encoding GnRH, as described herein. The second recombinant rabies virus can be any recombinant rabies virus comprising a nucleic acid sequence encoding ZP3, as described herein. In some embodiments, the 25 immunogenic compositions further comprise a pharmaceutically acceptable carrier. In some embodiments, the immunogenic compositions further comprise an adjuvant.

Also provided is a method of immunizing a non-human animal against rabies virus infection and inhibiting fertility of <sup>30</sup> the animal, comprising administering to the animal a therapeutically effective amount of an immunogenic composition comprising one or more of the recombinant rabies viruses described herein. The composition can be administered using any suitable route. In some embodiments, the immunogenic <sup>35</sup> composition is administered orally, such as through foodbaits. The animal can be any animal susceptible to rabies virus infection for which population control is desired. In some embodiments, the animal is a domestic animal. In other embodiments, the animal is a wild animal. In some embodi-<sup>40</sup> ments, the animal is a dog, cat, rat, mouse, bat, fox, raccoon, squirrel, opossum, coyote or wolf.

Also provided herein is the use of a composition comprising one or more recombinant rabies viruses with a genome encoding one or more immunocontraceptive peptides in the 45 manufacture of a medicament for immunizing a non-human animal against rabies virus infection and inhibiting fertility of the animal. Further provided are compositions comprising one or more recombinant rabies viruses with a genome encoding one or more immunocontraceptive peptides for use 50 in a method of immunizing a non-human animal against rabies virus infection and inhibiting fertility of the animal.

#### V. Determinants of Rabies Virus Pathogenicity

The rabies virus (RV) is a rhabdovirus—a non-segmented RNA virus with negative sense polarity. Within the Rhabdoviridae family, rabies virus is the prototype of the *Lyssavirus* genus. RV is composed of two major structural components, a nucleocapsid or ribonucleoprotein (RNP), and an 60 envelope in the form of a bilayer membrane surrounding the RNP core. The infectious component of all rhabdoviruses is the RNP core, which consists of the negative strand RNA genome encapsidated by nucleoprotein (N) in combination with RNA-dependent RNA-polymerase (L) and phosphopro-65 tein (P). The membrane surrounding the RNP contains two proteins, the trans-membrane glycoprotein (G) and the matrix

(M) protein, located at the inner site of the membrane. Thus, the viral genome codes for these five proteins: the three proteins in the RNP (N, L and P), the matrix protein (M), and the glycoprotein (G).

The molecular determinants of pathogenicity of various rabies virus strains have not been fully elucidated. RV pathogenicity was attributed to multigenic events (Yamada et al., *Microbiol. Immunol.* 50:25-32, 2006). For example, some positions in the RV genome if mutated, affect viral transcription or replication, reducing virulence. Mutations at serine residue 389 of the phosphorylation site in the N gene (Wu et al., *J. Virol.* 76:4153-4161, 2002) or GDN core sequence of the highly conserved C motif in the L gene (Schnell and Conzelmann, *Virol.* 214:522-530, 1995) dramatically reduced RV transcription and replication.

The G protein, also referred to as spike protein, is involved in cell attachment and membrane fusion of RV. The amino acid region at position 330 to 340 (referred to as antigenic site III) of the G protein has been identified as important for virulence of certain strains of RV. Several studies support the concept that the pathogenicity of fixed RV strains is determined by the presence of arginine or lysine at amino acid residue 333 of the glycoprotein (Dietzschold et al., *Proc. Natl. Acad. Sci. USA* 80: 70-74, 1983; Tuffereau et al., *Virol.* 172: 206-212, 1989).

This phenomenon seems to apply at least to fixed rabies viruses such as CVS, ERA, PV, SAD-B19 and HEP-Flury strains (Anilionis et al., Nature 294:275-278, 1981; Morimoto et al., Virol. 173:465-477, 1989). For example, rabies vaccine viruses possessing an amino acid differing from Arg at position 333 of the glycoprotein are described, for instance, in WO 00/32755 (describing RV mutants in which all three nucleotides in the G protein Arg<sub>333</sub> codon are altered compared to the parent virus, such that the Arg at position 333 is substituted with another amino acid); European Patent 350398 (describing an avirulent RV mutant SAG1 derived from the Bern SAD strain of RV, in which the Arg at position 333 of the glycoprotein has been substituted to Ser); and European patent application 583998 (describing an attenuated RV mutant, SAG2, in which the Arg at position 333 in the G protein has been substituted by Glu).

Other strains, such as the RC-HL strain, possess an arginine residue at position 333 of the G, but do not cause lethal infection in adult mice (Ito et al., *Microl. Immunol.* 38:479-482, 1994; Ito et al., *J. Virol.* 75:9121-9128, 2001). As such, the entire G may contribute to the virulence of RV, although the determinants or regions have not previously been identified.

The G gene encodes the only protein that induces viral neutralizing antibodies. At least three states of RV glycoprotein are known: the native state (N) being responsible for receptor binding; an active hydrophobic state (A) necessary in the initial step in membrane fusion process (Gaudin, *J. Cell Biol.* 150:601-612, 2000), and a fusion inactive conformation 55 (I). Correct folding and maturation of the G protein play important roles for immune recognition. The three potential glycosylated positions in ERA G extracellular domain occur at Asn<sup>37</sup>, Asn<sup>247</sup> and Asn<sup>319</sup> residues (Wojczyk et al., *Glycobiology.* 8: 121-130, 1998). Nonglycosylation of G not only 00 affects conformation, but also inhibits presentation of the protein at the cell surface.

It has been previously demonstrated (see PCT Publication No. WO 2007/047459) that expression of G enhances the anti-RV immune response. In addition, introduction of an Arg to Glu mutation at amino acid position 333 of RV ERA glycoprotein results in an attenuated virus (referred to as ERAg3). This attenuated virus is capable of eliciting significant titers of neutralizing antibodies in animals and conferring protection against wild-type virus challenge. Furthermore, as described in PCT Publication No. WO 2007/047459, a recombinant RV comprising two copies of glycoprotein with the G333 mutation is particularly useful as a vaccine due 5 to its ability to elicit high titers of neutralizing antibodies without morbidity or mortality. In some examples herein, a recombinant rabies virus comprising the G333 mutation in glycoprotein is used to engineer immunocontraceptive compositions comprising ZP3 and/or GnRH. However, one of 10ordinary skill in the art will recognize that any one of a number of recombinant rabies viruses can be used to incorporate heterologous sequences using the reverse genetics systems disclosed in PCT Publication No. WO 2007/047459, and as summarized below.

#### VI. Rabies Virus Reverse Genetics System

RNA cannot readily be manipulated directly by molecular biological methods. Traditional RNA virus vaccines are from 20 naturally attenuated isolates, which are difficult to control and provide unpredictable results. Reverse genetics technology makes it possible to manipulate RNA viruses as DNA, which can be mutated, deleted or reconstructed according to deliberate designs. Every gene function can be studied carefully, 25 independently, and in concert, which benefits vaccine development. Reverse genetics involves reverse transcription of the RNA viral genome into cDNA, and cloning into a vector, such as a plasmid. After transfection of host cells, the vector is transcribed into RNA, to be encapsidated by viral structural 30 proteins, which can also be supplied by plasmids. The encapsidated RNA forms a ribonucleoprotein complex, which results in virions that can be recovered.

An efficient reverse genetics system based on the rabies virus ERA strain is described in PCT Publication No. WO 35 2007/047459. This rabies reverse genetics system is useful for a variety of purposes, including to attenuate ERA virus in a defined manner for vaccine development and to produce ERA virus vectors for expression of heterologous proteins, such as proteins for immunocontraception, including ZP3 40 and GnRH.

The reverse genetics system disclosed in PCT Publication No. WO 2007/047459 is based on a full length transcription plasmid plus a plurality of helper plasmids (e.g., five helper plasmids). The helper plasmids encode the N, P, L proteins, 45 and optionally the G protein, as well as the T7 polymerase. Although the G protein is not necessary for virus rescue, it improves virus recovery efficiency or virus budding when included in transfection.

Transcription involves both cellular RNA-dependent RNA 50 polymerase II, which is available in mammalian cells, and T7 RNA polymerase, which is supplied by pNLST7 plasmids. The dual polymerases result in virus recovery efficiency that is both high and stable.

In the transcription plasmid, hammerhead and hepatitis 55 delta virus ribozymes flank a rabies virus (e.g., ERA strain) antigenomic cDNA, enabling the production of authentic 5' and 3' ends of antigenomic viral RNA by transcription. The first ten nucleotides of the hammerhead sequence are designed to be complementary to the first ten nucleotides of 60 the antisense genomic sequence.

Two modified T7 RNA polymerase constructs support virus recovery more efficiently than the wild type T7 RNA polymerase applied previously. One T7 RNA polymerase has been mutated from the first ATG to AT. The second T7 RNA 65 polymerase has an eight amino acid nuclear localization signal (NLS) derived from the SV40 virus large T antigen fused

after the first ATG from the parental T7. Addition of the NLS results in the T7 RNA polymerase being present predominantly in the nucleus. Following transfection mechanism of the NLS modified plasmid, the DNA/transfection reagent complex binds to the surface of the cell. Through endocytosis, the complex is taken into the endosome/lysosome, and the DNA is released into the cytosol. In the absence of the NLS, the majority of the transfected plasmids are retained in the cytosol and only a small percentage of the released DNA reaches the nucleus, where it is transcribed into RNA. After protein synthesis, the NLST7 RNA polymerase is transported back to the cell nucleus, and the helper plasmids (with T7/CMV promoters) in the nucleus will be transcribed by both NLST7 and cellular polymerase II. Thus, more mRNAs of the helper plasmids and cRNA of the full-length pTMF or its derivatives are synthesized and result in high efficiency of virus recovery.

After the initial expression of NLST7 by CMV promoter, NLST7 polymerase binds to pT7 for transcription of NLST7 gene. Through modification of the transcripts in the nucleus, more NLST7 mRNA is synthesized, resulting in more expression of NLST7 polymerase. The pT7 of the NLST7 polymerase as well as of the full length antigenomic transcription unit is under the control of the NLST7 polymerase, which acts as an "autogene." After expression of T7 RNA polymerase in the nucleus, the transfected T7 constructs continue to transcribe full length RNA template for N protein encapsidation and/or L protein binding, enhancing virus recovery efficiency.

The T7 polymerase, and all other plasmids, except the N protein encoding plasmid pTN, are placed under control of both CMV and T7 transcriptional regulatory elements. The N protein encoding nucleic acid is under the control of a T7 promoter and is translated in cap-independent manner based on an IRES (internal ribosome entry site). Cellular RNA polymerase II alone can help the recovery of RV if all the plasmids were cloned under the control of the CMV promoter. In the ERA reverse genetics system disclosed in PCT Publication No. WO 2007/047459, only pTN is under the control of the T7 promoter and is translated in a cap-independent manner. All other constructs are under control of both CMV and the T7 transcriptional regulatory elements. Typically, in RV, N synthesis is abundant and the ratio among N, P and L is approximately 50:25:1. To mimic the wild type viral transcription and assembly in RV reverse genetics, N expression should be the highest. With the aid of NLST7 polymerase and IRES translation mode, N protein is expressed efficiently after plasmid transfection. This reduces competition for transcription with house keeping genes in host cells, because the T7 transcription initiation signal does not exist in mammalian cells, and results in increased efficiency of T7 transcription.

In addition, as described in PCT Publication No. WO 2007/ 047459, to enhance production of viral proteins, the helper plasmids can be constructed to incorporate a Kozak sequence that has been optimized for the translation efficiency for each protein encoding sequence. After five days post-transfection in the ERA reverse genetics system, the rescued viruses reliably and repeatably grew to  $10^7$  FFU/ml without further amplification.

Recombinant rabies viruses with favorable properties for vaccination can be designed using, for example, the reverse genetics system disclosed in PCT Publication No. WO 2007/047459. Modified strains having mutated glycoproteins are particularly suited for use as immunogenic compositions. This RV reverse genetics system also enables a rabies virus vector system for foreign (heterologous) gene expression. An extra transcription unit was demonstrated to be functional in

two different locations after incorporation into the ERA RV genome. Thus, the RV reverse genetics system provides a means for introducing heterologous proteins that serve as immunocontraceptives. In some examples, the heterologous protein is ZP3, GnRH, or both.

## VII. Immunocontraception

Provided herein are recombinant rabies viruses comprising within their genome heterologous nucleic acid sequences 10 encoding one or more immunocontraceptive proteins. An immunocontraceptive protein refers to any protein or protein fragment (also referred to as an "antigen") capable of eliciting an immune response in a subject that results in inhibition or loss of fertility in the subject to which the antigen is admin-15 istered. The recombinant rabies viruses described herein are contemplated for vaccination of non-human animals.

Immunocontraception involves vaccination against sperm, eggs or reproductive hormones to prevent fertilization or the production of gametes (Cooper and Larsen, Reproduction 20 132:821-828, 2006). Immunogens previously tested as immunocontraceptives include sperm antigens, whole sperm, lactate dehydrogenase (LDH-C4; a sperm-specific protein), fertilization antigen-1 (FA-1; a sperm-specific antigen), sperm protein 56 (sp56), eppin (a testis/epididymis protein), 25 oocyte antigens (such as zona pellucida), gonadotropin riboflavin carrier protein, prolactin, proliferin, gonadotropins and gonadotropin releasing hormones (Delves et al., Trends Immunol. 23:213-219, 2002; O'Hern et al., Vaccine 15(16): 1761-1766, 1997; Zhu and Naz, Proc. Natl. Acad. Sci. 94(9): 30 4704-4709, 1997; Hardy and Mobbs, Mol. Reprod. Dev. 52(2):216-224, 1999; Hardy et al., Reproduction Supplement 60:19-30, 2002; O'Rand et al., Science 306:1189-1190, 2004; Cooper and Larsen, Reproduction 132:821-828, 2006).

A number of immunocontraceptive studies have focused 35 on the use of either zona pellucida (ZP) or GnRH. However, in every case, it was necessary to administer an adjuvant with the ZP or GnRH proteins in order to elicit a sufficient immune response to inhibit fertility of the treated animals. It is disclosed herein that recombinant rabies viruses comprising ZP 40 and/or GnRH can be used as immunocontraceptive compositions. The super-antigen like features of the rabies virus particle allow for the use of recombinant rabies viruses comprising an immunocontraceptive protein in the absence of an adjuvant. 45

Gonadotropin-Release Hormone (GnRH)

GnRH (also known as luteinizing hormone releasing hormone, or LHRH) has long been recognized as playing a central role in the regulation of fertility in animals. The fully processed form of GnRH is a decapeptide which has the same 50 amino acid sequence in all mammals (SEQ ID NO: 48). Closely related GnRH compounds have also been identified in other non-mammals, including fowl, and receptors for GnRH have been identified in reptiles and amphibians. In males and females, GnRH is released from the hypothalamus 55 into the bloodstream and travels via the blood to the pituitary, where it induces the release of the gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH). These two gonadotropins in turn act upon the gonads, inducing steroidogenesis and gametogenesis. In growing male ani- 60 mals, the gonadotropins stimulate the development of the testes and the synthesis of testicular steroids. In the growing female animal, the development of the ovaries is stimulated and therein follicle development, synthesis of ovarian steroids and ovulation. Steroids released from the gonads into 65 the circulation also act upon various other tissues (U.S. Patent Publication No. 2006/0013821).

A variety of GnRH immunogenic analogs have also been described and are suitable for use with the compositions and methods provided herein. Immunogenic analogs of GnRH include compounds containing a substitution, deletion, or insertion of between one and five amino acid residues in the GnRH amino acid sequence, as well as dimers or polymers thereof, which compound retains the ability to induce or stimulate the production in an animal of antibodies specific for GnRH. The substitutions and insertions can be accomplished with natural or non-natural amino acids, and substitutions are preferably conservative substitutions made with amino acids which maintain substantially the same charge and hydrophobicity as the original amino acid. Immunogenic analogs of GnRH include those described in, for example, U.S. Pat. Nos. 5,484,592; 6,284,733; 4,608,251; 5,759,551; and 5,403,586, and PCT Publication No. WO 88/05308.

Zona Pellucida (ZP)

ZP is a non-cellular glycoprotein coat surrounding mammalian eggs which regulates sperm-egg interactions during fertilization. The structure of ZP makes it an ideal candidate for a contraceptive target, since altering its structure can prevent pregnancy (U.S. Patent Publication No. 2004/0202674).

ZP immunization has been effective in lowering fertilization rates of many mammals (Willis et al., *J. Equine Vet. Sci.* 14:364-370, 1994; Brown et al., *J. Reprod. Immunol.* 35:43-51, 1997; Brown et al., *J. Reprod. Immunol.* 35:53-64, 1997; U.S. Pat. No. 6,027,727). Two independent reports indicated that pig zona pellucida (pZP) is an effective immunocontraceptive in domestic cats, however multiple boosters are required (Ivanova et al., *Theriogenology* 43:969-981, 1995; Bradley et al., *J. Biotechnol.* 73:91-101, 1999).

Porcine zona pellucida has also been used in liposomebased immunocontraceptive vaccines for reducing fertility of certain mammals by 90-100% with a multi-year efficacy (PCT Publication NO. WO 93/25231). However, use of pZP in such a liposome-based vaccine as a single administration vaccine is ineffective in cats (Gorman et al., *Theriogenology* 58:135-149, 2002).

ZP3 sequences from a variety of different species are well known in the art, including dog ZP3 (Genbank Accession No. NM\_001003224, deposited on Aug. 5, 2004); porcine ZP3 (Genbank Accession No. D45065, deposited on Jan. 24, 1995; Genbank Accession No. NM 213893, deposited on May 20, 2004); mouse ZP3 (Genbank Accession No. BC103585, deposited on Aug. 22, 2005; Genbank Accession No. BC099465, deposited on Jul. 21, 2005; Genbank Accession No. BC103584, deposited on Aug. 22, 2005); rat ZP3 (Genbank Accession No. BC127488, deposited on Dec. 22, 2006); and human ZP3 (Genbank Accession No. BC113949, deposited on Feb. 25, 2006; Genbank Accession No. X56777, deposited on Jun. 16, 1993; Genbank Accession No. M60504, deposited on Aug. 4, 1993; Genbank Accession No. A18567, deposited on Jul. 21, 1994). Each of the above-listed Genbank Accession numbers is herein incorporated by reference. In specific examples herein, the ZP3 sequence is a dog ZP3 sequence (SEQ ID NO: 7). However, any ZP3 sequence capable of eliciting an immune response in the animal to be vaccinated can be used with the compositions and methods provided herein.

## VIII. Administration and Use of Rabies Virus Immunocontraceptive Compositions

The recombinant rabies viruses provided herein comprise at least one heterologous nucleic acid sequence encoding an immunocontraceptive protein. Thus, immunocontraceptive compositions comprising such recombinant rabies viruses have a dual function: (i) to protect vaccinated animals against rabies virus infection and (ii) to control animal population growth by inhibiting fertility of the animals. Accordingly, the immunocontraceptive compositions provided herein are contemplated for use with non-human animals. In some cases, 5 the recombinant rabies virus is administered to domestic animals. In other cases, the recombinant rabies virus is administered to wild animals. Non-human animals for which the rabies virus immunocontraceptive compositions will be useful may include, but is not limited to, dogs, cats, rats, mice, 10 bats, foxes, raccoons, squirrels, opossum, coyotes or wolves. Particularly with wild animals, it is preferred to administer the immunogenic composition orally, such as through foodbaits.

The immunogenic formulations may be conveniently pre- 15 sented in unit dosage form and prepared using conventional pharmaceutical techniques. Such techniques include the step of bringing into association the active ingredient and the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing 20 into association the active ingredient with liquid carriers. Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the 25 intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) con- 30 dition requiring only the addition of a sterile liquid carrier, for example, water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets commonly used by one of ordinary skill in the art.

In certain embodiments, unit dosage formulations are those containing a dose or unit, or an appropriate fraction thereof, of the administered ingredient. It should be understood that in addition to the ingredients particularly mentioned above, formulations encompassed herein may include 40 other agents commonly used by one of ordinary skill in the art.

The compositions provided herein, including those for use as immunogenic compositions, may be administered through different routes, such as oral, including buccal and sublin-45 gual, rectal, parenteral, aerosol, nasal, intramuscular, subcutaneous, intradermal, and topical. They may be administered in different forms, including but not limited to solutions, emulsions and suspensions, microspheres, particles, microparticles, nanoparticles, and liposomes. In preferred embodi-50 ments, the immunogenic compositions are administered orally. In some examples, oral administration comprises administering the compositions in food-baits.

The volume of administration will vary depending on the route of administration. Those of ordinary skill in the art will 55 know appropriate volumes for different routes of administration.

Administration can be accomplished by single or multiple doses. The dose administered to an animal in the context of the present disclosure should be sufficient to induce a beneficial therapeutic response over time, such as to prevent RV infection and prevent reproduction. The dose required will vary depending on, for example, the species of animal.

The amount of immunogenic composition in each dose is selected as an amount that induces an immunostimulatory or 65 immunoprotective response without significant, adverse side effects. Such amount will vary depending upon which spe26

cific composition is employed and how it is administered. Initial doses may range from about 1  $\mu$ g to about 1 mg, with some embodiments having a range of about 10  $\mu$ g to about 800  $\mu$ g, and still other embodiments a range of from about 25  $\mu$ g to about 500  $\mu$ g. Following an initial administration of the immunogenic composition, subjects may receive one or several booster administrations, adequately spaced. Booster administrations may range from about 1  $\mu$ g to about 1 mg, with other embodiments having a range of about 10  $\mu$ g to about 750  $\mu$ g, and still others a range of about 50  $\mu$ g to about 500  $\mu$ g. Periodic boosters at intervals of 1-5 years, for instance three years, may be desirable to maintain the desired levels of protective immunity. In preferred embodiments, animals receive a single dose of an immunogenic composition.

The preparation of food-baits containing immunogenic compositions is also within the ordinary skill of those in the art. For example, the preparation of food-baits containing live RV vaccines is disclosed in Wandeler et al. (*Rev. Infect. Dis.* 10 (suppl. 4):649-653, 1988), Aubert et al. (pp. 219-243, in *Lyssaviruses* (Rupprecht et al., eds.), Springer-Verlag, New York, 1994), and Fu et al. (pp. 607-617, in New Generation Vaccines (2<sup>nd</sup> Edit.) (Levine et al., eds.), Marcel Dekker, Inc., New York, 1997).

Provided herein are pharmaceutical compositions (also referred to as immunogenic or immunostimulatory compositions) which include a therapeutically effective amount of a recombinant RV alone or in combination with a pharmaceutically acceptable carrier. In some embodiments, the recombinant RV comprises a heterologous protein, such as ZP3 and/or GnRH.

Pharmaceutically acceptable carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The carrier and composi-35 tion can be sterile, and the formulation suits the mode of administration. The composition can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. The composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulations can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, and magnesium carbonate. Any of the common pharmaceutical carriers, such as sterile saline solution or sesame oil, can be used. The medium can also contain conventional pharmaceutical adjunct materials such as, for example, pharmaceutically acceptable salts to adjust the osmotic pressure, buffers, preservatives and the like. Other media that can be used with the compositions and methods provided herein are normal saline and sesame oil.

The recombinant RVs described herein can be administered alone or in combination with other therapeutic agents to enhance antigenicity. For example, the recombinant viruses can be administered with an adjuvant, such as Freund incomplete adjuvant or Freund's complete adjuvant.

Optionally, one or more cytokines, such as IL-2, IL-6, IL-12, RANTES, GM-CSF, TNF-α, or IFN-γ, one or more growth factors, such as GM-CSF or G-CSF; one or more molecules such as OX-40L or 41 BBL, or combinations of these molecules, can be used as biological adjuvants (see, for example, Salgaller et al., 1998, *J. Surg. Oncol.* 68(2):122-38; Lotze et al., 2000, *Cancer J. Sci. Am.* 6(Suppl 1):S61-6; Cao et al., 1998, *Stem Cells* 16(Suppl 1):251-60; Kuiper et al., 2000, *Adv. Exp. Med. Biol.* 465:381-90). These molecules can be administered systemically (or locally) to the host.

30

A number of means for inducing cellular responses, both in vitro and in vivo, are known. Lipids have been identified as agents capable of assisting in priming CTL in vivo against various antigens. For example, as described in U.S. Pat. No. 5,662,907, palmitic acid residues can be attached to the alpha 5 and epsilon amino groups of a lysine residue and then linked (for example, via one or more linking residues, such as glycine, glycine-glycine, serine, serine-serine, or the like) to an immunogenic peptide. The lipidated peptide can then be injected directly in a micellar form, incorporated in a lipo-10 some, or emulsified in an adjuvant. As another example, E. coli lipoproteins, such as tripalmitoyl-S-glycerylcysteinlyservl-serine can be used to prime tumor specific CTL when covalently attached to an appropriate peptide (see, Deres et al., Nature 342:561, 1989). Further, as the induction of neu-15 tralizing antibodies can also be primed with the same molecule conjugated to a peptide which displays an appropriate epitope, two compositions can be combined to elicit both humoral and cell-mediated responses where that is deemed desirable. 20

The following examples are provided to illustrate certain particular features and/or embodiments. These examples should not be construed to limit the disclosure to the particular features or embodiments described.

#### EXAMPLES

#### Example 1

#### Rabies Virus ERA-Based Immunocontraceptive Studies Using Dog ZP3

This example describes the development of an immunocontraceptive composition comprising a recombinant rabies virus ERA strain and dog zona pellucida 3 (ZP3). Immuno- 35 contraceptive studies based on porcine zona pellucida (pZP) glycoprotein have been attempted in different animals, including dogs. The pZP complex was reported to be effective in a number of species as an immunocontraceptive. However, because the pZP complex is a mixture of whole porcine ovary, 40 adverse reactions are not uncommon. Therefore, a canine ZP3 glycoprotein was expressed in E. coli and a dog ZP3 gene was cloned as a DNA vaccine candidate. The rationale was to develop a rabies virus ERA-based immunocontraceptive vaccine that can control rabies virus and dog population simul- 45 taneously. Rabies virus ERA has proved to be an ideal vector for expression of heterologous genes. Furthermore, it has been demonstrated that modified ERA virus is effective as an oral vaccine candidate in various animal species (see PCT Publication No. WO 2007/047459). 50

Full length dog ZP3 was synthesized chemically and assembled by polymerase chain reaction (PCR). Dog ZP3 is 1278 base pairs in length and encodes a protein of 426 amino acids. The synthesized gene is set forth herein as SEQ ID NO: 7; the amino acid sequence is set forth as SEQ ID NO: 8. To 55 synthesize the dog ZP3 gene, the full length dog ZP3 gene was divided into two fragments for synthesis, which are referred to as the A and B fragments. Fragment A (619 base pairs), which starts from the ATG start codon and ends with the unique NdeI recognition site, was assembled with 18 60 oligonucleotides (Table 1). Fragment B (670 base pairs) starts from unique NdeI recognition site and continues to the stop codon (TAA) and was assembled by 20 oligonucleotides (Table 1). The method for designing the oligonucleotides was based on "inside-out gene synthesis" using the DNAWorks 65 program (Hoover and Lubkowski, Nucleic Acids Res. 30(10): e43, 2002).

After the A and B fragments were successfully synthesized, they were sequenced carefully to correct any potential mutations introduced during the PCR reactions. One silent mutation (which does not change the amino acids sequence) from C to T was purposely maintained to distinguish the synthesized gene from the template gene (Genbank Accession Number NM\_001003224, deposited on Aug. 5, 2004, SEQ ID NO: 62). The oligonucleotides for synthesis of the A and B fragments are shown in Table 1.

TABLE 1

|       | ligonucleotides for synthesis of d                           | log Z | P3 |      |
|-------|--------------------------------------------------------------|-------|----|------|
| OLIGO | SEQUENCE                                                     | SEQ   | ID | NO : |
| 1A    | AAAACTGCAGCCACCATG                                           |       | 9  |      |
| 2A    | AACTGCAGCCACCATGGGGCTGAGCTATGGA<br>ATTTTCATCTGTTTTCTGCTCCT   |       | 10 |      |
| ЗA    | TTTCATCTGTTTTCTGCTCCTGGGAGGCATGG<br>AGCTGTGCTGCCCCCAGACCAT   |       | 11 |      |
| 4A    | CTGCCCCCAGACCATCTGGCCAACTGAGACC<br>TACTACCCATTGACATCTAGGCC   |       | 12 |      |
| 5A    | CCCATTGACATCTAGGCCCCCAGTAATGGTG<br>GACTGTCTGGAGTCCCAGCTGGT   |       | 13 |      |
| 6A    | GGAGTCCCAGCTGGTGGTCACTGTCAGCAAA<br>GACCTTTTTGGTACTGGGAAGCT   |       | 14 |      |
| 7A    | CTTTTTGGTTACGGGAAGCTCATCAGGCCAG<br>CAGACCTCACCCTGGGTCCAGAG   |       | 15 |      |
| 8A    | CACCCTGGGTCCAGAGAACTGTGAGCCCCTG<br>GTCTCCATGGACACGGATGATGT   |       | 16 |      |
| 9A    | CATGGACACGGATGATGTGGGTCAGGTTTGAG<br>GTTGGGCTGCACGAGTGTGGGCAG |       | 17 |      |
| 10A   | GTGCTGTACACCAGAGCATTGTCAGTCACCT<br>GCACCCTGCTGCCACACTCGTGC   |       | 18 |      |
| 11A   | CAGGTTGCCCGCAGGGCGGGGGGCTGTGGATC<br>AGGAAGGTGCTGTACACCAGAGC  |       | 19 |      |
| 12A   | ACTCGATGGGGACCTCGGCACGATTAGTTCT<br>CAGGATGGACAGGTTGCCCGCAG   |       | 20 |      |
| 13A   | GGCCTGGCTGCTCACATTGCTGTGCCTGGGG<br>TAGTGGCACTCGATGGGGACCTC   |       | 21 |      |
| 14A   | AGAGCATTGTGGTCCTGAAGGGCACCCAAGT<br>GGGCAGGATGGCCTGGCTGCTCA   |       | 22 |      |
| 15A   | CCATTAGGCGGAGAGAGAAAACTAGCTTCTC<br>CTCGAAGAGCATTGTGGTCCTGA   |       | 23 |      |
| 16A   | ATGTGGGGGATTGCTTCTCGGAGCCCCAGTC<br>CTCCTCCATTAGGCGGAGAGAGA   |       | 24 |      |
| 17A   | CTTCAGCCTGGAGGTGGGCTATGTCTCCCAG<br>CTGGAATGTGGGGGGATTGCTTCT  |       | 25 |      |
| 18A   | ACAAAAAGTCGCAGTGGCATATGGCTGCCAG<br>TGTGGACTTCAGCCTGGAGGTG    |       | 26 |      |
| 1B    | TGGCAGCCATATGCCACTGCGACTTTTTGTG<br>GACCACTGT                 |       | 27 |      |
| 2B    | GACTTTTTGTGGACCACTGTGTGGGCCACGCT<br>GACACCAGATCGGAATGCCTTCC  |       | 28 |      |
| ЗB    | CAGATCGGAATGCCTTCCCTCATCACAAAAT<br>TGTGGACTTCCATGGCTGTCTTG   |       | 29 |      |

50

60

#### TABLE 1-continued

| (     | Oligonucleotides for synthesis of a                        | doq ZP3    |    |
|-------|------------------------------------------------------------|------------|----|
| OLIGO | SEQUENCE                                                   | SEQ ID NO: | 5  |
| 4B    | GACTTCCATGGCTGTCTTGTGGATGGTCTCTA<br>CAATTCCTCTTCAGCCTTCAAA | 30         | 5  |
| 5B    | AATTCCTCTTCAGCCTTCAAAGCCCCCAGAC<br>CCAGGCCAGAGACTCTTCAGTTC | 31         |    |
| 6B    | GCCAGAGACTCTTCAGTTCACAGTGGATGTT<br>TTCCACTTTGCTAAGGACTCAAG | 32         | 10 |
| 7B    | CCACTTTGCTAAGGACTCAAGAAACACGATC<br>TATATCACCTGCCATCTGAAGGT | 33         |    |
| 8B    | ACCTGCCATCTGAAGGTCACTCCGGCTGACC<br>GAGTCCCAGACCAGCTAAACAAA | 34         | 1: |
| 9B    | CCCAGACCAGCTAAACAAAGCTTGTTCCTTC<br>ATCAAGTCTACCAAGAGGTCCTA | 35         |    |
| 10B   | CAAGTCTACCAAGAGGTCCTACCCTGTAGAA<br>GGCTCGGCTGATATTTGTCGCTG | 36         | 20 |
| 11B   | ACCGGCCTGGAAGGCCACAGCTGCCTTTGTT<br>ACAACAGCGACAAATATCAGCCG | 37         |    |
| 12B   | GACCTGCGCCACCCTCTCTCTAGGTGGGACA<br>GCCTCCTGGACCGGCCTGGAAGG | 38         | 25 |
| 13B   | TTCTTCAGTCACGTGCCTGCGATTTCTAGTGT<br>GGGAAACAGACCTGCGCCACCC | 39         |    |
| 14B   | TTCCCAGGAAGATCAGAGGCCCCACGGTGAT<br>CTCTGCTTCTTCAGTCACGTGCC | 40         | 3( |
| 15B   | AGAGGTTGACCCCTCTATACCATGATCACTA<br>GCCTTTCCCAGGAAGATCAGAGG | 41         |    |
| 16B   | CCAGGCCTAAGCCCAACATCACAGAGGTGTG<br>AGGAGAGGTTGACCCCTCTATAC | 42         | 35 |
| 17B   | CCAGGACAATGGTAGCTAGAGTCAGGGATAC<br>CACCGTGGCCAGGCCTAAGCCCA | 43         |    |
| 18B   | GGGTGGGAAGCAGTACGATGCCTCTTGGCAA<br>GGACCAGGACAATGGTAGCTAGA | 44         | 4( |
| 19B   | CGGTACCTTATTGGGAGACAGATGCAGGGCA<br>TATCACAGGGTGGGAAGCAGTAC | 45         |    |
| 20B   | GACGGCGGTACCTTATTGGGAGAC                                   | 46         | 4  |

After synthesis of the dog ZP3 gene, it was cloned into the pTMF construct (ERA full genomic cDNA construct, see PCT Publication No. WO 2007/047459) at the P-M intergenic region for virus recovery. Four recombinant ERA-dogZP3 viruses (ERAZP3, ERAg3ZP3, ERA2g3ZP3 and ERAZP3T; see FIG. 1) were recovered by an established reverse genetics system for vaccine studies (PCT Publication No. WO 2007/ 047459). ERAZP3 contains the ZP3 sequence and a wildtype ERA G protein coding sequence. ERAg3ZP3 and ERA2g3 contain the ZP3 sequence and one or two copies 55 (respectively) of the G333 mutant glycoprotein coding sequence. ERAZP3T contains a truncated ZP3 and the wildtype ERA G protein coding sequence. Truncated ZP3 comprises a deletion of nucleotides 79 to 1044 of ZP3 (SEQ ID NO: 7)

The four recombinant ERA-dogZP3 virus strains grew like wild type ERA virus in both baby hamster kidney (BHK) and BSR cells (a clone of BHK-21 cells), except for ERA2g3ZP3, which grew slower in the first three rounds of infection, relative to wild type ERA virus. Primary neutralization test 65 from infected mice showed that ERAZP3T produced neutralizing antibody (NA) titer as high as 714.

In order to express the dog ZP3 gene in both prokaryotic and eukaryotic systems for immunologic studies, dog ZP3 was cloned into the pEF vector (for mammalian cell expression; Invitrogen) and pET28 vector (for prokaryotic expression; Novagen). Primary data by indirect fluorescence assay (IFA) showed that dog ZP3 was expressed well in BSR cells, demonstrated by His-tag monoclonal antibody staining.

The results of in vitro and in vivo studies using rabies virus ERA-based dog ZP3 recombinant virus are summarized as follows. ERAZP3 virus grew to 10<sup>9</sup> focus forming units (FFU)/ml in bioreactors, and replicated as well as parental ERA. Dog ZP3 was expressed as a non-structural protein in the purified ERAZP3 virion. ERAZP3 rabies virus, grown to 10<sup>9</sup> FFU/ml in BSR cells, was purified by gradient ultracentrifugation. The purified recombinant virus was analyzed <sup>15</sup> by SDS-PAGE. Five viral structural protein bands were clearly shown. The ZP3 protein was expressed as a nonstructural protein in recombinant ERAZP3 rabies virus. To detect ZP3 antibodies in ERAZP3 virus-immunized mice, Western blots using pcDNA/ZP3 expression protein were performed. 20 BSR cells were transfected with pcDNA/ZP3 plasmids. After 48 hours, the transfected BSR cells were harvested and lysed. The supernatants were analyzed by SDS-PAGE, followed by protein transfer to nitrocellulose membranes. A standard Western-blot protocol was applied for analysis. The specific 25 protein band with a molecular weight of 50 kD was detected,

which corresponds to the size of ZP3. In a mouse model, ERAZP3 induced a strong immune response against rabies virus when administrated either intramuscularly or orally. The immunized mice were protected against virus challenge, while the controls succumbed. Dog ZP3 antibodies were detected by indirect fluorescent staining Approximately 60 mice were injected intramuscularly with 50  $\mu$ l of the recombinant virus (5×10<sup>6</sup> FFU per mouse). The mice were boosted at intervals of 7, 14 and 28 days. Rabies virus antibody response was evaluated. Rabies virus neutral-<sup>35</sup> ization antibodies were very high, reaching more than 5 IU. The mice were euthanized and sera were collected for IFA

and Western blot against ZP3 proteins. Positive results were observed in both tests.

In a hamster model, ERAZP3 administered intramuscu-40 larly induced a strong immune response against rabies virus. The immunized hamsters were protected when challenged. Dog ZP3 antibodies were detected by IFA. No adverse effects were observed in either mouse or hamster models.

#### Example 2

## Rabies Virus ERA-Based Immunocontraceptive Pilot Studies Using GnRH

This example describes the development and testing of recombinant rabies viruses containing the gonadotropin-releasing hormone (GnRH) sequence inserted at various positions relative to the rabies virus glycoprotein (G).

GnRH has been proven to be efficient as an immunocontraceptive peptide for dogs. However, previously it has been necessary to link GnRH with a carrier protein (or adjuvant) to be immunogenic. The scale-up of the products to meet massive vaccination and quality control makes the synthetic chemical method unacceptable for commercial applications.

Through peptide analysis in vitro, appropriate positions for incorporation of GnRH into the glycoprotein can be applied for recombinant vaccine studies. There is no need for adjuvant because of the super-antigen-like properties of rabies virus particles. Since rabies virus grows efficiently in cell culture, scale-up of production is not limiting. Therefore, rabies virus engineered to include GnRH is an ideal candidate for simultaneous control of rabies and dog populations.

The GnRH peptide was tested in vitro to be immunogenic against rabbit anti-GnRH serum. Multiple locations in the rabies virus glycoprotein were chosen for insertion of the GnRH sequence (SEQ ID NO: 47) (see FIG. 2). The N terminus, antigenic site IIa, and the junction between the 5 ectodomain and cytoplasmic domains were identified as ideal insertion sites for virus recovery. All recombinant viruses were recovered through an established reverse genetics system (PCT Publication No. WO 2007/047459). Rescued viruses were named ERA-N-GnRH, ERA-IIa-GnRH, and 10 ERA-C-GnRH, according to the GnRH insertion site. These three viruses replicated as well as the parental wild type ERA, reaching titers of 10° FFU/ml in cell culture, with the exception of the ERA-IIa-GnRH virus. The inserted GnRH was stable in the glycoprotein gene after virus passage. Prelimi- 15 nary experiments in dogs using intramuscular administration demonstrated sufficient immune responses against rabies with no detectable adverse effects.

To increase the immunogenicity of the GnRH peptide, two copies of the GnRH gene aligned in tandem were cloned to 20 the N (ERA-N-2GnRH) and IIa (ERA-GnRH-p3) sites. In the ERA-N-GnRH virus, the GnRH sequence (SEQ ID NO: 47) was inserted immediately after the 19 amino acid signal sequence of the rabies virus glycoprotein. The nucleotide and amino acid sequence of ERA-N-GnRH are set forth as SEQ 25 ID NOs: 49 and 50, respectively. To create ERA-N-2GnRH, two copies of the GnRH in tandem were inserted immediately after the 19 amino acid signal sequence of the rabies virus glycoprotein (SEQ ID NOs: 51 and 52). To generate ERA-GnRH-p3, the GnRH sequence was inserted after amino acid 30 residue 221 (IIa antigenic site) in rabies virus glycoprotein (SEQ ID NOs: 53 and 54). All three viruses were successfully recovered by reverse genetics, and the GnRH gene was stably expressed in all the constructs by Northern-blot. In addition, all of the constructs grew as well as parental rabies virus, with 35 the exception of ERA-GnRH-p3, with grew slower. The ERA-N-GnRH virus was tested in dogs after intramuscular injection with no adverse effects. These results demonstrate that the N-terminus, just after the signal sequence in rabies virus glycoprotein, is an ideal location for insertion of GnRH. 40

To determine whether recombinant rabies viruses comprising GnRH are capable of eliciting protective immunity against rabies virus infection, wild-type rabies virus challenge studies were performed. Mice were injected i.m. with  $5\times10^5$  FFU of either ERA-N-GnRH, ERA-3-GnRH(N-G3- 45 GnRH-P-M-L) or ERA-G3-2GnRH(N-G3/2GnRH-P-M-L) and subsequently challenged with a lethal dose of rabies virus (FIG. **3**). All vaccinated animals survived rabies virus challenge. In contrast, none of the control mice (unvaccinated naïve mice) survived rabies virus challenge. These results <sup>50</sup> demonstrate that recombinant rabies virus-based immunocontraceptive vaccines are effective at eliciting a protective rabies virus immune response in animals.

## Example 3

### Combined Vaccines for Rabies Virus and Immunocontraception

This example describes the construction and characteriza- 60 tion of recombinant ERA rabies viruses encoding GnRH. Materials and Methods

Synthesis and Conjugation of GnRH Peptide to Keyhole Limpet Hemocyanin (KLH)

The decapeptide of GnRH (peptide 1780, GnRH; SEQ ID 65 NO: 55), and two copies of the GnRH in tandem (peptide 1781, 2GnRH; SEQ ID NO: 56) were synthesized chemi-

cally, and purified by high performance liquid chromatography (HPLC). After verification, peptides 1780 and 1781 were conjugated to KLH. KLH was purchased from Sigma-Aldrich (St. Louis, Mo.) and conjugation efficiency was analyzed through SDS-PAGE. Protein Marker SeeBlue<sup>™</sup> and Marker 12 were purchased from Invitrogen (Carlsbad, Calif.). The Precision Plus protein ladder was obtained from Bio-Rad (Hercules, Calif.). The proteins were separated on 4-12% SDS-PAGE gels.

Relocation of the G Gene Ahead of the P Gene in the RV ERA Genome and Pathogenicity of the Rearranged Virus

The rearranged RV ERA genome with the G gene relocated ahead of the P gene was constructed similarly to the previously described reverse genetics method (Wu and Rupprecht, Virus Res. 131: 95-99, 2008; Wu et al., Virus Res. 129: 91-103, 2007). The amino acid residue at position 333 (corresponding to residue 352 of SEQ ID NO: 5) of the RV G was changed from arginine (AGA) to glutamic acid (GAG) through mutagenesis (Wu et al., J. Virol. 76: 4153-61, 2002). The engineered virus was named ERAg3p. The growth characteristics of the mutated virus were determined in cell culture. BSR cells (a clone of BHK cell line) were grown in Dulbecco's minimal essential medium supplemented with 10% fetal bovine serum (Atlanta Biologicals, Lawrenceville, Ga.). RV ERAg3p-infected BSR cells were incubated at 34° C., in a 5% CO<sub>2</sub> incubator. The CELLine-1000 Bioreactor was from INTEGRA Bioscience AG (Switzerland). The stability of mutation at the defined position and the rearranged RV genome were verified through reverse transcription (RT)polymerase chain reaction (PCR) by more than 100 continuous passages of infection in BSR cells. RV ERA or ERAg3p was injected intracerebrally (i.c) into ten three-week old ICR female mice (Charles River Laboratory). Ten healthy mice of the same species and age served as uninfected controls with injection of PBS buffer (0.01M, pH 7.4) by the same route. The virulence of RV ERAg3p was compared in parallel with that of parental ERA species. Animals were checked and recorded daily for signs of illness. Sick animals were euthanized by CO<sub>2</sub> intoxication, followed by cervical dislocation. The mouse brain was removed for RV diagnosis.

Insertion of the Coding Sequence of GnRH into Various Locations of the G Gene in RV ERAg3p Virus

The coding sequence of GnRH (or 2GnRH) was inserted into 6 different locations of the G gene in RV ERAg3p. The G gene with the defined mutation in RV ERAg3p was denoted as G\*. The primer sequences used for insertion of the GnRH or 2GnRH into the G\* are shown in Table 2. Mutagenesis was performed as described previously (Wu and Rupprecht, *Virus Res.* 131: 95-99, 2008). The final 12 G\* gene constructs were verified by sequencing using the ABI 3730 DNA Analyzer.

TABLE 2

| Prime  | ers for ins         | ertion of GnRH or 2GnRH in                                                    | to G*         |
|--------|---------------------|-------------------------------------------------------------------------------|---------------|
| Insert | Primer              | Sequence                                                                      | SEQ ID<br>NO: |
| GnRH   | GNRH15<br>(Forward) | CCAACCTGTCAGGGTTCTCCGAACA<br>CTGGAGCTACGGTTTGAGACCCGGG<br>TACATGGAACTTAAAGTTG | 58            |
| GnRH   | GNRH13<br>(Reverse) | GGAGAACCCTGACAGGTTGGTGCAT<br>CCTTCGTCCTCCAC                                   | 59            |

25

TABLE 2-continued

| Prime  | ers for ins          | sertion of GnRH or 2GnRH int                                                                                     | 0 G*          |
|--------|----------------------|------------------------------------------------------------------------------------------------------------------|---------------|
| Insert | Primer               | Sequence                                                                                                         | SEQ ID<br>NO: |
| 2GnRH  | 2GNRHN5<br>(Forward) | GGTTTTTCCATTGTGTTTTGGGGAAC<br>ACTGGAGCTACGGTTTGAGACCCGG<br>GGAACACTGGAGCTACGGTTTGAGA<br>CCCGGGAAATTCCCTATTTACACG | 60            |
| 2GnRH  | 2GNRHN3<br>(Reverse) | CCCAAAACACAATGGAAAAACCAG<br>AAGGGGTACAAACAGG                                                                     | 61            |

Recovery and Characterization of the GnRH-Carrying ERAg3p Viruses

The 12 constructs with GnRH (or 2GnRH) in-frame fused to the G\* gene were applied for virus recovery following a previous reported protocol (Wu and Rupprecht, Virus Res. 131: 95-99, 2008; Wu et al., Virus Res. 129: 91-103, 2007). If virus could not be rescued in the first round transfection, two  $^{20}$ additional trials were repeated. A negative result by direct fluorescent assay (DFA) was interpreted as an indication of a non-optimal site in the G gene for GnRH insertion. The rescued viruses were further grown in the BSR cells to high titers using bioreactor incubation for characterization. Expression of GnRH in RV ERAg3p Viruses

Total RNA from the GnRH-carrying ERAg3p virus-infected BSR cells was extracted using TRIZOL™ Reagent (Invitrogen, Carlsbad, Calif.). Digoxigenin (Dig)-labeled 30 antisense oligonucleotide GnRH probe was synthesized according to standard methods. The Dig nucleic acid detection kit was purchased from Roche (Roche Diagnostics GmbH, Roche Applied Science, Penzberg, Germany). The protocol for Northern blotting has been previously described 35 (Wu and Rupprecht, Virus Res. 131: 95-99, 2008; Wu et al., Virus Res. 129: 91-103, 2007; Wu et al., J. Virol. 76: 4153-61, 2002). The RNA molecular weight marker 1 was obtained from Roche (Roche, Indianapolis, Ind.). The procedure for purification of RV from infected cell culture supernatants was 40 modified from previous descriptions (Thomas et al., Virology 25: 271-275, 1965; Sokol et al., J. Virol. 2: 836-849, 1968). Briefly, about 200 ml of virus supernatant from cell culture was filtered (0.22 µm pore diameter) to remove possible cell debris. The virions were pelleted through ultra centrifugation 45 at 22,500×g for 1 hour (Beckman, SW 28). The pellet was resuspended overnight at 4° C. in 2 ml of 0.5 mM Tris buffer (pH 7.2), and was loaded to sucrose gradients for centrifugation at 24,000×g for 1 hour (Beckman, SW 41). The virus band in the gradient was collected for SDS-PAGE analysis. 50 The pre-stained protein molecular weight standard was purchased from GIBCO (Carlsbad, Calif.).

Safety and Potency Against Rabies Using the GnRH-Carrying RV ERAg3p Viruses in a Mouse Model

Three-week old ICR female mice (Charles River Labora- 55 tory) were divided into four groups of 10 animals each. Group 1 was inoculated with RV ERA-N-2GnRH, group 2 with ERA-N-GnRH, group 3 with ERA-IIa-GnRH, and group 4 (as control) with PBS buffer (0.01 M, pH 7.4). Per mouse, 50  $\mu$ l of each virus (6.0×10<sup>6</sup> FFU) or PBS buffer (0.01 M, pH 7.4, 60 the controls) was injected intramuscularly (i.m) in the gestrocnemius muscle in the left leg. Three weeks after inoculation, surviving animals were challenged i.m by the same route in the right leg with a lethal dose of 50 µl of about 2.5-10.0 MICLD $_{50}$  dog/coyote street RV (MD5951). The 65 safety and potency of the viruses for the animals was analyzed two months after challenge.

Reaction of Serum from Immunized Mouse Using the GnRH-Carrying RV ERAg3p Viruses Against GnRH-KLH and 2GnRH-KLH Conjugates

Ten 3-week old ICR female mice (Charles River Laboratory) were immunized i.m in the gestrocnemius muscle of the left leg with 50 µl (6.0×10<sup>6</sup> FFU) of ERA-N-2GnRH, ERA-N-GnRH or ERA-IIa-GnRH. Three weeks post-vaccination, serum was collected by the retro orbital route after sedation of the animals. Serum was maintained at  $-20^{\circ}$  C. for further 10 analysis. The GnRH-KLH and 2GnRH-KLH conjugates were separated on 4-12% SDS-PAGE gels, and were transferred to polyvinylidene diflouride (PVDF) membrane (Sigma-Aldrich, St. Louis, Mo.) for Western blotting against the immunized mouse serum. Briefly, after gel electrophoresis, GnRH-KLH and 2GnRH-KLH were transferred to the PVDF membrane for blocking in 1× casein buffer (Vector Laboratories Inc, Burlingame, Calif.) at room temperature for 30 minutes. The immunized mouse serum (1:200 dilution in 1× case in reagent) was incubated with the membrane at room temperature for 30 minutes. After three washes (3 minutes each) in 1× casein Tris buffer, biotinylated anti-mouse IgG (H+L) (Vector Laboratories Inc, Burlingame, Calif.) at 1:1000 was added for another incubation of 30 minutes at room temperature. The staining kit was the ABC system from Vector Laboratories Inc. (Burlingame, Calif.).

Reaction of GonaCon<sup>™</sup> Immunized Rabbit Serum Against the GnRH-Carrying RV ERAg3p Viruses

GonaCon<sup>™</sup> immunized rabbit serum was obtained from the National Wildlife Research Center, USDA. The indirect fluorescent assay (IFA) for detection of GnRH peptide in recombinant RV-ERAg3p viruses was performed as follows. In one six-well-plate (Becton Dickinson Labware, N.J.), the ERA-N-2GnRH, ERA-N-GnRH or ERA-IIa-GnRH virusinfected BSR cells (37° C. for 48 h) were fixed in 4% formalin PBS (Protocol Formalin®, Fisher Scientific Company LLC, Kalamazoo, Inc) at room temperature for 30 minutes. The GonaCon<sup>™</sup> immunized rabbit serum at a dilution of 1:200 in PBS (0.01 M, pH 7.4) was added to the fixed BSR cells, and incubated at 37° C. for 30 minutes. After three washes in the same PBS (3 minutes each), the FITC-conjugated goat antirabbit IgG (H+L) at 1:200 dilution (Vector Laboratories Inc, Burlingame, Calif.) was added, and incubated at 37° C. for 30 minutes. The staining results were recorded under UV microscopy. For Western blot using the GonaCon™ immunized rabbit serum against purified GnRH-carrying RV ERA viruses, the same protocol described above was followed. Results

Synthesis and Conjugation of GnRH Peptide to KLH

The GnRH peptide (in bold): NH2-CEHWSYGLRPG-COOH (SEQ ID NO: 55), and 2GnRH peptide (in bold): NH2-CEHWSYGLRPGEHWSYGLRPG-COOH (SEQ ID NO: 56) were synthesized with an extra cysteine (C, italic in the sequence) at the amino terminus. The purity of peptides 1780 and 1781 were verified using Micro HPLC and MALDI mass spectrometric analyses. KLH was then conjugated through the extra amino terminal C residue to the 1780 and 1781 peptides. The conjugation efficiency was verified through SDS-PAGE (FIG. 4).

Growth Characteristics and Pathogenicity of the Rearranged RV ERAg3p

The rearranged ERA genome with the G gene relocated ahead of the P gene was constructed similarly to the previously described method of Wu et al. (Virus Res. 129: 91-103, 2007). Mutagenesis of the G gene at amino acid residue 333 from AGA to GAG was described elsewhere (Wu and Rupprecht, Virus Res. 131: 95-99, 2008). The recovered ERAg3p grew as well as parental ERA virus, reaching 4.2×10<sup>9</sup> FFU/ml

60

in infected BSR cells in bioreactor incubation (FIG. 2B). Intracranial inoculation of the ERAg3p into 3-week old mice did not cause any signs of rabies, or other adverse side-effects. However, parental ERA virus killed all the mice inoculated by the same route (FIG. 2C). Therefore, the attenuated ERAg3p 5 virus was used as a backbone for subsequent insertion of the GnRH coding sequence in immunocontraceptive studies. Insertion of the Coding Sequence of GnRH into Various Locations of the G Gene in RV ERAg3p Virus

Six locations of the G\* gene in RV ERAg3p were selected 10 for insertion of GnRH coding sequence based upon previously identified antigenic epitopes: immediately after signal sequence; antigenic site II; antigenic site IIa; antigenic site WB+; antigenic site III; and the junction between the ectoand transmembrane domains (see FIG. 6) (Coulon et al., J. 15 Gen. Virol. 64: 693-696, 1983; Seif et al., J. Virol. 53: 926-934, 1985; Prehaud et al., J. Virol. 62: 1-7, 1988). The coding sequence for GnRH (GAACACTGGAGCTACG-GTTTGAGACCCGGG; SEQ ID NO: 47) was introduced into the above 6 locations through mutagenesis. The 2GnRH 20 coding sequence linked in tandem (GAACACTGGAGC-TACGGTTTGAGACCCGGGGGAACACTGGAGCTACG GTTTGAGACCCGGG; SEQ ID NO: 57) was also incorporated into the G\* gene in a similar way. The final 12 G\* gene constructs were verified by DNA sequencing, and were suc- 25 cessfully cloned into the RV ERAg3p full length plasmid for virus recovery. The nucleotide and amino acid sequences of the four G\* gene constructs that were recovered in recombinant rabies viruses (see Table 3) are set forth as SEQ ID NOs: 49 and 50 (G-N-GnRH); SEQ ID NOs: 51 and 52 (G-N- 30 2GnRH); SEQ ID NOs: 53 and 54 (G-IIa-GnRH); and SEQ ID NOs: 63 and 64 (G-C-GnRH).

Recovery and Characterization of the GnRH-Carrying ERAg3p Viruses

Each of the 12 G\* constructs (FIG. 6) with GnRH or 35 (2GnRH) in-frame fused to the G gene was successfully cloned ahead of the P gene in the RV ERAg3p genome. The full-length sequence of each construct was confirmed to be correct before virus recovery. Recombinant virus was successfully recovered from 4 out of the 12 constructs in which 40 the GnRH was inserted at amino terminus immediately after the signal sequence (the recovered virus was named RV ERA-N-GnRH or ERA-N-2GnRH), IIa site (RV ERA-IIa-GnRH), or the junction between the ecto- and transmembrane domains (RV ERA-C-GnRH) of the glycoprotein (see Table 3 45 below). Plasmid transfection tests for virus rescue were repeated in two separate trials if no virus was detected in the first round of recovery. The recovered RV ERA-N-GnRH, ERA-N-2GnRH and ERA-C-GnRH grew well in cell culture, but the ERA-IIa-GnRH virus did not grow efficiently, and the 50 titer was about 100 times lower than its counterparts (FIG. 7B).

TABLE 3

| Recovery of GnRH-carrying ERAg3p viruses |                  |                 |  |  |
|------------------------------------------|------------------|-----------------|--|--|
| Virus construct                          | G gene construct | Virus recovered |  |  |
| ERA-N-GnRH                               | G-N-GnRH         | Yes             |  |  |
| ERA-N-2GnRH                              | G-N-2GnRH        | Yes             |  |  |
| ERA-II-GnRH                              | G-II-GnRH        | No              |  |  |
| ERA-II-2GnRH                             | G-II-2GnRH       | No              |  |  |
| ERA-IIa-GnRH                             | G-IIa-GnRH       | Yes             |  |  |
| ERA-IIa-2GnRH                            | G-IIa-2GnRH      | No              |  |  |
| ERA-WB + GnRH                            | G-WB + GnRH      | No              |  |  |
| ERA-WB + 2GnRH                           | G-WB + 2GnRH     | No              |  |  |
| ERA-III-GnRH                             | G-III-GnRH       | No              |  |  |
| ERA-III-2GnRH                            | G-III-2GnRH      | No              |  |  |

| TABLE | 3-continued | 1 |
|-------|-------------|---|
|       |             |   |

| Recovery of               | GnRH-carrying ERAg3p  | viruses           |
|---------------------------|-----------------------|-------------------|
| Virus construct           | G gene construct      | Virus recovered   |
| ERA-C-GnRH<br>ERA-C-2GnRH | G-C-GnRH<br>G-C-2GnRH | Yes<br>Not tested |

Expression of GnRH in the RV ERAg3p Viruses

The GnRH inserted between the ecto- and transmembrane domains of the G protein may not be in an optimal position for exposure to the virus surface. Thus, the following studies described herein focused on RV ERA-N-2GnRH, ERA-N-GnRH and ERA-IIa-GnRH. Through SDS-PAGE of purified viruses, a typical 5-band pattern was stained by Coomassie blue (FIG. 8A). The G protein bands from RV ERA-N-GnRH and ERA-N-2GnRH were excised from the gel for protein sequence analysis. The amino terminus of the G protein was verified to be blocked after fusion to the GnRH peptide in three independent trials. However, GnRH was detected in the fused G mRNA using Northern-blot in both ERA-N-2GnRH and ERA-N-GnRH viruses (FIG. 8B).

Safety and Potency Against Rabies Using the GnRH-Carrying RV ERAg3p Viruses in a Mouse Model

No obvious side-effects or behavior changes were observed in mice inoculated with RV ERA-N-2GnRH, ERA-N-GnRH or ERA-IIa-GnRH. Surviving animals were challenged 3 weeks post-inoculation with a lethal dose of about 2.5-10.0 MICLD<sub>50</sub> dog/coyote street RV. All control mice developed typical rabies signs, and were euthanized between 8 and 10 days. RV antigen was detected in the brain by DFA. The surviving mice in the GnRH-carrying RV ERAg3p groups did not develop any signs of rabies, and remained healthy before termination of the experiment in 2 months (FIG. 9).

Reaction of Immunized Mouse Serum Using the GnRH-Carrying RV ERAg3p Viruses Against GnRH-KLH and 2GnRH-KLH Conjugates

To compare the reactivity of immunized mouse serum using the GnRH-carrying RV ERA viruses with that of Gona-Con<sup>™</sup> immunized rabbit serum (from the USDA) against GnRH-KLH and 2GnRH-KLH, the peptide conjugates were separated on 4-12% SDS-PAGE gels. In Western blotting, both GnRH-carrying RV ERA immunized mouse serum and GonaCon<sup>™</sup> immunized rabbit serum recognized the GnRH-KLH and 2GnRH-KLH conjugates (FIG. 10). However, each conjugate presented several bands in serology, indicating an un-unified or uncontrollable process in peptide linkage. Reaction of GonaCon<sup>™</sup> Immunized Rabbit Serum Against the GnRH-Carrying RV ERAg3p Viruses

In the IFA, typical cell membrane florescence was observed in the ERA-N-2GnRH, ERA-N-GnRH and ERA-IIa-GnRH infected BSR cells. The staining pattern was compatible with that of rabies G protein in RV-infected cells. In the Western blot using purified virus against GonaCon<sup>TM</sup> immunized rabbit serum, the G protein band was stained, which is an indication of fusion of the GnRH peptide with RV glycoprotein.

#### Example 4

#### In Vivo Studies of ERA-GnRH in Canines

This example describes the testing of ERA-GnRH vaccine constructs (such as those disclosed herein) in dogs to establish safety and efficacy. Recombinant ERA-GnRH virus will be tested in dogs for dual evaluation of rabies efficacy and

20

immunocontraceptive effects for population control. It is hypothesized that ERA-GnRH will elicit rabies virus neutralizing antibody and stabilize the population of the immunized dogs within 3 years after one dose. ERA-GnRH will be administered to approximately 100 dogs (50 male and 50 female) and another 20 dogs will serve as controls. Recombinant rabies viruses will be administrated intramuscularly at a dose of approximately 107 FFU/ml, or will be administered orally at a dose of approximately 10<sup>8</sup> FFU/ml. It is believed that around 70% of the immunized animals will remain sterile for a year, and the litter number will drop at least 50%.

#### Example 5

## Vaccination of Dogs with a Rabies Virus-Based Immunocontraceptive

This example describes a rabies virus-based immunocontraceptive vaccination study to be carried out on rabies virus naïve dogs. Seven groups of stray, fully reproductive adult, rabies naïve dogs will be included in this experiment. The absence of rabies virus neutralizing antibodies (VNAs) in serum will be used to corroborate that the animals are rabies naïve. Groups will consist of 20 animals, each with a 1:1 male to female ratio to ensure that statistical significance for males 25 and females within each group is achievable. Pregnancy will be ruled out before the start of the experiment. In addition, canine transmissible venereal tumor must be discarded in both males and females. All animals will be quarantined (at least 40 days) and undergo mandatory full de-worming.

Two groups (20 animals each) will be vaccinated with 1 mL of recombinant rabies virus (as disclosed herein) on day 0, and administered a single booster on day 21. One group will be vaccinated intramuscularly (i.m) and the other group orally. Two other groups (20 animals each) will be vaccinated with a single dose of 1 mL of recombinant rabies virus by i.m or oral administration on day 0. Control groups (20 animals each) will receive placebo (cell culture media, the same that was used in the virus propagation) intramuscularly or orally (by instillation). A third group, the contraception control group, will receive GonaCon<sup>TM</sup> (a GnRH immunocontraceptive vaccine) by i.m. injection. All groups will be labeled accordingly (such as by using different color collars or with a tattoo indicating the group number). The test and control groups are summarized below.

- Group 1: 20 animals (10 males and 10 females) inoculated <sup>45</sup> with 1 mL of construct by i.m. route, at day 0 and 21.
- Group 2: 20 animals (10 males and 10 females) inoculated with 1 mL of construct by oral route, at day 0 and 21.
- Group 3: 20 animals (10 males and 10 females) inoculated 50 with 1 mL of construct once, i.m. route at day 0.
- Group 4: 20 animals (10 males and 10 females) inoculated with 1 mL of construct once, oral route at day 0.

- Group 5: 20 animals (10 males and 10 females) inoculated with 1 mL of cell culture media by i.m. route.
- Group 6: 20 animals (10 males and 10 females) inoculated with 1 mL of cell culture media by oral route.
- Group 7: Contraception control group with 20 animals (10 males and 10 females) inoculated with 1 mL of Gona-Con<sup>™</sup> by i.m. route.

Caging

For confinement purposes, big cages or kennels (e.g., 5 meters×5 meters) will be used to confine up to 10 dogs each. Males and females will be separated at all times to avoid fighting among males when females are in heat. In addition, the kennels or cages will be sufficient to protect all dogs from sun and rain. Fresh water will be available all the times. Sampling Schedule and Monitoring

Serum samples will be taken from vaccination candidates for screening purposes (up to 200 or more dogs will be tested if necessary) in order to select the 140 appropriate animals (dogs of both genders in reproductive age) with no anti-rabies antibodies (see Table 4).

Serum samples will be taken from all 120 dogs (groups 1 to 6) every week during the entire experiment (days 0, 7, 14, 28, and if possible, 6 months later) to measure the titers of VNA and immunocontraceptive responses.

Contraception Challenge

Animals in all groups will mate with healthy reproductive adults. Ideally, in groups 3 and 4, mating will occur 4 weeks after vaccination (day 28). For animals that receive a booster immunization at day 21, animals should mate between 14 to 21 days after the booster. One healthy stud will be used for every five bitches. Males in placebo control groups can be used as studs for vaccinated dogs and female dogs in these groups will also be mated.

TABLE 4

| 35 | Schedule Prior                                              | to the S | tudy ( | Weel | cs 1-8 | 3)   |   |   |   |
|----|-------------------------------------------------------------|----------|--------|------|--------|------|---|---|---|
|    |                                                             |          |        | Tin  | ne in  | Week | s |   |   |
|    | Activity                                                    | 1        | 2      | 3    | 4      | 5    | 6 | 7 | 8 |
| 10 | Recruiting process                                          | Х        | Х      | х    |        |      |   |   |   |
| 40 | (gathering dogs, potential candidates)                      |          |        |      |        |      |   |   |   |
|    | Pregnancy and CTVT tests                                    | Х        | Х      | Х    |        |      |   |   |   |
|    | De-worming                                                  | Х        | Х      | Х    |        | Х    |   |   |   |
|    | Preventive vaccinations                                     | Х        | Х      | Х    |        |      |   |   |   |
|    | Preventive vaccinations and                                 |          |        |      |        | Х    |   |   |   |
| 45 | treatment booster                                           |          |        |      |        |      |   |   |   |
|    | Bleeding                                                    | Х        | Х      | Х    |        |      |   |   |   |
|    | Shipping sera samples to CDC                                |          |        |      | Х      |      |   |   |   |
|    | Quarantine                                                  | Х        | х      | Х    | Х      | Х    | Х | Х |   |
|    | Detection of RVNA at CDC,                                   |          |        |      |        |      | Х | Х |   |
| 50 | Selection of 120 animals about<br>50% males and 50% females |          |        |      |        |      |   |   | х |

|  | TA | BL | Æ | 5 |
|--|----|----|---|---|
|--|----|----|---|---|

|                                                                    | Sch | edule | for t | he Sti | udy ( | Week | ts 9-2 | 4 and | d up 1 | to 6 n | nontł | ıs) |    |    |                   |
|--------------------------------------------------------------------|-----|-------|-------|--------|-------|------|--------|-------|--------|--------|-------|-----|----|----|-------------------|
|                                                                    |     |       |       |        |       |      | Ti     | me ir | ı Wee  | eks    |       |     |    |    |                   |
| Activity                                                           | 9   | 10    | 11    | 12     | 13    | 14   | 17     | 18    | 19     | 20     | 21    | 22  | 23 | 24 | Up to 6<br>months |
| Immunization with<br>RABV <sup>1</sup> constructs<br>group 3 and 4 | Х   |       |       |        |       |      |        |       |        |        |       |     |    |    |                   |
| Inoculation of<br>placebo to groups 5<br>and 6                     | Х   |       |       |        |       |      |        |       |        |        |       |     |    |    |                   |

|                                                                           | Sche | edule | for t | he St | udy ( | Weel | cs 9-2 | 24 an  | d up  | to 6 r | nontl | 1s) |    |    |                   |
|---------------------------------------------------------------------------|------|-------|-------|-------|-------|------|--------|--------|-------|--------|-------|-----|----|----|-------------------|
|                                                                           |      |       |       |       |       |      | Ti     | me ir  | 1 Wee | eks    |       |     |    |    |                   |
| Activity                                                                  | 9    | 10    | 11    | 12    | 13    | 14   | 17     | 18     | 19    | 20     | 21    | 22  | 23 | 24 | Up to 6<br>months |
| Bleeding for all<br>groups, serum<br>separation and<br>storage at -20° C. | Х    | Х     | Х     | Х     | Х     | Х    | Х      | Х      | Х     | Х      |       |     |    |    |                   |
| Booster with<br>RABV constructs<br>groups 1 and 2                         |      |       |       | х     |       |      |        |        |       |        |       |     |    |    |                   |
| Shipping sera<br>samples to CDC <sup>2</sup>                              |      |       |       |       | Х     |      |        |        | Х     |        |       |     | Х  |    |                   |
| Detection of RVNA <sup>3</sup> at CDC                                     | Х    | Х     | Х     | Х     | Х     | Х    | Х      |        |       |        |       |     |    |    |                   |
| Fertility test for<br>both genders                                        | Х    | Х     | Х     | Х     | Х     | Х    | Х      | Х      |       | Х      |       |     |    |    | Х                 |
| Mating<br>Pregnancy tests                                                 |      |       |       | х     | Х     |      | Х      | X<br>X | х     |        | х     | х   |    | Х  | Х                 |

<sup>1</sup>Recombinant rabies virus;

<sup>2</sup>Centers for Disease Control and Prevention;

<sup>3</sup>Rabies virus neutralizing antibody

It is anticipated that approximately 70% of the immunized <sup>25</sup> animals will remain sterile for a year, and the litter number will drop at least 50%. It is further believed that more than 80% of the animals will survive lethal doses of rabies virus challenge at the end of the study.

#### Example 6

## In Vivo Safety, Immunogenicity and Efficacy Evaluation of Recombinant Rabies Virus Immunocontraceptive Vaccines in a Rodent Model

The first phase of this study will test the efficacy of the rabies virus immunocontraceptive (GnRH) vaccines against rabies virus infections in mice. Twenty 4-week old mice will 40 be divided into groups of males (n=10) and females (n=10) (20 mice for each vaccine, GonaCon<sup>™</sup> and combination of vaccines and GonaCon<sup>TM</sup>), and receive an experimental biologic on day 0 (50 µl via intramuscular injection into the left gastrocnemius muscle). On days 7, 14 and 28, blood will be 45 collected from all mice by the submandibular collection technique and tested for the presence of rabies virus neutralizing antibodies (VNA), antibodies against GnRH, and testosterone and estrogens. Mice with detectable levels of rabies virus neutralizing antibodies will be challenged with rabies virus in 50 the right gastrocnemius muscle on day 28 after vaccination. Animals will be euthanized at the first clinical signs of rabies. Brain and reproductive organs will be collected for histological examination.

Groups: 1) live recombinant vaccine with 1-8 copies of <sup>55</sup> incorporated GnRH (8×20 mice); 2) inactivated recombinant vaccine with incorporated GnRH (20 mice); 3) commercial vaccine (20 mice); 4) GonaCon<sup>™</sup> (20 mice); 5) live recombinant vaccine with incorporated GnRH (20 mice)+Gona-Con<sup>™</sup>; 6) commercial vaccine+GonaCon<sup>™</sup> (20 mice); 7) inactivated recombinant vaccine with incorporated GnRH (20 mice)+GonaCon<sup>™</sup>; 8) control group administered PBS (10 mice).

Expected Outcome: By the end of a 3-month observation 65 period, at least 80% of immunized animals are expected to survive without sign of rabies.

#### Example 7

#### Intramuscular Contraception Trial in Rodents

<sup>30</sup> Vaccination will be conducted as described above. Each group will contain 10 mice of each sex. Animals will be bled on days 7, 14, and 28 after vaccination to measure VNA against rabies virus and GnRH, as well as progesterone in female mice and testosterone in male mice. Each mouse in the recombinant vaccine groups will be matched with a control mouse of the opposite sex (non-vaccinated, fertile) in new housing on day 30 (total 40 mice per group). These 20 pairs will be kept for observation. Females will be checked for pregnancy every 2 days following matching.

To measure longevity of induced immune responses and correlation with infertility, mouse pairs will be kept together for an additional 6 months (or until females are pregnant), if females do not become pregnant within the first 18 days. Mice will be bled via the submandibular route bi-weekly. Female sex organs will be examined for pregnancy after euthanasia.

Expected Outcomes: By the end of 3 months, at least 80% of females are expected not to be pregnant and at least 80% of males are expected not to impregnate non-immunized females. Serological responses will correlate with fertility ratios. Two or more recombinant rabies viruses will be selected for oral contraceptive investigations.

If efficacy (infertility in vaccinated animals of both sexes) is achieved by the intramuscular route, the immunogenicity and efficacy of the vaccine by oral administration will be evaluated. Experimental design will be similar to the i.m. contraception trial.

#### Example 8

### In Vivo Immunogenicity and Safety Study in a Dog Model

Efficacy trial (intramuscular administration): Efficacy of the recombinant immunocontraceptive vaccines against rabies virus infections and their ability to induce immune responses against the GnRH will be tested in male and female dogs. Each group will consist of 8 animals (4 males and 4 females). In the first phase, various selected vaccines, proven to be efficacious and immunogenic in rodent model, will be administered i.m. Blood will be collected on day 0 and subsequently once or twice a week for the first two months and monthly thereafter. Serum will be tested for the presence of rabies virus neutralizing antibodies and antibodies against GnRH. Levels of GnRH, progesterone and testosterone also will be measured. A control group of 4 dogs will receive a placebo injection. Four animals in each group (previously 10vaccinated with one of the generated rabies vaccine constructs with proven titer of rabies virus neutralizing antibodies) will be inoculated with rabies virus in the right gastrocnemius muscle on day 28 after vaccination. Animals will be observed and euthanized (intravenous injection of a barbituric acid derivative) at the first clinical signs of rabies. Brain and reproductive organs will be collected for histological examinations. Design of experimental groups will depend upon results from trials of these vaccines in rodent models. Given previous vaccination, survival of all experimental ani- 20 mals is expected.

Groups (8 Dogs Each): 1) live recombinant vaccine with incorporated GnRH; 2) inactivated recombinant vaccine with incorporated GnRH; 3) commercial vaccine; 4) GonaCon<sup>TM</sup>; 5) rabies vaccine+GonaCon<sup>TM</sup>; 6) APHIS/NWRC recombi-<sup>25</sup> nant GnRH-VLP; and 7) control group (4 dogs). Phase 1 of the immunocontraceptive vaccine experiment would require a maximum of 52-60 animals. Depending upon the results of the safety, immunogenicity, and efficacy experiments with

<160> NUMBER OF SEQ ID NOS: 64

the vaccines administered i.m., oral administration of selected live attenuated vaccines with incorporated GnRH will be tested as well.

Expected Outcomes: By the end of a 1 year observation period, at least 80% of immunized animals are expected to survive without any sign of rabies, and at least some experimental groups are expected to have significant titers of anti-GnRH antibodies and significantly decreased levels of progesterone and testosterone.

Contraception Trial in Dogs: Efficacy of the best experimental vaccine with incorporated GnRH, proven immunogenic in efficacy trials above in rodents and dogs, will be tested for its ability to induce infertility in female dogs following intramuscular administration. The treated and control groups will consist of 10 and 5 animals, respectively.

Expected Outcomes: By the end of a 1 year observation period, at least 80% of immunized animals are expected to remain infertile, with significant titers of anti-GnRH antibodies and decreased levels of progesterone and testosterone. At least 50% of control animals are expected to successfully breed.

This disclosure provides recombinant rabies viruses comprising immunocontraceptive proteins. The disclosure further provides methods of simultaneously protecting non-human animals from rabies virus infection and inhibiting fertility of the animal. It will be apparent that the precise details of the methods described may be varied or modified without departing from the spirit of the described disclosure. We claim all such modifications and variations that fall within the scope and spirit of the claims below.

#### SEQUENCE LISTING

<210> SEO ID NO 1 <211> LENGTH: 11930 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Recombinant Rabies Virus ERA Genome <220> FEATURE: <221> NAME/KEY: misc feature <222> LOCATION: (1)..(58) <223> OTHER INFORMATION: Leader region <220> FEATURE <221> NAME/KEY: CDS <222> LOCATION: (71)..(1420) <223> OTHER INFORMATION: N gene <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1514)..(2404) <223> OTHER INFORMATION: P gene <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (2496)..(3101) <223> OTHER INFORMATION: M gene <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (3317)..(4888) <223> OTHER INFORMATION: G gene <220> FEATURE: <221> NAME/KEY: misc\_feature <222> LOCATION: (4370)..(4370) <223> OTHER INFORMATION: n = a or g <220> FEATURE: <221> NAME/KEY: misc\_feature <222> LOCATION: (4371)..(4371) <223> OTHER INFORMATION: n = g or a <220> FEATURE: <221> NAME/KEY: misc\_feature <222> LOCATION: (4372)..(4372) <223> OTHER INFORMATION: n = a or g

-continued

| <220<br><222<br><222<br><220<br><220<br><222<br><222<br><220<br><222<br><220<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><22<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><222<br><2 | D>       FI         NZ       L         NZ       CO         S       OT         T       NZ         L>       NZ         CO       SI         OT       SI | EATUR<br>AME / I<br>DCATJ<br>FHER<br>EATUR<br>AME / I<br>DCATJ<br>FHER<br>EATUR<br>AME / I<br>DCATJ<br>FHER<br>EQUER | <pre></pre>       | mis<br>(496<br>DRMA<br>CDS<br>(54:<br>DRMA<br>(118<br>DRMA<br>1 | c_fea<br>53)<br>FION:<br>FION:<br>C_fea<br>361).<br>FION: | ture<br>(530)<br>(117)<br>(117)<br>L (<br>ture<br>(11)<br>Tra | :<br>51)<br>i reg<br>Jene<br>:<br>1930)<br>ailen | gion<br>rec       | gion              |                   |                   |                      |                   |                   |                   |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------|-----|
| acgo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ettaa                                                                                                                                                                                                                                                                        | aca a                                                                                                                | accaç             | gatca                                                           | aa aq                                                     | gaaaa                                                         | aaaca                                            | a gao             | catto             | gtca              | atto              | gcaaa                | agc a             | aaaa              | atgtaa            | 60  |
| caco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ccta                                                                                                                                                                                                                                                                         | aca a<br>N                                                                                                           | atg g<br>Met A    | gat q<br>Asp A                                                  | gcc g<br>Ala <i>A</i>                                     | gac a<br>Asp I<br>S                                           | aag a<br>Jys 1<br>5                              | att g<br>[le \    | gta t<br>/al I    | ttc a<br>Phe I    | aaa g<br>Jys N    | gtc a<br>/al à<br>LO | aat a<br>Asn A    | aat d<br>Asn (    | cag<br>Gln        | 109 |
| gtg<br>Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gtc<br>Val<br>15                                                                                                                                                                                                                                                             | tct<br>Ser                                                                                                           | ttg<br>Leu        | aag<br>Lys                                                      | cct<br>Pro                                                | gag<br>Glu<br>20                                              | att<br>Ile                                       | atc<br>Ile        | gtg<br>Val        | gat<br>Asp        | caa<br>Gln<br>25  | cat<br>His           | gag<br>Glu        | tac<br>Tyr        | aag<br>Lys        | 157 |
| tac<br>Tyr<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cct<br>Pro                                                                                                                                                                                                                                                                   | gcc<br>Ala                                                                                                           | atc<br>Ile        | aaa<br>Lys                                                      | gat<br>Asp<br>35                                          | ttg<br>Leu                                                    | aaa<br>Lys                                       | aag<br>Lys        | ccc<br>Pro        | tgt<br>Cys<br>40  | ata<br>Ile        | acc<br>Thr           | cta<br>Leu        | gga<br>Gly        | aag<br>Lys<br>45  | 205 |
| gct<br>Ala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ccc<br>Pro                                                                                                                                                                                                                                                                   | gat<br>Asp                                                                                                           | tta<br>Leu        | aat<br>Asn<br>50                                                | aaa<br>Lys                                                | gca<br>Ala                                                    | tac<br>Tyr                                       | aag<br>Lys        | tca<br>Ser<br>55  | gtt<br>Val        | ttg<br>Leu        | tca<br>Ser           | ggc<br>Gly        | atg<br>Met<br>60  | agc<br>Ser        | 253 |
| gcc<br>Ala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gcc<br>Ala                                                                                                                                                                                                                                                                   | aaa<br>Lys                                                                                                           | ctt<br>Leu<br>65  | gat<br>Asp                                                      | cct<br>Pro                                                | gac<br>Asp                                                    | gat<br>Asp                                       | gta<br>Val<br>70  | tgt<br>Cys        | tcc<br>Ser        | tat<br>Tyr        | ttg<br>Leu           | gca<br>Ala<br>75  | gcg<br>Ala        | gca<br>Ala        | 301 |
| atg<br>Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cag<br>Gln                                                                                                                                                                                                                                                                   | ttt<br>Phe<br>80                                                                                                     | ttt<br>Phe        | gag<br>Glu                                                      | ggg<br>Gly                                                | aca<br>Thr                                                    | tgt<br>Cys<br>85                                 | ccg<br>Pro        | gaa<br>Glu        | gac<br>Asp        | tgg<br>Trp        | acc<br>Thr<br>90     | agc<br>Ser        | tat<br>Tyr        | gga<br>Gly        | 349 |
| atc<br>Ile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gtg<br>Val<br>95                                                                                                                                                                                                                                                             | att<br>Ile                                                                                                           | gca<br>Ala        | cga<br>Arg                                                      | aaa<br>Lys                                                | gga<br>Gly<br>100                                             | gat<br>Asp                                       | aag<br>Lys        | atc<br>Ile        | acc<br>Thr        | cca<br>Pro<br>105 | ggt<br>Gly           | tct<br>Ser        | ctg<br>Leu        | gtg<br>Val        | 397 |
| gag<br>Glu<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ata<br>Ile                                                                                                                                                                                                                                                                   | aaa<br>Lys                                                                                                           | cgt<br>Arg        | act<br>Thr                                                      | gat<br>Asp<br>115                                         | gta<br>Val                                                    | gaa<br>Glu                                       | ggg<br>Gly        | aat<br>Asn        | tgg<br>Trp<br>120 | gct<br>Ala        | ctg<br>Leu           | aca<br>Thr        | gga<br>Gly        | ggc<br>Gly<br>125 | 445 |
| atg<br>Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gaa<br>Glu                                                                                                                                                                                                                                                                   | ctg<br>Leu                                                                                                           | aca<br>Thr        | aga<br>Arg<br>130                                               | gac<br>Asp                                                | ccc<br>Pro                                                    | act<br>Thr                                       | gtc<br>Val        | cct<br>Pro<br>135 | gag<br>Glu        | cat<br>His        | gcg<br>Ala           | tcc<br>Ser        | tta<br>Leu<br>140 | gtc<br>Val        | 493 |
| ggt<br>Gly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ctt<br>Leu                                                                                                                                                                                                                                                                   | ctc<br>Leu                                                                                                           | ttg<br>Leu<br>145 | agt<br>Ser                                                      | ctg<br>Leu                                                | tat<br>Tyr                                                    | agg<br>Arg                                       | ttg<br>Leu<br>150 | agc<br>Ser        | aaa<br>Lys        | ata<br>Ile        | tcc<br>Ser           | 999<br>Gly<br>155 | caa<br>Gln        | aac<br>Asn        | 541 |
| act<br>Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ggt<br>Gly                                                                                                                                                                                                                                                                   | aac<br>Asn<br>160                                                                                                    | tat<br>Tyr        | aag<br>Lys                                                      | aca<br>Thr                                                | aac<br>Asn                                                    | att<br>Ile<br>165                                | gca<br>Ala        | gac<br>Asp        | agg<br>Arg        | ata<br>Ile        | gag<br>Glu<br>170    | cag<br>Gln        | att<br>Ile        | ttt<br>Phe        | 589 |
| gag<br>Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aca<br>Thr<br>175                                                                                                                                                                                                                                                            | gcc<br>Ala                                                                                                           | cct<br>Pro        | ttt<br>Phe                                                      | gtt<br>Val                                                | aaa<br>Lys<br>180                                             | atc<br>Ile                                       | gtg<br>Val        | gaa<br>Glu        | cac<br>His        | cat<br>His<br>185 | act<br>Thr           | cta<br>Leu        | atg<br>Met        | aca<br>Thr        | 637 |
| act<br>Thr<br>190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cac<br>His                                                                                                                                                                                                                                                                   | aaa<br>Lys                                                                                                           | atg<br>Met        | tgt<br>Cys                                                      | gct<br>Ala<br>195                                         | aat<br>Asn                                                    | tgg<br>Trp                                       | agt<br>Ser        | act<br>Thr        | ata<br>Ile<br>200 | cca<br>Pro        | aac<br>Asn           | ttc<br>Phe        | aga<br>Arg        | ttt<br>Phe<br>205 | 685 |
| ttg<br>Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gcc<br>Ala                                                                                                                                                                                                                                                                   | gga<br>Gly                                                                                                           | acc<br>Thr        | tat<br>Tyr<br>210                                               | gac<br>Asp                                                | atg<br>Met                                                    | ttt<br>Phe                                       | ttc<br>Phe        | tcc<br>Ser<br>215 | cgg<br>Arg        | att<br>Ile        | gag<br>Glu           | cat<br>His        | cta<br>Leu<br>220 | tat<br>Tyr        | 733 |
| tca<br>Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gca<br>Ala                                                                                                                                                                                                                                                                   | atc<br>Ile                                                                                                           | aga<br>Arg<br>225 | gtg<br>Val                                                      | ggc<br>Gly                                                | aca<br>Thr                                                    | gtt<br>Val                                       | gtc<br>Val<br>230 | act<br>Thr        | gct<br>Ala        | tat<br>Tyr        | gaa<br>Glu           | gac<br>Asp<br>235 | tgt<br>Cys        | tca<br>Ser        | 781 |
| gga<br>Gly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ctg<br>Leu                                                                                                                                                                                                                                                                   | gta<br>Val<br>240                                                                                                    | tca<br>Ser        | ttt<br>Phe                                                      | act<br>Thr                                                | gjà<br>dâð                                                    | ttc<br>Phe<br>245                                | ata<br>Ile        | aaa<br>Lys        | caa<br>Gln        | atc<br>Ile        | aat<br>Asn<br>250    | ctc<br>Leu        | acc<br>Thr        | gct<br>Ala        | 829 |

## -continued

| aga<br>Arg        | gag<br>Glu<br>255 | gca<br>Ala        | ata<br>Ile        | cta<br>Leu        | tat<br>Tyr        | ttc<br>Phe<br>260 | ttc<br>Phe        | cac<br>His        | aag<br>Lys        | aac<br>Asn        | ttt<br>Phe<br>265 | gag<br>Glu        | gaa<br>Glu        | gag<br>Glu        | ata<br>Ile        | 877  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| aga<br>Arg<br>270 | aga<br>Arg        | atg<br>Met        | ttt<br>Phe        | gag<br>Glu        | cca<br>Pro<br>275 | ggg<br>Gly        | cag<br>Gln        | gag<br>Glu        | aca<br>Thr        | gct<br>Ala<br>280 | gtt<br>Val        | cct<br>Pro        | cac<br>His        | tct<br>Ser        | tat<br>Tyr<br>285 | 925  |
| ttc<br>Phe        | atc<br>Ile        | cac<br>His        | ttc<br>Phe        | cgt<br>Arg<br>290 | tca<br>Ser        | cta<br>Leu        | ggc<br>Gly        | ttg<br>Leu        | agt<br>Ser<br>295 | 999<br>Gly        | aaa<br>Lys        | tct<br>Ser        | cct<br>Pro        | tat<br>Tyr<br>300 | tca<br>Ser        | 973  |
| tca<br>Ser        | aat<br>Asn        | gct<br>Ala        | gtt<br>Val<br>305 | ggt<br>Gly        | cac<br>His        | gtg<br>Val        | ttc<br>Phe        | aat<br>Asn<br>310 | ctc<br>Leu        | att<br>Ile        | cac<br>His        | ttt<br>Phe        | gta<br>Val<br>315 | gga<br>Gly        | tgc<br>Cys        | 1021 |
| tat<br>Tyr        | atg<br>Met        | ggt<br>Gly<br>320 | caa<br>Gln        | gtc<br>Val        | aga<br>Arg        | tcc<br>Ser        | cta<br>Leu<br>325 | aat<br>Asn        | gca<br>Ala        | acg<br>Thr        | gtt<br>Val        | att<br>Ile<br>330 | gct<br>Ala        | gca<br>Ala        | tgt<br>Cys        | 1069 |
| gct<br>Ala        | cct<br>Pro<br>335 | cat<br>His        | gaa<br>Glu        | atg<br>Met        | tct<br>Ser        | gtt<br>Val<br>340 | cta<br>Leu        | ggg<br>ggg        | ggc<br>Gly        | tat<br>Tyr        | ctg<br>Leu<br>345 | gga<br>Gly        | gag<br>Glu        | gaa<br>Glu        | ttc<br>Phe        | 1117 |
| ttc<br>Phe<br>350 | ggg<br>ggg        | aaa<br>Lys        | glà<br>aaa        | aca<br>Thr        | ttt<br>Phe<br>355 | gaa<br>Glu        | aga<br>Arg        | aga<br>Arg        | ttc<br>Phe        | ttc<br>Phe<br>360 | aga<br>Arg        | gat<br>Asp        | gag<br>Glu        | aaa<br>Lys        | gaa<br>Glu<br>365 | 1165 |
| ctt<br>Leu        | caa<br>Gln        | gaa<br>Glu        | tac<br>Tyr        | gag<br>Glu<br>370 | gcg<br>Ala        | gct<br>Ala        | gaa<br>Glu        | ctg<br>Leu        | aca<br>Thr<br>375 | aag<br>Lys        | act<br>Thr        | gac<br>Asp        | gta<br>Val        | gca<br>Ala<br>380 | ctg<br>Leu        | 1213 |
| gca<br>Ala        | gat<br>Asp        | gat<br>Asp        | gga<br>Gly<br>385 | act<br>Thr        | gtc<br>Val        | aac<br>Asn        | tct<br>Ser        | gac<br>Asp<br>390 | gac<br>Asp        | gag<br>Glu        | gac<br>Asp        | tac<br>Tyr        | ttc<br>Phe<br>395 | tca<br>Ser        | ggt<br>Gly        | 1261 |
| gaa<br>Glu        | acc<br>Thr        | aga<br>Arg<br>400 | agt<br>Ser        | ccg<br>Pro        | gag<br>Glu        | gct<br>Ala        | gtt<br>Val<br>405 | tat<br>Tyr        | act<br>Thr        | cga<br>Arg        | atc<br>Ile        | atg<br>Met<br>410 | atg<br>Met        | aat<br>Asn        | gga<br>Gly        | 1309 |
| ggt<br>Gly        | cga<br>Arg<br>415 | cta<br>Leu        | aag<br>Lys        | aga<br>Arg        | tct<br>Ser        | cac<br>His<br>420 | ata<br>Ile        | cgg<br>Arg        | aga<br>Arg        | tat<br>Tyr        | gtc<br>Val<br>425 | tca<br>Ser        | gtc<br>Val        | agt<br>Ser        | tcc<br>Ser        | 1357 |
| aat<br>Asn<br>430 | cat<br>His        | caa<br>Gln        | gcc<br>Ala        | cgt<br>Arg        | cca<br>Pro<br>435 | aac<br>Asn        | tca<br>Ser        | ttc<br>Phe        | gcc<br>Ala        | gag<br>Glu<br>440 | ttt<br>Phe        | cta<br>Leu        | aac<br>Asn        | aag<br>Lys        | aca<br>Thr<br>445 | 1405 |
| tat<br>Tyr        | tcg<br>Ser        | agt<br>Ser        | gac<br>Asp        | tca<br>Ser<br>450 | taaç              | gaagt             | tg a              | aacaa             | icaaa             | aa to             | lacdé             | gaaat             | t eta             | acgga             | attg              | 1460 |
| tgta              | atato             | cca t             | cato              | gaaaa             | aa aa             | actaa             | acaco             | e eet             | cctt              | tcg               | aaco              | catco             | cca a             | aac a<br>N        | atg<br>4et        | 1516 |
| agc<br>Ser        | aag<br>Lys        | atc<br>Ile        | ttt<br>Phe<br>455 | gtc<br>Val        | aat<br>Asn        | cct<br>Pro        | agt<br>Ser        | gct<br>Ala<br>460 | att<br>Ile        | aga<br>Arg        | gcc<br>Ala        | ggt<br>Gly        | ctg<br>Leu<br>465 | gcc<br>Ala        | gat<br>Asp        | 1564 |
| ctt<br>Leu        | gag<br>Glu        | atg<br>Met<br>470 | gct<br>Ala        | gaa<br>Glu        | gaa<br>Glu        | act<br>Thr        | gtt<br>Val<br>475 | gat<br>Asp        | ctg<br>Leu        | atc<br>Ile        | aat<br>Asn        | aga<br>Arg<br>480 | aat<br>Asn        | atc<br>Ile        | gaa<br>Glu        | 1612 |
| gac<br>Asp        | aat<br>Asn<br>485 | cag<br>Gln        | gct<br>Ala        | cat<br>His        | ctc<br>Leu        | caa<br>Gln<br>490 | glà<br>dââ        | gaa<br>Glu        | ccc<br>Pro        | ata<br>Ile        | gaa<br>Glu<br>495 | gtg<br>Val        | gac<br>Asp        | aat<br>Asn        | ctc<br>Leu        | 1660 |
| cct<br>Pro<br>500 | gag<br>Glu        | gat<br>Asp        | atg<br>Met        | ggg<br>ggg        | cga<br>Arg<br>505 | ctt<br>Leu        | cac<br>His        | ctg<br>Leu        | gat<br>Asp        | gat<br>Asp<br>510 | gga<br>Gly        | aaa<br>Lys        | tcg<br>Ser        | ccc<br>Pro        | aac<br>Asn<br>515 | 1708 |
| cct<br>Pro        | ggt<br>Gly        | gag<br>Glu        | atg<br>Met        | gcc<br>Ala<br>520 | aag<br>Lys        | gtg<br>Val        | gga<br>Gly        | gaa<br>Glu        | ggc<br>Gly<br>525 | aag<br>Lys        | tat<br>Tyr        | cga<br>Arg        | gag<br>Glu        | gac<br>Asp<br>530 | ttt<br>Phe        | 1756 |
| cag<br>Gln        | atg<br>Met        | gat<br>Asp        | gaa<br>Glu<br>535 | gga<br>Gly        | gag<br>Glu        | gat<br>Asp        | ctt<br>Leu        | agc<br>Ser<br>540 | ttc<br>Phe        | ctg<br>Leu        | ttc<br>Phe        | cag<br>Gln        | tca<br>Ser<br>545 | tac<br>Tyr        | ctg<br>Leu        | 1804 |

## -continued

| gaa<br>Glu        | aat<br>Asn        | gtt<br>Val<br>550 | gga<br>Gly        | gtc<br>Val        | caa<br>Gln        | ata<br>Ile        | gtc<br>Val<br>555 | aga<br>Arg        | caa<br>Gln        | atg<br>Met        | agg<br>Arg        | tca<br>Ser<br>560    | gga<br>Gly           | gag<br>Glu        | aga<br>Arg        | 1852 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|----------------------|-------------------|-------------------|------|
| ttt<br>Phe        | ctc<br>Leu<br>565 | aag<br>Lys        | ata<br>Ile        | tgg<br>Trp        | tca<br>Ser        | cag<br>Gln<br>570 | acc<br>Thr        | gta<br>Val        | gaa<br>Glu        | gag<br>Glu        | att<br>Ile<br>575 | ata<br>Ile           | tcc<br>Ser           | tat<br>Tyr        | gtc<br>Val        | 1900 |
| gcg<br>Ala<br>580 | gtc<br>Val        | aac<br>Asn        | ttt<br>Phe        | ccc<br>Pro        | aac<br>Asn<br>585 | cct<br>Pro        | cca<br>Pro        | gga<br>Gly        | aag<br>Lys        | tct<br>Ser<br>590 | tca<br>Ser        | gag<br>Glu           | gat<br>Asp           | aaa<br>Lys        | tca<br>Ser<br>595 | 1948 |
| acc<br>Thr        | cag<br>Gln        | act<br>Thr        | act<br>Thr        | ggc<br>Gly<br>600 | cga<br>Arg        | gag<br>Glu        | ctc<br>Leu        | aag<br>Lys        | aag<br>Lys<br>605 | gag<br>Glu        | aca<br>Thr        | aca<br>Thr           | ccc<br>Pro           | act<br>Thr<br>610 | cct<br>Pro        | 1996 |
| tct<br>Ser        | cag<br>Gln        | aga<br>Arg        | gaa<br>Glu<br>615 | agc<br>Ser        | caa<br>Gln        | tca<br>Ser        | tcg<br>Ser        | aaa<br>Lys<br>620 | gcc<br>Ala        | agg<br>Arg        | atg<br>Met        | gcg<br>Ala           | gct<br>Ala<br>625    | caa<br>Gln        | att<br>Ile        | 2044 |
| gct<br>Ala        | tct<br>Ser        | ggc<br>Gly<br>630 | cct<br>Pro        | cca<br>Pro        | gcc<br>Ala        | ctt<br>Leu        | gaa<br>Glu<br>635 | tgg<br>Trp        | tcg<br>Ser        | gcc<br>Ala        | acc<br>Thr        | aat<br>Asn<br>640    | gaa<br>Glu           | gag<br>Glu        | gat<br>Asp        | 2092 |
| gat<br>Asp        | cta<br>Leu<br>645 | tca<br>Ser        | gtg<br>Val        | gag<br>Glu        | gct<br>Ala        | gag<br>Glu<br>650 | atc<br>Ile        | gct<br>Ala        | cac<br>His        | cag<br>Gln        | att<br>Ile<br>655 | gca<br>Ala           | gaa<br>Glu           | agt<br>Ser        | ttc<br>Phe        | 2140 |
| tcc<br>Ser<br>660 | aaa<br>Lys        | aaa<br>Lys        | tat<br>Tyr        | aag<br>Lys        | ttt<br>Phe<br>665 | ccc<br>Pro        | tct<br>Ser        | cga<br>Arg        | tcc<br>Ser        | tca<br>Ser<br>670 | ggg<br>gly        | ata<br>Ile           | ctc<br>Leu           | ttg<br>Leu        | tat<br>Tyr<br>675 | 2188 |
| aat<br>Asn        | ttt<br>Phe        | gag<br>Glu        | caa<br>Gln        | ttg<br>Leu<br>680 | aaa<br>Lys        | atg<br>Met        | aac<br>Asn        | ctt<br>Leu        | gat<br>Asp<br>685 | gat<br>Asp        | ata<br>Ile        | gtt<br>Val           | aaa<br>Lys           | gag<br>Glu<br>690 | gca<br>Ala        | 2236 |
| aaa<br>Lys        | aat<br>Asn        | gta<br>Val        | cca<br>Pro<br>695 | ggt<br>Gly        | gtg<br>Val        | acc<br>Thr        | cgt<br>Arg        | tta<br>Leu<br>700 | gcc<br>Ala        | cat<br>His        | gac<br>Asp        | glà<br>daa           | tcc<br>Ser<br>705    | aaa<br>Lys        | ctc<br>Leu        | 2284 |
| ccc<br>Pro        | cta<br>Leu        | aga<br>Arg<br>710 | tgt<br>Cys        | gta<br>Val        | ctg<br>Leu        | gga<br>Gly        | tgg<br>Trp<br>715 | gtc<br>Val        | gct<br>Ala        | ttg<br>Leu        | gcc<br>Ala        | aac<br>Asn<br>720    | cct<br>Pro           | aag<br>Lys        | aaa<br>Lys        | 2332 |
| ttc<br>Phe        | cag<br>Gln<br>725 | ttg<br>Leu        | tta<br>Leu        | gtc<br>Val        | gaa<br>Glu        | tcc<br>Ser<br>730 | gac<br>Asp        | aag<br>Lys        | ctg<br>Leu        | agt<br>Ser        | aaa<br>Lys<br>735 | atc<br>Ile           | atg<br>Met           | caa<br>Gln        | gat<br>Asp        | 2380 |
| gac<br>Asp<br>740 | ttg<br>Leu        | aat<br>Asn        | cgc<br>Arg        | tat<br>Tyr        | aca<br>Thr<br>745 | tct<br>Ser        | tgc<br>Cys        | taad              | cgaa              | acc 1             | tete              | cact                 | ca gt                | ceet              | ctag              | 2434 |
| acaa              | ataaa             | agt (             | ccga              | gatg              | tc ci             | taaa              | gtcaa             | a cat             | gaaa              | aaaa              | aca               | ggca                 | aca d                | ccact             | gataa             | 2494 |
| a au<br>Me        | et Af             | sn Pl<br>75       | ne Le<br>50       | eu A              | gt að<br>rg Ly    | ag a<br>ys I:     | le Va<br>75       | al Ly<br>55       | ia ao<br>75 Ai    | an Cy             | ys A:             | 99 94<br>rg Ai<br>76 | ac ga<br>sp GI<br>60 | lu As             | sp Thr            | 2543 |
| caa<br>Gln        | aaa<br>Lys<br>765 | ccc<br>Pro        | tct<br>Ser        | ccc<br>Pro        | gtg<br>Val        | tca<br>Ser<br>770 | gcc<br>Ala        | cct<br>Pro        | ctg<br>Leu        | gat<br>Asp        | gac<br>Asp<br>775 | gat<br>Asp           | gac<br>Asp           | ttg<br>Leu        | tgg<br>Trp        | 2591 |
| ctt<br>Leu<br>780 | cca<br>Pro        | ccc<br>Pro        | cct<br>Pro        | gaa<br>Glu        | tac<br>Tyr<br>785 | gtc<br>Val        | ccg<br>Pro        | ctg<br>Leu        | aaa<br>Lys        | gaa<br>Glu<br>790 | ctt<br>Leu        | aca<br>Thr           | agc<br>Ser           | aag<br>Lys        | aag<br>Lys<br>795 | 2639 |
| aac<br>Asn        | atg<br>Met        | agg<br>Arg        | aac<br>Asn        | ttt<br>Phe<br>800 | tgt<br>Cys        | atc<br>Ile        | aac<br>Asn        | gga<br>Gly        | 999<br>Gly<br>805 | gtt<br>Val        | aaa<br>Lys        | gtg<br>Val           | tgt<br>Cys           | agc<br>Ser<br>810 | ccg<br>Pro        | 2687 |
| aat<br>Asn        | ggt<br>Gly        | tac<br>Tyr        | tcg<br>Ser<br>815 | ttc<br>Phe        | agg<br>Arg        | atc<br>Ile        | ctg<br>Leu        | cgg<br>Arg<br>820 | cac<br>His        | att<br>Ile        | ctg<br>Leu        | aaa<br>Lys           | tca<br>Ser<br>825    | ttc<br>Phe        | gac<br>Asp        | 2735 |
| gag<br>Glu        | ata<br>Ile        | tat<br>Tyr<br>830 | tct<br>Ser        | glà<br>aaa        | aat<br>Asn        | cat<br>His        | agg<br>Arg<br>835 | atg<br>Met        | atc<br>Ile        | gly<br>ggg        | tta<br>Leu        | gcc<br>Ala<br>840    | aaa<br>Lys           | gta<br>Val        | gtt<br>Val        | 2783 |
| att<br>Ile        | gga<br>Gly        | ctg<br>Leu        | gct<br>Ala        | ttg<br>Leu        | tca<br>Ser        | gga<br>Gly        | tct<br>Ser        | cca<br>Pro        | gtc<br>Val        | cct<br>Pro        | gag<br>Glu        | ggc<br>Gly           | atg<br>Met           | aac<br>Asn        | tgg<br>Trp        | 2831 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 855                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| gta tac aaa ttg agg ag<br>Val Tyr Lys Leu Arg Ar<br>860 86                                                                                                                                                                                                                                                                                                                                                                                                                                  | a acc ttt atc ttc cag<br>g Thr Phe Ile Phe Gln<br>5 870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tgg gct gat tcc agg<br>Trp Ala Asp Ser Arg<br>875                                                                                                                                                                                                                                                                                                                        | 2879                                                 |
| ggc cct ctt gaa ggg ga<br>Gly Pro Leu Glu Gly Gl<br>880                                                                                                                                                                                                                                                                                                                                                                                                                                     | g gag ttg gaa tac tct<br>n Glu Leu Glu Tyr Ser<br>885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cag gag atc act tgg<br>Gln Glu Ile Thr Trp<br>890                                                                                                                                                                                                                                                                                                                        | 2927                                                 |
| gat gat gat act gag tt<br>Asp Asp Asp Thr Glu Ph<br>895                                                                                                                                                                                                                                                                                                                                                                                                                                     | c gtc gga ttg caa ata<br>e Val Gly Leu Gln Ile<br>900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | aga gtg att gca aaa<br>Arg Val Ile Ala Lys<br>905                                                                                                                                                                                                                                                                                                                        | 2975                                                 |
| cag tgt cat atc cag gg<br>Gln Cys His Ile Gln Gl<br>910                                                                                                                                                                                                                                                                                                                                                                                                                                     | c aga atc tgg tgt atc<br>/ Arg Ile Trp Cys Ile<br>915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | aac atg aac ccg aga<br>Asn Met Asn Pro Arg<br>920                                                                                                                                                                                                                                                                                                                        | 3023                                                 |
| gca tgt caa cta tgg tc<br>Ala Cys Gln Leu Trp Se<br>925                                                                                                                                                                                                                                                                                                                                                                                                                                     | t gac atg tct ctt cag<br>r Asp Met Ser Leu Gln<br>930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | aca caa agg tcc gaa<br>Thr Gln Arg Ser Glu<br>935                                                                                                                                                                                                                                                                                                                        | 3071                                                 |
| gag gac aaa gat tcc tc<br>Glu Asp Lys Asp Ser Se<br>940 94                                                                                                                                                                                                                                                                                                                                                                                                                                  | t ctg ctt cta gaa taa<br>2 Leu Leu Leu Glu<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tcagatt atatcccgca                                                                                                                                                                                                                                                                                                                                                       | 3121                                                 |
| aatttatcac ttgtttacct                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tggaggaga gaacatatgg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gctcaactcc aacccttggg                                                                                                                                                                                                                                                                                                                                                    | 3181                                                 |
| agcaatataa caaaaaacat                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | yttatggtgc cattaaaccg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ctgcatttca tcaaagtcaa                                                                                                                                                                                                                                                                                                                                                    | 3241                                                 |
| gttgattacc tttacatttt                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gateetettg gatgtgaaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | aaactattaa catccctcaa                                                                                                                                                                                                                                                                                                                                                    | 3301                                                 |
| aagactcaag gaaag atg g<br>Met V<br>950                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t cct cag gct ctc ct<br>al Pro Gln Ala Leu Le<br>955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g ttt gta ccc ctt ctg<br>u Phe Val Pro Leu Leu<br>960                                                                                                                                                                                                                                                                                                                    | 3352                                                 |
| gtt ttt cca ttg tgt tt<br>Val Phe Pro Leu Cys Ph<br>965                                                                                                                                                                                                                                                                                                                                                                                                                                     | ggg aaa ttc cct att<br>Gly Lys Phe Pro Ile<br>970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tac acg ata cca gac<br>Tyr Thr Ile Pro Asp<br>975                                                                                                                                                                                                                                                                                                                        | 3400                                                 |
| aag ctt ggt ccc tgg ag<br>Lys Leu Gly Pro Trp Se<br>980                                                                                                                                                                                                                                                                                                                                                                                                                                     | c ccg att gac ata cat<br>r Pro Ile Asp Ile His<br>985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cac ctc agc tgc cca<br>His Leu Ser Cys Pro<br>990                                                                                                                                                                                                                                                                                                                        | 3448                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g gac gaa gga tgc ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c aac ctg tca ggg ttc<br>r Asn Leu Ser Gly Phe                                                                                                                                                                                                                                                                                                                           | 3496                                                 |
| aac aat ttg gta gtg ga<br>Asn Asn Leu Val Val Gl<br>995                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1005                                                                                                                                                                                                                                                                                                                                                                     |                                                      |
| aac aat ttg gta gtg ga<br>Asn Asn Leu Val Val Gl<br>995<br>tcc tac atg gaa ctt a<br>Ser Tyr Met Glu Leu L<br>1010 1                                                                                                                                                                                                                                                                                                                                                                         | aa gtt gga tac atc t<br>Val Gly Tyr Ile L<br>D15 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1005<br>ta gcc ata aaa atg<br>eu Ala Ile Lys Met<br>020                                                                                                                                                                                                                                                                                                                  | 3541                                                 |
| aac aat ttg gta gtg ga<br>Asn Asn Leu Val Val Gi<br>995<br>tcc tac atg gaa ctt a<br>Ser Tyr Met Glu Leu L<br>1010 1<br>aac ggg ttc act tgc a<br>Asn Gly Phe Thr Cys T<br>1025 1                                                                                                                                                                                                                                                                                                             | aa gtt gga tac atc t<br>rs Val Gly Tyr Ile L<br>D15 1<br>ca ggc gtt gtg acg g<br>nr Gly Val Val Thr G<br>D30 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1005<br>ta gcc ata aaa atg<br>eu Ala Ile Lys Met<br>020<br>ag gct gaa acc tat<br>lu Ala Glu Thr Tyr<br>035                                                                                                                                                                                                                                                               | 3541<br>3586                                         |
| aac aat ttg gta gtg ga<br>Asn Asn Leu Val Val Gl<br>995<br>tcc tac atg gaa ctt a<br>Ser Tyr Met Glu Leu D<br>1010 1<br>aac ggg ttc act tgc a<br>Asn Gly Phe Thr Cys T<br>1025 1<br>act aac ttc gtt ggt t<br>Thr Asn Phe Val Gly T<br>1040 1                                                                                                                                                                                                                                                 | 1000         aa       gtt       gga       tac       atc       t         zs       Val       Gly       Tyr       Ile       L         015       1       1       1       L       L       L         ca       ggc       gtt       gtg       acg       g       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L </td <td>1005<br/>ta gcc ata aaa atg<br/>eu Ala Ile Lys Met<br/>020<br/>ag gct gaa acc tat<br/>lu Ala Glu Thr Tyr<br/>035<br/>tc aaa aga aag cat<br/>he Lys Arg Lys His<br/>050</td> <td>3541<br/>3586<br/>3631</td>                                                                                                                                    | 1005<br>ta gcc ata aaa atg<br>eu Ala Ile Lys Met<br>020<br>ag gct gaa acc tat<br>lu Ala Glu Thr Tyr<br>035<br>tc aaa aga aag cat<br>he Lys Arg Lys His<br>050                                                                                                                                                                                                            | 3541<br>3586<br>3631                                 |
| aac aat ttg gta gtg ga<br>Asn Asn Leu Val Val Gl<br>995<br>tcc tac atg gaa ctt a<br>Ser Tyr Met Glu Leu L<br>1010 1<br>aac ggg ttc act tgc a<br>Asn Gly Phe Thr Cys T<br>1025 1<br>act aac ttc gtt ggt t<br>Thr Asn Phe Val Gly T<br>1040 1<br>ttc cgc cca aca cca g<br>Phe Arg Pro Thr Pro A<br>1055 1                                                                                                                                                                                     | Asp       Glu Gly Cys       In         1000       aa       gtt gga tac atc t         zs       Val Gly Tyr Ile L       D15       1         ca       ggc gtt gtg acg g       nr       Gly Val Val Thr G         015       1       1       1         ca       ggc gtt gtg acg g       1         ca       ggc gtt aca acc acg t       1         at       gtc aca acc acg t       1         vr       Val Thr Thr Thr P       1         045       1       1         at       gca tgt aga gcc g       3         ap       Ala Cys Arg Ala A       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1005<br>ta gcc ata aaa atg<br>eu Ala Ile Lys Met<br>020<br>ag gct gaa acc tat<br>lu Ala Glu Thr Tyr<br>035<br>tc aaa aga aag cat<br>he Lys Arg Lys His<br>050<br>cg tac aac tgg aag<br>la Tyr Asn Trp Lys<br>065                                                                                                                                                         | 3541<br>3586<br>3631<br>3676                         |
| aac aat ttg gta gtg ga<br>Asn Asn Leu Val Val Gl<br>995<br>tcc tac atg gaa ctt a<br>Ser Tyr Met Glu Leu L<br>1010 1<br>aac ggg ttc act tgc a<br>Asn Gly Phe Thr Cys T<br>1025 1<br>act aac ttc gtt ggt t<br>Thr Asn Phe Val Gly T<br>1040 1<br>ttc cgc cca aca cca g<br>Phe Arg Pro Thr Pro A<br>1055 1<br>atg gcc ggt gac ccc a<br>Met Ala Gly Asp Pro A<br>1070 1                                                                                                                         | 1000         aa       gtt       gga       tac       atc       t         ys       Val       Gly       Tyr       Ile       L         bl5       1       1       1       L       L       L         ca       ggc       gtt       gtg       acg       g       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L </td <td>1005<br/>ta gcc ata aaa atg<br/>eu Ala Ile Lys Met<br/>2020<br/>ag gct gaa acc tat<br/>lu Ala Glu Thr Tyr<br/>2035<br/>tc aaa aga aag cat<br/>he Lys Arg Lys His<br/>2050<br/>cg tac aac tgg aag<br/>la Tyr Asn Trp Lys<br/>2065<br/>ta cac aat ccg tac<br/>eu His Asn Pro Tyr<br/>2080</td> <td>3541<br/>3586<br/>3631<br/>3676<br/>3721</td> | 1005<br>ta gcc ata aaa atg<br>eu Ala Ile Lys Met<br>2020<br>ag gct gaa acc tat<br>lu Ala Glu Thr Tyr<br>2035<br>tc aaa aga aag cat<br>he Lys Arg Lys His<br>2050<br>cg tac aac tgg aag<br>la Tyr Asn Trp Lys<br>2065<br>ta cac aat ccg tac<br>eu His Asn Pro Tyr<br>2080                                                                                                 | 3541<br>3586<br>3631<br>3676<br>3721                 |
| aacaatttggtagtggaAsnAsnLeuValValGl995TyrMetGluLeuLeu101011aacgggttcacttgc1025GlyPheThrCys102511actaacttcgttggtThrAsnPheValGlyT1040111ttccgcccaacaccaPheArgProThrProA1055111atggccggtgaccccaNetAlaGlyAspProA10701111cctgactaccactggcProAspTyrHisTrpL10851111                                                                                                                                                                                                                                 | 1000         aa       gtt       gga       tac       atc       t         ys       Val       Gly       Tyr       Ile       L         bl5       1       1       1       L       L       L         ca       ggc       gtt       gtg       acc       acg       g       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L                                                                                                                                                                                                                                                                                                                                                       | 1005<br>ta gcc ata aaa atg<br>eu Ala Ile Lys Met<br>2020<br>ag gct gaa acc tat<br>lu Ala Glu Thr Tyr<br>2035<br>tc aaa aga aag cat<br>he Lys Arg Lys His<br>2050<br>cg tac aac tgg aag<br>la Tyr Asn Trp Lys<br>2065<br>ta cac aat ccg tac<br>eu His Asn Pro Tyr<br>2080<br>cc acc aag gag tct<br>hr Thr Lys Glu Ser<br>2095                                             | 3541<br>3586<br>3631<br>3676<br>3721                 |
| aac aat ttg gta gtg ga<br>Asn Asn Leu Val Val Gl<br>995<br>tcc tac atg gaa ctt a<br>Ser Tyr Met Glu Leu L<br>1<br>aac ggg ttc act tgc a<br>Asn Gly Phe Thr Cys T<br>1025<br>act aac ttc gtt ggt t<br>Thr Asn Phe Val Gly T<br>1040<br>ttc cgc cca aca cca g<br>Phe Arg Pro Thr Pro A<br>1055<br>atg gcc ggt gac ccc a<br>Met Ala Gly Asp Pro A<br>1070<br>cct gac tac cac tgg c<br>Pro Asp Tyr His Trp L<br>1085<br>tcc gtt atc ata tct c<br>Pro gtt atc ata tct c<br>Leu Val Ile Ile Ser P | Asp       Glu Gly Cys In         1000         aa       gtt gga tac atc t         rs       Val Gly Tyr Ile L         D15       1         ca       ggc gtt gtg acg g         nr Gly Val Val Thr G         O30       1         at gtc aca acc acg t         vr Val Thr Thr Thr P         O45       1         at gca tgt aga gcc g         ga tgc act gt aga gcc g         op Ala Cys Arg Ala A         O60       1         ga tat gaa gag tct c         cr       Tyr Glu Glu Ser L         O75       1         ct cga act gta aaa a         au Arg Thr Val Lys T         O90       1         ca agt gtg gca gat t         co Ser Val Ala Asp L         L05       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1005<br>ta gcc ata aaa atg<br>eu Ala Ile Lys Met<br>200<br>ag gct gaa acc tat<br>lu Ala Glu Thr Tyr<br>35<br>tc aaa aga aag cat<br>he Lys Arg Lys His<br>550<br>cg tac aac tgg aag<br>la Tyr Asn Trp Lys<br>665<br>ta cac aat ccg tac<br>eu His Asn Pro Tyr<br>680<br>cc acc aag gag tct<br>hr Thr Lys Glu Ser<br>595<br>tg gac cca tat gac<br>eu Asp Pro Tyr Asp<br>110 | 3541<br>3586<br>3631<br>3676<br>3721<br>3766<br>3811 |

| gta<br>Val<br>1130 | gcg<br>Ala | gtg<br>Val | tct<br>Ser | tct<br>Ser | acc<br>Thr<br>1135 | tac<br>Tyr | tgc<br>Cys | tcc<br>Ser | act<br>Thr | aac<br>Asn<br>1140 | cac<br>His | gat<br>Asp | tac<br>Tyr | acc<br>Thr | 3901 | L |
|--------------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|------|---|
| att<br>Ile<br>1145 | tgg<br>Trp | atg<br>Met | ccc<br>Pro | gag<br>Glu | aat<br>Asn<br>1150 | ccg<br>Pro | aga<br>Arg | cta<br>Leu | glà<br>aaa | atg<br>Met<br>1155 | tct<br>Ser | tgt<br>Cys | gac<br>Asp | att<br>Ile | 3946 | 5 |
| ttt<br>Phe<br>1160 | acc<br>Thr | aat<br>Asn | agt<br>Ser | agg<br>Arg | 999<br>Gly<br>1165 | aag<br>Lys | aga<br>Arg | gca<br>Ala | tcc<br>Ser | aaa<br>Lys<br>1170 | д1У<br>ддд | agt<br>Ser | gag<br>Glu | act<br>Thr | 3991 | L |
| tgc<br>Cys<br>1175 | ggc<br>Gly | ttt<br>Phe | gta<br>Val | gat<br>Asp | gaa<br>Glu<br>1180 | aga<br>Arg | ggc<br>Gly | cta<br>Leu | tat<br>Tyr | aag<br>Lys<br>1185 | tct<br>Ser | tta<br>Leu | aaa<br>Lys | gga<br>Gly | 4036 | 5 |
| gca<br>Ala<br>1190 | tgc<br>Cys | aaa<br>Lys | ctc<br>Leu | aag<br>Lys | tta<br>Leu<br>1195 | tgt<br>Cys | gga<br>Gly | gtt<br>Val | cta<br>Leu | gga<br>Gly<br>1200 | ctt<br>Leu | aga<br>Arg | ctt<br>Leu | atg<br>Met | 4081 | L |
| gat<br>Asp<br>1205 | gga<br>Gly | aca<br>Thr | tgg<br>Trp | gtc<br>Val | gcg<br>Ala<br>1210 | atg<br>Met | caa<br>Gln | aca<br>Thr | tca<br>Ser | aat<br>Asn<br>1215 | gaa<br>Glu | acc<br>Thr | aaa<br>Lys | tgg<br>Trp | 4126 | 5 |
| tgc<br>Cys<br>1220 | ccc<br>Pro | ccc<br>Pro | gat<br>Asp | cag<br>Gln | ttg<br>Leu<br>1225 | gtg<br>Val | aac<br>Asn | ctg<br>Leu | cac<br>His | gac<br>Asp<br>1230 | ttt<br>Phe | cgc<br>Arg | tca<br>Ser | gac<br>Asp | 4171 | L |
| gaa<br>Glu<br>1235 | att<br>Ile | gag<br>Glu | cac<br>His | ctt<br>Leu | gtt<br>Val<br>1240 | gta<br>Val | gag<br>Glu | gag<br>Glu | ttg<br>Leu | gtc<br>Val<br>1245 | agg<br>Arg | aag<br>Lys | aga<br>Arg | gag<br>Glu | 4216 | 5 |
| gag<br>Glu<br>1250 | tgt<br>Cys | ctg<br>Leu | gat<br>Asp | gca<br>Ala | cta<br>Leu<br>1255 | gag<br>Glu | tcc<br>Ser | atc<br>Ile | atg<br>Met | aca<br>Thr<br>1260 | acc<br>Thr | aag<br>Lys | tca<br>Ser | gtg<br>Val | 4261 | L |
| agt<br>Ser<br>1265 | ttc<br>Phe | aga<br>Arg | cgt<br>Arg | ccc<br>Pro | agt<br>Ser<br>1270 | cat<br>His | tta<br>Leu | aga<br>Arg | aaa<br>Lys | ctt<br>Leu<br>1275 | gtc<br>Val | cct<br>Pro | 999<br>91y | ttt<br>Phe | 4306 | 5 |
| gga<br>Gly<br>1280 | aaa<br>Lys | gca<br>Ala | tat<br>Tyr | acc<br>Thr | ata<br>Ile<br>1285 | ttc<br>Phe | aac<br>Asn | aag<br>Lys | acc<br>Thr | ttg<br>Leu<br>1290 | atg<br>Met | gaa<br>Glu | gcc<br>Ala | gat<br>Asp | 4351 | L |
| gct<br>Ala<br>1295 | cac<br>His | tac<br>Tyr | aag<br>Lys | tca<br>Ser | gtc<br>Val<br>1300 | nnn<br>Xaa | act<br>Thr | tgg<br>Trp | aat<br>Asn | gag<br>Glu<br>1305 | atc<br>Ile | ctc<br>Leu | cct<br>Pro | tca<br>Ser | 4396 | 5 |
| aaa<br>Lys<br>1310 | ggg<br>ggg | tgt<br>Cys | tta<br>Leu | aga<br>Arg | gtt<br>Val<br>1315 | 999<br>999 | ggg<br>ggg | agg<br>Arg | tgt<br>Cys | cat<br>His<br>1320 | cct<br>Pro | cat<br>His | gtg<br>Val | aac<br>Asn | 4441 | L |
| 999<br>Gly<br>1325 | gtg<br>Val | ttt<br>Phe | ttc<br>Phe | aat<br>Asn | ggt<br>Gly<br>1330 | ata<br>Ile | ata<br>Ile | tta<br>Leu | gga<br>Gly | cct<br>Pro<br>1335 | gac<br>Asp | ggc<br>Gly | aat<br>Asn | gtc<br>Val | 4486 | 5 |
| tta<br>Leu<br>1340 | atc<br>Ile | cca<br>Pro | gag<br>Glu | atg<br>Met | caa<br>Gln<br>1345 | tca<br>Ser | tcc<br>Ser | ctc<br>Leu | ctc<br>Leu | cag<br>Gln<br>1350 | caa<br>Gln | cat<br>His | atg<br>Met | gag<br>Glu | 4531 | L |
| ttg<br>Leu<br>1355 | ttg<br>Leu | gaa<br>Glu | tcc<br>Ser | tcg<br>Ser | gtt<br>Val<br>1360 | atc<br>Ile | ccc<br>Pro | ctt<br>Leu | gtg<br>Val | cac<br>His<br>1365 | ccc<br>Pro | ctg<br>Leu | gca<br>Ala | gac<br>Asp | 4576 | 5 |
| ccg<br>Pro<br>1370 | tct<br>Ser | acc<br>Thr | gtt<br>Val | ttc<br>Phe | aag<br>Lys<br>1375 | gac<br>Asp | ggt<br>Gly | gac<br>Asp | gag<br>Glu | gct<br>Ala<br>1380 | gag<br>Glu | gat<br>Asp | ttt<br>Phe | gtt<br>Val | 4621 | L |
| gaa<br>Glu<br>1385 | gtt<br>Val | cac<br>His | ctt<br>Leu | ccc<br>Pro | gat<br>Asp<br>1390 | gtg<br>Val | cac<br>His | aat<br>Asn | cag<br>Gln | gtc<br>Val<br>1395 | tca<br>Ser | gga<br>Gly | gtt<br>Val | gac<br>Asp | 4666 | 5 |
| ttg<br>Leu<br>1400 | ggt<br>Gly | ctc<br>Leu | ccg<br>Pro | aac<br>Asn | tgg<br>Trp<br>1405 | д1À<br>ааа | aag<br>Lys | tat<br>Tyr | gta<br>Val | tta<br>Leu<br>1410 | ctg<br>Leu | agt<br>Ser | gca<br>Ala | ggg<br>Gly | 4711 | L |
| gcc<br>Ala<br>1415 | ctg<br>Leu | act<br>Thr | gcc<br>Ala | ttg<br>Leu | atg<br>Met<br>1420 | ttg<br>Leu | ata<br>Ile | att<br>Ile | ttc<br>Phe | ctg<br>Leu<br>1425 | atg<br>Met | aca<br>Thr | tgt<br>Cys | tgt<br>Cys | 4756 | 5 |

| aga aga gtc aat cga tca gaa cct acg caa cac aat ctc aga ggg<br>Arg Arg Val Asn Arg Ser Glu Pro Thr Gln His Asn Leu Arg Gly<br>1430 1440      | 4801 |
|----------------------------------------------------------------------------------------------------------------------------------------------|------|
| aca ggg agg gag gtg tca gtc act ccc caa agc ggg aag atc ata<br>Thr Gly Arg Glu Val Ser Val Thr Pro Gln Ser Gly Lys Ile Ile<br>1445 1450 1455 | 4846 |
| tct tca tgg gaa tca cac aag agt ggg ggt gag acc aga ctg<br>Ser Ser Trp Glu Ser His Lys Ser Gly Gly Glu Thr Arg Leu<br>1460 1465 1470         | 4888 |
| tgaggactgg ccgtcctttc aacgatccaa gtcctgaaga tcacctcccc ttgggggggtt                                                                           | 4948 |
| ctttttgaaa aaaacctggg ttcaatagtc ctcctcgaac tccatgcaac tgggtagatt                                                                            | 5008 |
| caagagtcat gagattttca ttaatcetet cagttgatca ageaagatca tgtagattet                                                                            | 5068 |
| cataataggg gagatettet ageagtttea gtgaetaaeg gtaettteat tetecaggaa                                                                            | 5128 |
| ctgacaccaa cagttgtaga caaaccacgg ggtgtctcgg gtgactctgt gcttgggcac                                                                            | 5188 |
| agacaaaggt catggtgtgt tccatgatag cggactcagg atgagttaat tgagagaggc                                                                            | 5248 |
| agtetteete eegtgaagga cataageagt ageteacaat cateeegegt eteageaaag                                                                            | 5308 |
| tgtgcataat tataaagtgc tgggtcatct aagcttttca gtcgagaaaa aaacattaga                                                                            | 5368 |
| tcagaagaac aactggcaac acttctcaac ctgagaccta cttcaag atg ctc gat<br>Met Leu Asp<br>1475                                                       | 5424 |
| cct gga gag gtc tat gat gac cct att gac cca atc gag tta gag<br>Pro Gly Glu Val Tyr Asp Asp Pro Ile Asp Pro Ile Glu Leu Glu<br>1480 1485 1490 | 5469 |
| gat gaa ccc aga gga acc ccc act gtc ccc aac atc ttg agg aac<br>Asp Glu Pro Arg Gly Thr Pro Thr Val Pro Asn Ile Leu Arg Asn<br>1495 1500 1505 | 5514 |
| tct gac tac aat ctc aac tct cct ttg ata gaa gat cct gct aga<br>Ser Asp Tyr Asn Leu Asn Ser Pro Leu Ile Glu Asp Pro Ala Arg<br>1510 1515 1520 | 5559 |
| cta atg tta gaa tgg tta aaa aca ggg aat aga cct tat cgg atg<br>Leu Met Leu Glu Trp Leu Lys Thr Gly Asn Arg Pro Tyr Arg Met<br>1525 1530 1535 | 5604 |
| act cta aca gac aat tgc tcc agg tct ttc aga gtt ttg aaa gat<br>Thr Leu Thr Asp Asn Cys Ser Arg Ser Phe Arg Val Leu Lys Asp<br>1540 1545 1550 | 5649 |
| tat ttc aag aag gta gat ttg ggt tct ctc aag gtg ggc gga atg<br>Tyr Phe Lys Lys Val Asp Leu Gly Ser Leu Lys Val Gly Gly Met<br>1555 1560 1565 | 5694 |
| gct gca cag tca atg att tct ctc tgg tta tat ggt gcc cac tct<br>Ala Ala Gln Ser Met Ile Ser Leu Trp Leu Tyr Gly Ala His Ser<br>1570 1575 1580 | 5739 |
| gaa too aac agg agc ogg aga tgt ata aca gac ttg goo cat tto<br>Glu Ser Asn Arg Ser Arg Arg Cys Ile Thr Asp Leu Ala His Phe<br>1585 1590 1595 | 5784 |
| tat tcc aag tcg tcc ccc ata gag aag ctg ttg aat ctc acg cta<br>Tyr Ser Lys Ser Ser Pro Ile Glu Lys Leu Leu Asn Leu Thr Leu<br>1600 1605 1610 | 5829 |
| gga aat aga ggg ctg aga atc ccc cca gag gga gtg tta agt tgc<br>Gly Asn Arg Gly Leu Arg Ile Pro Pro Glu Gly Val Leu Ser Cys<br>1615 1620 1625 | 5874 |
| ctt gag agg gtt gat tat gat aat gca ttt gga agg tat ctt gcc<br>Leu Glu Arg Val Asp Tyr Asp Asn Ala Phe Gly Arg Tyr Leu Ala<br>1630 1635 1640 | 5919 |
| aac acg tat tcc tct tac ttg ttc ttc cat gta atc acc tta tac<br>Asn Thr Tyr Ser Ser Tyr Leu Phe Phe His Val Ile Thr Leu Tyr<br>1645 1650 1655 | 5964 |

| atg<br>Met | aac<br>Asn | gcc<br>Ala | cta<br>Leu<br>1660 | gac<br>Asp | tgg<br>Trp | gat<br>Asp | gaa<br>Glu | gaa<br>Glu<br>1665 | aag<br>Lys | acc<br>Thr | atc<br>Ile | cta<br>Leu | gca<br>Ala<br>1670 | tta<br>Leu | 6009 |
|------------|------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|------|
| tgg<br>Trp | aaa<br>Lys | gat<br>Asp | tta<br>Leu<br>1675 | acc<br>Thr | tca<br>Ser | gtg<br>Val | gac<br>Asp | atc<br>Ile<br>1680 | ggg<br>ggg | aag<br>Lys | gac<br>Asp | ttg<br>Leu | gta<br>Val<br>1685 | aag<br>Lys | 6054 |
| ttc<br>Phe | aaa<br>Lys | gac<br>Asp | caa<br>Gln<br>1690 | ata<br>Ile | tgg<br>Trp | gga<br>Gly | ctg<br>Leu | ccg<br>Pro<br>1695 | atc<br>Ile | gtg<br>Val | aca<br>Thr | aag<br>Lys | gac<br>Asp<br>1700 | ttt<br>Phe | 6099 |
| gtt<br>Val | tac<br>Tyr | tcc<br>Ser | caa<br>Gln<br>1705 | agt<br>Ser | tcc<br>Ser | aat<br>Asn | tgt<br>Cys | ctt<br>Leu<br>1710 | ttt<br>Phe | gac<br>Asp | aga<br>Arg | aac<br>Asn | tac<br>Tyr<br>1715 | aca<br>Thr | 6144 |
| ctt<br>Leu | atg<br>Met | cta<br>Leu | aaa<br>Lys<br>1720 | gaa<br>Glu | ctt<br>Leu | ttc<br>Phe | ttg<br>Leu | tct<br>Ser<br>1725 | cgc<br>Arg | ttc<br>Phe | aac<br>Asn | tcc<br>Ser | tta<br>Leu<br>1730 | atg<br>Met | 6189 |
| gtc<br>Val | ttg<br>Leu | ctc<br>Leu | tct<br>Ser<br>1735 | ccc<br>Pro | cca<br>Pro | gag<br>Glu | ccc<br>Pro | cga<br>Arg<br>1740 | tac<br>Tyr | tca<br>Ser | gat<br>Asp | gac<br>Asp | ttg<br>Leu<br>1745 | ata<br>Ile | 6234 |
| tct<br>Ser | caa<br>Gln | cta<br>Leu | tgc<br>Cys<br>1750 | cag<br>Gln | ctg<br>Leu | tac<br>Tyr | att<br>Ile | gct<br>Ala<br>1755 | glà<br>aaa | gat<br>Asp | caa<br>Gln | gtc<br>Val | ttg<br>Leu<br>1760 | tct<br>Ser | 6279 |
| atg<br>Met | tgt<br>Cys | gga<br>Gly | aac<br>Asn<br>1765 | tcc<br>Ser | ggc<br>Gly | tat<br>Tyr | gaa<br>Glu | gtc<br>Val<br>1770 | atc<br>Ile | aaa<br>Lys | ata<br>Ile | ttg<br>Leu | gag<br>Glu<br>1775 | cca<br>Pro | 6324 |
| tat<br>Tyr | gtc<br>Val | gtg<br>Val | aat<br>Asn<br>1780 | agt<br>Ser | tta<br>Leu | gtc<br>Val | cag<br>Gln | aga<br>Arg<br>1785 | gca<br>Ala | gaa<br>Glu | aag<br>Lys | ttt<br>Phe | agg<br>Arg<br>1790 | cct<br>Pro | 6369 |
| ctc<br>Leu | att<br>Ile | cat<br>His | tcc<br>Ser<br>1795 | ttg<br>Leu | gga<br>Gly | gac<br>Asp | ttt<br>Phe | cct<br>Pro<br>1800 | gta<br>Val | ttt<br>Phe | ata<br>Ile | aaa<br>Lys | gac<br>Asp<br>1805 | aag<br>Lys | 6414 |
| gta<br>Val | agt<br>Ser | caa<br>Gln | ctt<br>Leu<br>1810 | gaa<br>Glu | gag<br>Glu | acg<br>Thr | ttc<br>Phe | ggt<br>Gly<br>1815 | ccc<br>Pro | tgt<br>Cys | gca<br>Ala | aga<br>Arg | agg<br>Arg<br>1820 | ttc<br>Phe | 6459 |
| ttt<br>Phe | agg<br>Arg | gct<br>Ala | ctg<br>Leu<br>1825 | gat<br>Asp | caa<br>Gln | ttc<br>Phe | gac<br>Asp | aac<br>Asn<br>1830 | ata<br>Ile | cat<br>His | gac<br>Asp | ttg<br>Leu | gtt<br>Val<br>1835 | ttt<br>Phe | 6504 |
| gtg<br>Val | tat<br>Tyr | ggc<br>Gly | tgt<br>Cys<br>1840 | tac<br>Tyr | agg<br>Arg | cat<br>His | tgg<br>Trp | 999<br>Gly<br>1845 | cac<br>His | cca<br>Pro | tat<br>Tyr | ata<br>Ile | gat<br>Asp<br>1850 | tat<br>Tyr | 6549 |
| cga<br>Arg | aag<br>Lys | ggt<br>Gly | ctg<br>Leu<br>1855 | tca<br>Ser | aaa<br>Lys | cta<br>Leu | tat<br>Tyr | gat<br>Asp<br>1860 | cag<br>Gln | gtt<br>Val | cac<br>His | att<br>Ile | aaa<br>Lys<br>1865 | aaa<br>Lys | 6594 |
| gtg<br>Val | ata<br>Ile | gat<br>Asp | aag<br>Lys<br>1870 | tcc<br>Ser | tac<br>Tyr | cag<br>Gln | gag<br>Glu | tgc<br>Cys<br>1875 | tta<br>Leu | gca<br>Ala | agc<br>Ser | gac<br>Asp | cta<br>Leu<br>1880 | gcc<br>Ala | 6639 |
| agg<br>Arg | agg<br>Arg | atc<br>Ile | ctt<br>Leu<br>1885 | aga<br>Arg | tgg<br>Trp | ggt<br>Gly | ttt<br>Phe | gat<br>Asp<br>1890 | aag<br>Lys | tac<br>Tyr | tcc<br>Ser | aag<br>Lys | tgg<br>Trp<br>1895 | tat<br>Tyr | 6684 |
| ctg<br>Leu | gat<br>Asp | tca<br>Ser | aga<br>Arg<br>1900 | ttc<br>Phe | cta<br>Leu | gcc<br>Ala | cga<br>Arg | gac<br>Asp<br>1905 | cac<br>His | ccc<br>Pro | ttg<br>Leu | act<br>Thr | ccc<br>Pro<br>1910 | tat<br>Tyr | 6729 |
| atc<br>Ile | aaa<br>Lys | acc<br>Thr | caa<br>Gln<br>1915 | aca<br>Thr | tgg<br>Trp | cca<br>Pro | ccc<br>Pro | aaa<br>Lys<br>1920 | cat<br>His | att<br>Ile | gta<br>Val | gac<br>Asp | ttg<br>Leu<br>1925 | gtg<br>Val | 6774 |
| 999<br>999 | gat<br>Asp | aca<br>Thr | tgg<br>Trp<br>1930 | cac<br>His | aag<br>Lys | ctc<br>Leu | ccg<br>Pro | atc<br>Ile<br>1935 | acg<br>Thr | cag<br>Gln | atc<br>Ile | ttt<br>Phe | gag<br>Glu<br>1940 | att<br>Ile | 6819 |
| cct<br>Pro | gaa<br>Glu | tca<br>Ser | atg<br>Met<br>1945 | gat<br>Asp | ccg<br>Pro | tca<br>Ser | gaa<br>Glu | ata<br>Ile<br>1950 | ttg<br>Leu | gat<br>Asp | gac<br>Asp | aaa<br>Lys | tca<br>Ser<br>1955 | cat<br>His | 6864 |

| tct<br>Ser         | ttc<br>Phe | acc<br>Thr | aga<br>Arg<br>1960 | acg<br>Thr | aga<br>Arg | cta<br>Leu | gct<br>Ala | tct<br>Ser<br>1965 | tgg<br>Trp | ctg<br>Leu | tca<br>Ser | gaa<br>Glu | aac<br>Asn<br>1970 | cga<br>Arg | 6909 |
|--------------------|------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|------|
| ggg<br>Gly         | gga<br>Gly | cct<br>Pro | gtt<br>Val<br>1975 | cct<br>Pro | agc<br>Ser | gaa<br>Glu | aaa<br>Lys | gtt<br>Val<br>1980 | att<br>Ile | atc<br>Ile | acg<br>Thr | gcc<br>Ala | ctg<br>Leu<br>1985 | tct<br>Ser | 6954 |
| aag<br>Lys         | ccg<br>Pro | cct<br>Pro | gtc<br>Val<br>1990 | aat<br>Asn | ccc<br>Pro | cga<br>Arg | gag<br>Glu | ttt<br>Phe<br>1995 | ctg<br>Leu | agg<br>Arg | tct<br>Ser | ata<br>Ile | gac<br>Asp<br>2000 | ctc<br>Leu | 6999 |
| gga<br>Gly         | gga<br>Gly | ttg<br>Leu | cca<br>Pro<br>2005 | gat<br>Asp | gaa<br>Glu | gac<br>Asp | ttg<br>Leu | ata<br>Ile<br>2010 | att<br>Ile | ggc<br>Gly | ctc<br>Leu | aag<br>Lys | cca<br>Pro<br>2015 | aag<br>Lys | 7044 |
| gaa<br>Glu         | cgg<br>Arg | gaa<br>Glu | ttg<br>Leu<br>2020 | aag<br>Lys | att<br>Ile | gaa<br>Glu | ggt<br>Gly | cga<br>Arg<br>2025 | ttc<br>Phe | ttt<br>Phe | gct<br>Ala | cta<br>Leu | atg<br>Met<br>2030 | tca<br>Ser | 7089 |
| tgg<br>Trp         | aat<br>Asn | cta<br>Leu | aga<br>Arg<br>2035 | ttg<br>Leu | tat<br>Tyr | ttt<br>Phe | gtc<br>Val | atc<br>Ile<br>2040 | act<br>Thr | gaa<br>Glu | aaa<br>Lys | ctc<br>Leu | ttg<br>Leu<br>2045 | gcc<br>Ala | 7134 |
| aac<br>Asn         | tac<br>Tyr | atc<br>Ile | ttg<br>Leu<br>2050 | cca<br>Pro | ctt<br>Leu | ttt<br>Phe | gac<br>Asp | gcg<br>Ala<br>2055 | ctg<br>Leu | act<br>Thr | atg<br>Met | aca<br>Thr | gac<br>Asp<br>2060 | aac<br>Asn | 7179 |
| ctg<br>Leu         | aac<br>Asn | aag<br>Lys | gtg<br>Val<br>2065 | ttt<br>Phe | aaa<br>Lys | aag<br>Lys | ctg<br>Leu | atc<br>Ile<br>2070 | gac<br>Asp | agg<br>Arg | gtc<br>Val | acc<br>Thr | 999<br>Gly<br>2075 | caa<br>Gln | 7224 |
| д1 <u>у</u><br>ддд | ctt<br>Leu | ttg<br>Leu | gac<br>Asp<br>2080 | tat<br>Tyr | tca<br>Ser | agg<br>Arg | gtc<br>Val | aca<br>Thr<br>2085 | tat<br>Tyr | gca<br>Ala | ttt<br>Phe | cac<br>His | ctg<br>Leu<br>2090 | дас<br>Авр | 7269 |
| tat<br>Tyr         | gaa<br>Glu | aag<br>Lys | tgg<br>Trp<br>2095 | aac<br>Asn | aac<br>Asn | cat<br>His | caa<br>Gln | aga<br>Arg<br>2100 | tta<br>Leu | gag<br>Glu | tca<br>Ser | aca<br>Thr | gag<br>Glu<br>2105 | gat<br>Asp | 7314 |
| gta<br>Val         | ttt<br>Phe | tct<br>Ser | gtc<br>Val<br>2110 | cta<br>Leu | gat<br>Asp | caa<br>Gln | gtg<br>Val | ttt<br>Phe<br>2115 | gga<br>Gly | ttg<br>Leu | aag<br>Lys | aga<br>Arg | gtg<br>Val<br>2120 | ttt<br>Phe | 7359 |
| tct<br>Ser         | aga<br>Arg | aca<br>Thr | cac<br>His<br>2125 | gag<br>Glu | ttt<br>Phe | ttt<br>Phe | caa<br>Gln | aag<br>Lys<br>2130 | gcc<br>Ala | tgg<br>Trp | atc<br>Ile | tat<br>Tyr | tat<br>Tyr<br>2135 | tca<br>Ser | 7404 |
| gac<br>Asp         | aga<br>Arg | tca<br>Ser | gac<br>Asp<br>2140 | ctc<br>Leu | atc<br>Ile | ggg<br>ggg | tta<br>Leu | cgg<br>Arg<br>2145 | gag<br>Glu | gat<br>Asp | caa<br>Gln | ata<br>Ile | tac<br>Tyr<br>2150 | tgc<br>Cys | 7449 |
| tta<br>Leu         | gat<br>Asp | gcg<br>Ala | tcc<br>Ser<br>2155 | aac<br>Asn | ggc<br>Gly | cca<br>Pro | acc<br>Thr | tgt<br>Cys<br>2160 | tgg<br>Trp | aat<br>Asn | ggc<br>Gly | cag<br>Gln | gat<br>Asp<br>2165 | ggc<br>Gly | 7494 |
| glà<br>dâð         | cta<br>Leu | gaa<br>Glu | ggc<br>Gly<br>2170 | tta<br>Leu | cgg<br>Arg | cag<br>Gln | aag<br>Lys | ggc<br>Gly<br>2175 | tgg<br>Trp | agt<br>Ser | cta<br>Leu | gtc<br>Val | agc<br>Ser<br>2180 | tta<br>Leu | 7539 |
| ttg<br>Leu         | atg<br>Met | ata<br>Ile | gat<br>Asp<br>2185 | aga<br>Arg | gaa<br>Glu | tct<br>Ser | caa<br>Gln | atc<br>Ile<br>2190 | agg<br>Arg | aac<br>Asn | aca<br>Thr | aga<br>Arg | acc<br>Thr<br>2195 | aaa<br>Lys | 7584 |
| ata<br>Ile         | cta<br>Leu | gct<br>Ala | caa<br>Gln<br>2200 | gga<br>Gly | gac<br>Asp | aac<br>Asn | cag<br>Gln | gtt<br>Val<br>2205 | tta<br>Leu | tgt<br>Cys | ccg<br>Pro | aca<br>Thr | tat<br>Tyr<br>2210 | atg<br>Met | 7629 |
| ttg<br>Leu         | tcg<br>Ser | cca<br>Pro | 999<br>Gly<br>2215 | cta<br>Leu | tct<br>Ser | caa<br>Gln | gag<br>Glu | 999<br>Gly<br>2220 | ctc<br>Leu | ctc<br>Leu | tat<br>Tyr | gaa<br>Glu | ttg<br>Leu<br>2225 | gag<br>Glu | 7674 |
| aga<br>Arg         | ata<br>Ile | tca<br>Ser | agg<br>Arg<br>2230 | aat<br>Asn | gca<br>Ala | ctt<br>Leu | tcg<br>Ser | ata<br>Ile<br>2235 | tac<br>Tyr | aga<br>Arg | gcc<br>Ala | gtc<br>Val | gag<br>Glu<br>2240 | gaa<br>Glu | 7719 |
| ggg<br>Gly         | gca<br>Ala | tct<br>Ser | aag<br>Lys<br>2245 | cta<br>Leu | ggg<br>Gly | ctg<br>Leu | atc<br>Ile | acc<br>Thr<br>2250 | aag<br>Lys | aaa<br>Lys | gaa<br>Glu | gag<br>Glu | acc<br>Thr<br>2255 | atg<br>Met | 7764 |

-continued

| tgt<br>Cys | agt<br>Ser | tat<br>Tyr | gac<br>Asp<br>2260 | ttc<br>Phe | ctc<br>Leu | atc<br>Ile | tat<br>Tyr | gga<br>Gly<br>2265 | aaa<br>Lys | acc<br>Thr | cct<br>Pro | ttg<br>Leu | ttt<br>Phe<br>2270 | aga<br>Arg | 7809 |
|------------|------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|------|
| ggt<br>Gly | aac<br>Asn | ata<br>Ile | ttg<br>Leu<br>2275 | gtg<br>Val | cct<br>Pro | gag<br>Glu | tcc<br>Ser | aaa<br>Lys<br>2280 | aga<br>Arg | tgg<br>Trp | gcc<br>Ala | aga<br>Arg | gtc<br>Val<br>2285 | tct<br>Ser | 7854 |
| tgc<br>Cys | gtc<br>Val | tct<br>Ser | aat<br>Asn<br>2290 | gac<br>Asp | caa<br>Gln | ata<br>Ile | gtc<br>Val | aac<br>Asn<br>2295 | ctc<br>Leu | gcc<br>Ala | aat<br>Asn | ata<br>Ile | atg<br>Met<br>2300 | tcg<br>Ser | 7899 |
| aca<br>Thr | gtg<br>Val | tcc<br>Ser | acc<br>Thr<br>2305 | aat<br>Asn | gcg<br>Ala | cta<br>Leu | aca<br>Thr | gtg<br>Val<br>2310 | gca<br>Ala | caa<br>Gln | cac<br>His | tct<br>Ser | caa<br>Gln<br>2315 | tct<br>Ser | 7944 |
| ttg<br>Leu | atc<br>Ile | aaa<br>Lys | ccg<br>Pro<br>2320 | atg<br>Met | д1У<br>ддд | gat<br>Asp | ttt<br>Phe | ctg<br>Leu<br>2325 | ctc<br>Leu | atg<br>Met | tca<br>Ser | gta<br>Val | cag<br>Gln<br>2330 | gca<br>Ala | 7989 |
| gtc<br>Val | ttt<br>Phe | cac<br>His | tac<br>Tyr<br>2335 | ctg<br>Leu | cta<br>Leu | ttt<br>Phe | agc<br>Ser | cca<br>Pro<br>2340 | atc<br>Ile | tta<br>Leu | aag<br>Lys | gga<br>Gly | aga<br>Arg<br>2345 | gtt<br>Val | 8034 |
| tac<br>Tyr | aag<br>Lys | att<br>Ile | ctg<br>Leu<br>2350 | agc<br>Ser | gct<br>Ala | gaa<br>Glu | gjà<br>gjà | gat<br>Asp<br>2355 | agc<br>Ser | ttt<br>Phe | ctc<br>Leu | cta<br>Leu | gcc<br>Ala<br>2360 | atg<br>Met | 8079 |
| tca<br>Ser | agg<br>Arg | ata<br>Ile | atc<br>Ile<br>2365 | tat<br>Tyr | cta<br>Leu | gat<br>Asp | cct<br>Pro | tct<br>Ser<br>2370 | ttg<br>Leu | gga<br>Gly | д1у<br>д9д | gta<br>Val | tct<br>Ser<br>2375 | gga<br>Gly | 8124 |
| atg<br>Met | tcc<br>Ser | ctc<br>Leu | gga<br>Gly<br>2380 | aga<br>Arg | ttc<br>Phe | cat<br>His | ata<br>Ile | cga<br>Arg<br>2385 | cag<br>Gln | ttc<br>Phe | tca<br>Ser | gac<br>Asp | cct<br>Pro<br>2390 | gtc<br>Val | 8169 |
| tct<br>Ser | gaa<br>Glu | д1А<br>даа | tta<br>Leu<br>2395 | tcc<br>Ser | ttc<br>Phe | tgg<br>Trp | aga<br>Arg | gag<br>Glu<br>2400 | atc<br>Ile | tgg<br>Trp | tta<br>Leu | agc<br>Ser | tcc<br>Ser<br>2405 | cac<br>His | 8214 |
| gag<br>Glu | tcc<br>Ser | tgg<br>Trp | gtt<br>Val<br>2410 | cac<br>His | gcg<br>Ala | ttg<br>Leu | tgt<br>Cys | caa<br>Gln<br>2415 | gag<br>Glu | gct<br>Ala | gga<br>Gly | aac<br>Asn | cca<br>Pro<br>2420 | gat<br>Asp | 8259 |
| ctt<br>Leu | gga<br>Gly | gag<br>Glu | aga<br>Arg<br>2425 | aca<br>Thr | ctc<br>Leu | gag<br>Glu | agc<br>Ser | ttc<br>Phe<br>2430 | act<br>Thr | cgc<br>Arg | ctt<br>Leu | cta<br>Leu | gaa<br>Glu<br>2435 | gat<br>Asp | 8304 |
| cct<br>Pro | acc<br>Thr | acc<br>Thr | tta<br>Leu<br>2440 | aat<br>Asn | atc<br>Ile | aga<br>Arg | gga<br>Gly | 999<br>Gly<br>2445 | gcc<br>Ala | agt<br>Ser | cct<br>Pro | acc<br>Thr | att<br>Ile<br>2450 | cta<br>Leu | 8349 |
| ctc<br>Leu | aag<br>Lys | gat<br>Asp | gca<br>Ala<br>2455 | atc<br>Ile | aga<br>Arg | aag<br>Lys | gct<br>Ala | tta<br>Leu<br>2460 | tat<br>Tyr | gac<br>Asp | gag<br>Glu | gtg<br>Val | gac<br>Asp<br>2465 | aag<br>Lys | 8394 |
| gtg<br>Val | gag<br>Glu | aat<br>Asn | tca<br>Ser<br>2470 | gag<br>Glu | ttt<br>Phe | cga<br>Arg | gag<br>Glu | gca<br>Ala<br>2475 | atc<br>Ile | ctg<br>Leu | ttg<br>Leu | tcc<br>Ser | aag<br>Lys<br>2480 | acc<br>Thr | 8439 |
| cat<br>His | aga<br>Arg | gat<br>Asp | aat<br>Asn<br>2485 | ttt<br>Phe | ata<br>Ile | ctc<br>Leu | ttc<br>Phe | tta<br>Leu<br>2490 | aca<br>Thr | tct<br>Ser | gtt<br>Val | gag<br>Glu | cct<br>Pro<br>2495 | ctg<br>Leu | 8484 |
| ttt<br>Phe | cct<br>Pro | cga<br>Arg | ttt<br>Phe<br>2500 | ctc<br>Leu | agt<br>Ser | gag<br>Glu | cta<br>Leu | ttc<br>Phe<br>2505 | agt<br>Ser | tcg<br>Ser | tct<br>Ser | ttt<br>Phe | ttg<br>Leu<br>2510 | gga<br>Gly | 8529 |
| atc<br>Ile | ccc<br>Pro | gag<br>Glu | tca<br>Ser<br>2515 | atc<br>Ile | att<br>Ile | gga<br>Gly | ttg<br>Leu | ata<br>Ile<br>2520 | caa<br>Gln | aac<br>Asn | tcc<br>Ser | cga<br>Arg | acg<br>Thr<br>2525 | ata<br>Ile | 8574 |
| aga<br>Arg | agg<br>Arg | cag<br>Gln | ttt<br>Phe<br>2530 | aga<br>Arg | aag<br>Lys | agt<br>Ser | ctc<br>Leu | tca<br>Ser<br>2535 | aaa<br>Lys | act<br>Thr | tta<br>Leu | gaa<br>Glu | gaa<br>Glu<br>2540 | tcc<br>Ser | 8619 |
| ttc<br>Phe | tac<br>Tyr | aac<br>Asn | tca<br>Ser<br>2545 | gag<br>Glu | atc<br>Ile | cac<br>His | ggg<br>Gly | att<br>Ile<br>2550 | agt<br>Ser | cgg<br>Arg | atg<br>Met | acc<br>Thr | cag<br>Gln<br>2555 | aca<br>Thr | 8664 |

| cct<br>Pro | cag<br>Gln | agg<br>Arg | gtt<br>Val<br>2560 | ggg<br>Gly | ggg<br>Gly | gtg<br>Val | tgg<br>Trp | cct<br>Pro<br>2565 | tgc<br>Cys | tct<br>Ser | tca<br>Ser | gag<br>Glu | agg<br>Arg<br>2570 | gca<br>Ala | 8709 |
|------------|------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|------|
| gat<br>Asp | cta<br>Leu | ctt<br>Leu | agg<br>Arg<br>2575 | gag<br>Glu | atc<br>Ile | tct<br>Ser | tgg<br>Trp | gga<br>Gly<br>2580 | aga<br>Arg | aaa<br>Lys | gtg<br>Val | gta<br>Val | ggc<br>Gly<br>2585 | acg<br>Thr | 8754 |
| aca<br>Thr | gtt<br>Val | cct<br>Pro | cac<br>His<br>2590 | cct<br>Pro | tct<br>Ser | gag<br>Glu | atg<br>Met | ttg<br>Leu<br>2595 | glà<br>aaa | tta<br>Leu | ctt<br>Leu | ccc<br>Pro | aag<br>Lys<br>2600 | tcc<br>Ser | 8799 |
| tct<br>Ser | att<br>Ile | tct<br>Ser | tgc<br>Cys<br>2605 | act<br>Thr | tgt<br>Cys | gga<br>Gly | gca<br>Ala | aca<br>Thr<br>2610 | gga<br>Gly | gga<br>Gly | ggc<br>Gly | aat<br>Asn | cct<br>Pro<br>2615 | aga<br>Arg | 8844 |
| gtt<br>Val | tct<br>Ser | gta<br>Val | tca<br>Ser<br>2620 | gta<br>Val | ctc<br>Leu | ccg<br>Pro | tcc<br>Ser | ttt<br>Phe<br>2625 | gat<br>Asp | cag<br>Gln | tca<br>Ser | ttt<br>Phe | ttt<br>Phe<br>2630 | tca<br>Ser | 8889 |
| cga<br>Arg | ggc<br>Gly | ccc<br>Pro | cta<br>Leu<br>2635 | aag<br>Lys | ggg<br>ggg | tac<br>Tyr | ttg<br>Leu | ggc<br>Gly<br>2640 | tcg<br>Ser | tcc<br>Ser | acc<br>Thr | tct<br>Ser | atg<br>Met<br>2645 | tcg<br>Ser | 8934 |
| acc<br>Thr | cag<br>Gln | cta<br>Leu | ttc<br>Phe<br>2650 | cat<br>His | gca<br>Ala | tgg<br>Trp | gaa<br>Glu | aaa<br>Lys<br>2655 | gtc<br>Val | act<br>Thr | aat<br>Asn | gtt<br>Val | cat<br>His<br>2660 | gtg<br>Val | 8979 |
| gtg<br>Val | aag<br>Lys | aga<br>Arg | gct<br>Ala<br>2665 | cta<br>Leu | tcg<br>Ser | tta<br>Leu | aaa<br>Lys | gaa<br>Glu<br>2670 | tct<br>Ser | ata<br>Ile | aac<br>Asn | tgg<br>Trp | ttc<br>Phe<br>2675 | att<br>Ile | 9024 |
| act<br>Thr | aga<br>Arg | gat<br>Asp | tcc<br>Ser<br>2680 | aac<br>Asn | ttg<br>Leu | gct<br>Ala | caa<br>Gln | gct<br>Ala<br>2685 | cta<br>Leu | att<br>Ile | agg<br>Arg | aac<br>Asn | att<br>Ile<br>2690 | atg<br>Met | 9069 |
| tct<br>Ser | ctg<br>Leu | aca<br>Thr | ggc<br>Gly<br>2695 | cct<br>Pro | gat<br>Asp | ttc<br>Phe | cct<br>Pro | cta<br>Leu<br>2700 | gag<br>Glu | gag<br>Glu | gcc<br>Ala | cct<br>Pro | gtc<br>Val<br>2705 | ttc<br>Phe | 9114 |
| aaa<br>Lys | agg<br>Arg | acg<br>Thr | 999<br>Gly<br>2710 | tca<br>Ser | gcc<br>Ala | ttg<br>Leu | cat<br>His | agg<br>Arg<br>2715 | ttc<br>Phe | aag<br>Lys | tct<br>Ser | gcc<br>Ala | aga<br>Arg<br>2720 | tac<br>Tyr | 9159 |
| agc<br>Ser | gaa<br>Glu | gga<br>Gly | 999<br>Gly<br>2725 | tat<br>Tyr | tct<br>Ser | tct<br>Ser | gtc<br>Val | tgc<br>Cys<br>2730 | ccg<br>Pro | aac<br>Asn | ctc<br>Leu | ctc<br>Leu | tct<br>Ser<br>2735 | cat<br>His | 9204 |
| att<br>Ile | tct<br>Ser | gtt<br>Val | agt<br>Ser<br>2740 | aca<br>Thr | gac<br>Asp | acc<br>Thr | atg<br>Met | tct<br>Ser<br>2745 | gat<br>Asp | ttg<br>Leu | acc<br>Thr | caa<br>Gln | gac<br>Asp<br>2750 | glà<br>aaa | 9249 |
| aag<br>Lys | aac<br>Asn | tac<br>Tyr | gat<br>Asp<br>2755 | ttc<br>Phe | atg<br>Met | ttc<br>Phe | cag<br>Gln | cca<br>Pro<br>2760 | ttg<br>Leu | atg<br>Met | ctt<br>Leu | tat<br>Tyr | gca<br>Ala<br>2765 | cag<br>Gln | 9294 |
| aca<br>Thr | tgg<br>Trp | aca<br>Thr | tca<br>Ser<br>2770 | gag<br>Glu | ctg<br>Leu | gta<br>Val | cag<br>Gln | aga<br>Arg<br>2775 | gac<br>Asp | aca<br>Thr | agg<br>Arg | cta<br>Leu | aga<br>Arg<br>2780 | gac<br>Asp | 9339 |
| tct<br>Ser | acg<br>Thr | ttt<br>Phe | cat<br>His<br>2785 | tgg<br>Trp | cac<br>His | ctc<br>Leu | cga<br>Arg | tgc<br>Cys<br>2790 | aac<br>Asn | agg<br>Arg | tgt<br>Cys | gtg<br>Val | aga<br>Arg<br>2795 | ccc<br>Pro | 9384 |
| att<br>Ile | gac<br>Asp | gac<br>Asp | gtg<br>Val<br>2800 | acc<br>Thr | ctg<br>Leu | gag<br>Glu | acc<br>Thr | tct<br>Ser<br>2805 | cag<br>Gln | atc<br>Ile | ttc<br>Phe | gag<br>Glu | ttt<br>Phe<br>2810 | ccg<br>Pro | 9429 |
| gat<br>Asp | gtg<br>Val | tcg<br>Ser | aaa<br>Lys<br>2815 | aga<br>Arg | ata<br>Ile | tcc<br>Ser | aga<br>Arg | atg<br>Met<br>2820 | gtt<br>Val | tct<br>Ser | ggg<br>gly | gct<br>Ala | gtg<br>Val<br>2825 | cct<br>Pro | 9474 |
| cac<br>His | ttc<br>Phe | cag<br>Gln | agg<br>Arg<br>2830 | ctt<br>Leu | ccc<br>Pro | gat<br>Asp | atc<br>Ile | cgt<br>Arg<br>2835 | ctg<br>Leu | aga<br>Arg | cca<br>Pro | gga<br>Gly | gat<br>Asp<br>2840 | ttt<br>Phe | 9519 |
| gaa<br>Glu | tct<br>Ser | cta<br>Leu | agc<br>Ser<br>2845 | ggt<br>Gly | aga<br>Arg | gaa<br>Glu | aag<br>Lys | tct<br>Ser<br>2850 | cac<br>His | cat<br>His | atc<br>Ile | gga<br>Gly | tca<br>Ser<br>2855 | gct<br>Ala | 9564 |

| cag<br>Gln | с1 <sup>у</sup><br>ааа | ctc<br>Leu | tta<br>Leu<br>2860 | tac<br>Tyr | tca<br>Ser | atc<br>Ile | tta<br>Leu | gtg<br>Val<br>2865 | gca<br>Ala | att<br>Ile | cac<br>His | gac<br>Asp | tca<br>Ser<br>2870 | gga<br>Gly | 9609  |
|------------|------------------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|-------|
| tac<br>Tyr | aat<br>Asn             | gat<br>Asp | gga<br>Gly<br>2875 | acc<br>Thr | atc<br>Ile | ttc<br>Phe | cct<br>Pro | gcc<br>Ala<br>2880 | aac<br>Asn | ata<br>Ile | tac<br>Tyr | ggc<br>Gly | aag<br>Lys<br>2885 | gtt<br>Val | 9654  |
| tcc<br>Ser | cct<br>Pro             | aga<br>Arg | gac<br>Asp<br>2890 | tat<br>Tyr | ttg<br>Leu | aga<br>Arg | ggg<br>Gly | ctc<br>Leu<br>2895 | gca<br>Ala | agg<br>Arg | gga<br>Gly | gta<br>Val | ttg<br>Leu<br>2900 | ata<br>Ile | 9699  |
| gga<br>Gly | tcc<br>Ser             | tcg<br>Ser | att<br>Ile<br>2905 | tgc<br>Cys | ttc<br>Phe | ttg<br>Leu | aca<br>Thr | aga<br>Arg<br>2910 | atg<br>Met | aca<br>Thr | aat<br>Asn | atc<br>Ile | aat<br>Asn<br>2915 | att<br>Ile | 9744  |
| aat<br>Asn | aga<br>Arg             | cct<br>Pro | ctt<br>Leu<br>2920 | gaa<br>Glu | ttg<br>Leu | atc<br>Ile | tca<br>Ser | 999<br>Gly<br>2925 | gta<br>Val | atc<br>Ile | tca<br>Ser | tat<br>Tyr | att<br>Ile<br>2930 | ctc<br>Leu | 9789  |
| ctg<br>Leu | agg<br>Arg             | cta<br>Leu | gat<br>Asp<br>2935 | aac<br>Asn | cat<br>His | ccc<br>Pro | tcc<br>Ser | ttg<br>Leu<br>2940 | tac<br>Tyr | ata<br>Ile | atg<br>Met | ctc<br>Leu | aga<br>Arg<br>2945 | gaa<br>Glu | 9834  |
| ccg<br>Pro | tct<br>Ser             | ctt<br>Leu | aga<br>Arg<br>2950 | gga<br>Gly | gag<br>Glu | ata<br>Ile | ttt<br>Phe | tct<br>Ser<br>2955 | atc<br>Ile | cct<br>Pro | cag<br>Gln | aaa<br>Lys | atc<br>Ile<br>2960 | ccc<br>Pro | 9879  |
| gcc<br>Ala | gct<br>Ala             | tat<br>Tyr | cca<br>Pro<br>2965 | acc<br>Thr | act<br>Thr | atg<br>Met | aaa<br>Lys | gaa<br>Glu<br>2970 | ggc<br>Gly | aac<br>Asn | aga<br>Arg | tca<br>Ser | atc<br>Ile<br>2975 | ttg<br>Leu | 9924  |
| tgt<br>Cys | tat<br>Tyr             | ctc<br>Leu | caa<br>Gln<br>2980 | cat<br>His | gtg<br>Val | cta<br>Leu | cgc<br>Arg | tat<br>Tyr<br>2985 | gag<br>Glu | cga<br>Arg | gag<br>Glu | ata<br>Ile | atc<br>Ile<br>2990 | acg<br>Thr | 9969  |
| gcg<br>Ala | tct<br>Ser             | cca<br>Pro | gag<br>Glu<br>2995 | aat<br>Asn | gac<br>Asp | tgg<br>Trp | cta<br>Leu | tgg<br>Trp<br>3000 | atc<br>Ile | ttt<br>Phe | tca<br>Ser | gac<br>Asp | ttt<br>Phe<br>3005 | aga<br>Arg | 10014 |
| agt<br>Ser | gcc<br>Ala             | aaa<br>Lys | atg<br>Met<br>3010 | acg<br>Thr | tac<br>Tyr | cta<br>Leu | acc<br>Thr | ctc<br>Leu<br>3015 | att<br>Ile | act<br>Thr | tac<br>Tyr | cag<br>Gln | tct<br>Ser<br>3020 | cat<br>His | 10059 |
| ctt<br>Leu | cta<br>Leu             | ctc<br>Leu | cag<br>Gln<br>3025 | agg<br>Arg | gtt<br>Val | gag<br>Glu | aga<br>Arg | aac<br>Asn<br>3030 | cta<br>Leu | tct<br>Ser | aag<br>Lys | agt<br>Ser | atg<br>Met<br>3035 | aga<br>Arg | 10104 |
| gat<br>Asp | aac<br>Asn             | ctg<br>Leu | cga<br>Arg<br>3040 | caa<br>Gln | ttg<br>Leu | agt<br>Ser | tcc<br>Ser | ttg<br>Leu<br>3045 | atg<br>Met | agg<br>Arg | cag<br>Gln | gtg<br>Val | ctg<br>Leu<br>3050 | ggc<br>Gly | 10149 |
| glà<br>dâð | cac<br>His             | gga<br>Gly | gaa<br>Glu<br>3055 | gat<br>Asp | acc<br>Thr | tta<br>Leu | gag<br>Glu | tca<br>Ser<br>3060 | gac<br>Asp | gac<br>Asp | aac<br>Asn | att<br>Ile | caa<br>Gln<br>3065 | cga<br>Arg | 10194 |
| ctg<br>Leu | cta<br>Leu             | aaa<br>Lys | gac<br>Asp<br>3070 | tct<br>Ser | tta<br>Leu | cga<br>Arg | agg<br>Arg | aca<br>Thr<br>3075 | aga<br>Arg | tgg<br>Trp | gtg<br>Val | gat<br>Asp | caa<br>Gln<br>3080 | gag<br>Glu | 10239 |
| gtg<br>Val | cgc<br>Arg             | cat<br>His | gca<br>Ala<br>3085 | gct<br>Ala | aga<br>Arg | acc<br>Thr | atg<br>Met | act<br>Thr<br>3090 | gga<br>Gly | gat<br>Asp | tac<br>Tyr | agc<br>Ser | ccc<br>Pro<br>3095 | aac<br>Asn | 10284 |
| aag<br>Lys | aag<br>Lys             | gtg<br>Val | tcc<br>Ser<br>3100 | cgt<br>Arg | aag<br>Lys | gta<br>Val | gga<br>Gly | tgt<br>Cys<br>3105 | tca<br>Ser | gaa<br>Glu | tgg<br>Trp | gtc<br>Val | tgc<br>Cys<br>3110 | tct<br>Ser | 10329 |
| gct<br>Ala | caa<br>Gln             | cag<br>Gln | gtt<br>Val<br>3115 | gca<br>Ala | gtc<br>Val | tct<br>Ser | acc<br>Thr | tca<br>Ser<br>3120 | gca<br>Ala | aac<br>Asn | ccg<br>Pro | gcc<br>Ala | cct<br>Pro<br>3125 | gtc<br>Val | 10374 |
| tcg<br>Ser | gag<br>Glu             | ctt<br>Leu | gac<br>Asp<br>3130 | ata<br>Ile | agg<br>Arg | gcc<br>Ala | ctc<br>Leu | tct<br>Ser<br>3135 | aag<br>Lys | agg<br>Arg | ttc<br>Phe | cag<br>Gln | aac<br>Asn<br>3140 | cct<br>Pro | 10419 |
| ttg<br>Leu | atc<br>Ile             | tcg<br>Ser | ggc<br>Gly<br>3145 | ttg<br>Leu | aga<br>Arg | gtg<br>Val | gtt<br>Val | cag<br>Gln<br>3150 | tgg<br>Trp | gca<br>Ala | acc<br>Thr | ggt<br>Gly | gct<br>Ala<br>3155 | cat<br>His | 10464 |

| ta<br>Ty | t aaq<br>r Ly:         | g ctt<br>g Leu | aag<br>Lys<br>3160 | cct<br>Pro | att<br>Ile | cta<br>Leu | gat<br>Asp | gat<br>Asp<br>3165 | ctc<br>Leu | aat<br>Asn | gtt<br>Val | ttc<br>Phe | ccc<br>Pro<br>3170 | tct<br>Ser | 10509 |
|----------|------------------------|----------------|--------------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|-------|
| ct<br>Le | c tga<br>u Cys         | ctt<br>Leu     | gta<br>Val<br>3175 | gtt<br>Val | ggg<br>gly | gac<br>Asp | 999<br>Gly | tca<br>Ser<br>3180 | 999<br>999 | 999<br>Gly | ata<br>Ile | tca<br>Ser | agg<br>Arg<br>3185 | gca<br>Ala | 10554 |
| gt<br>Va | c cto<br>l Lei         | c aac<br>1 Asn | atg<br>Met<br>3190 | ttt<br>Phe | cca<br>Pro | gat<br>Asp | gcc<br>Ala | aag<br>Lys<br>3195 | ctt<br>Leu | gtg<br>Val | ttc<br>Phe | aac<br>Asn | agt<br>Ser<br>3200 | ctc<br>Leu | 10599 |
| tt<br>Le | a gaq<br>u Glu         | g gtg<br>ı Val | aat<br>Asn<br>3205 | gac<br>Asp | ctg<br>Leu | atg<br>Met | gct<br>Ala | tcc<br>Ser<br>3210 | gga<br>Gly | aca<br>Thr | cat<br>His | cca<br>Pro | ctg<br>Leu<br>3215 | cct<br>Pro | 10644 |
| cc<br>Pi | t tca<br>o Sei         | a gca<br>7 Ala | atc<br>Ile<br>3220 | atg<br>Met | agg<br>Arg | gga<br>Gly | gga<br>Gly | aat<br>Asn<br>3225 | ggt<br>Gly | atc<br>Ile | gtc<br>Val | tcc<br>Ser | aga<br>Arg<br>3230 | gtg<br>Val | 10689 |
| at<br>I] | a gat<br>e As <u>l</u> | ttt<br>Phe     | gac<br>Asp<br>3235 | tca<br>Ser | atc<br>Ile | tgg<br>Trp | gaa<br>Glu | aaa<br>Lys<br>3240 | ccg<br>Pro | tcc<br>Ser | gac<br>Asp | ttg<br>Leu | aga<br>Arg<br>3245 | aac<br>Asn | 10734 |
| tt<br>Le | g gca<br>u Ala         | a acc<br>a Thr | tgg<br>Trp<br>3250 | aaa<br>Lys | tac<br>Tyr | ttc<br>Phe | cag<br>Gln | tca<br>Ser<br>3255 | gtc<br>Val | caa<br>Gln | aag<br>Lys | cag<br>Gln | gtc<br>Val<br>3260 | aac<br>Asn | 10779 |
| at<br>Me | g tco<br>t Sei         | tat<br>Tyr     | gac<br>Asp<br>3265 | ctc<br>Leu | att<br>Ile | att<br>Ile | tgc<br>Cys | gat<br>Asp<br>3270 | gca<br>Ala | gaa<br>Glu | gtt<br>Val | act<br>Thr | gac<br>Asp<br>3275 | att<br>Ile | 10824 |
| g¢<br>Al | a tct<br>a Sei         | : atc<br>: Ile | aac<br>Asn<br>3280 | cgg<br>Arg | ata<br>Ile | acc<br>Thr | ctg<br>Leu | tta<br>Leu<br>3285 | atg<br>Met | tcc<br>Ser | gat<br>Asp | ttt<br>Phe | gca<br>Ala<br>3290 | ttg<br>Leu | 10869 |
| to<br>Se | t ata<br>r Ile         | a gat<br>e Asp | gga<br>Gly<br>3295 | cca<br>Pro | ctc<br>Leu | tat<br>Tyr | ttg<br>Leu | gtc<br>Val<br>3300 | ttc<br>Phe | aaa<br>Lys | act<br>Thr | tat<br>Tyr | 999<br>Gly<br>3305 | act<br>Thr | 10914 |
| at<br>Me | g cta<br>t Lei         | a gta<br>1 Val | aat<br>Asn<br>3310 | cca<br>Pro | aac<br>Asn | tac<br>Tyr | aag<br>Lys | gct<br>Ala<br>3315 | att<br>Ile | caa<br>Gln | cac<br>His | ctg<br>Leu | tca<br>Ser<br>3320 | aga<br>Arg | 10959 |
| go<br>Al | g tto<br>a Phe         | e ccc<br>e Pro | tcg<br>Ser<br>3325 | gtc<br>Val | aca<br>Thr | ддд<br>ддд | ttt<br>Phe | atc<br>Ile<br>3330 | acc<br>Thr | caa<br>Gln | gta<br>Val | act<br>Thr | tcg<br>Ser<br>3335 | tct<br>Ser | 11004 |
| tt<br>Pł | t tca<br>le Sei        | a tct<br>Ser   | gag<br>Glu<br>3340 | ctc<br>Leu | tac<br>Tyr | ctc<br>Leu | cga<br>Arg | ttc<br>Phe<br>3345 | tcc<br>Ser | aaa<br>Lys | cga<br>Arg | 999<br>Gly | aag<br>Lys<br>3350 | ctt<br>Leu | 11049 |
| tt<br>Pł | c aga<br>e Arg         | a gat<br>J Asp | gct<br>Ala<br>3355 | gag<br>Glu | tac<br>Tyr | ttg<br>Leu | acc<br>Thr | tct<br>Ser<br>3360 | tcc<br>Ser | acc<br>Thr | ctt<br>Leu | cga<br>Arg | gaa<br>Glu<br>3365 | atg<br>Met | 11094 |
| ag<br>Se | c cti<br>r Lei         | : gtg<br>1 Val | tta<br>Leu<br>3370 | ttc<br>Phe | aat<br>Asn | tgt<br>Cys | agc<br>Ser | agc<br>Ser<br>3375 | ccc<br>Pro | aag<br>Lys | agt<br>Ser | gag<br>Glu | atg<br>Met<br>3380 | cag<br>Gln | 11139 |
| aç<br>Aı | a gct<br>g Ala         | : cgt<br>a Arg | tcc<br>Ser<br>3385 | ttg<br>Leu | aac<br>Asn | tat<br>Tyr | cag<br>Gln | gat<br>Asp<br>3390 | ctt<br>Leu | gtg<br>Val | aga<br>Arg | gga<br>Gly | ttt<br>Phe<br>3395 | cct<br>Pro | 11184 |
| ga<br>Gl | a gaa<br>u Glu         | a atc<br>1 Ile | ata<br>Ile<br>3400 | tca<br>Ser | aat<br>Asn | cct<br>Pro | tac<br>Tyr | aat<br>Asn<br>3405 | gag<br>Glu | atg<br>Met | atc<br>Ile | ata<br>Ile | act<br>Thr<br>3410 | ctg<br>Leu | 11229 |
| at<br>I] | t gad<br>e Asl         | s agt<br>Ser   | gat<br>Asp<br>3415 | gta<br>Val | gaa<br>Glu | tct<br>Ser | ttt<br>Phe | cta<br>Leu<br>3420 | gtc<br>Val | cac<br>His | aag<br>Lys | atg<br>Met | gtt<br>Val<br>3425 | gat<br>Asp | 11274 |
| ga<br>As | t cti<br>p Lei         | : gag<br>ı Glu | tta<br>Leu<br>3430 | cag<br>Gln | agg<br>Arg | gga<br>Gly | act<br>Thr | ctg<br>Leu<br>3435 | tct<br>Ser | aaa<br>Lys | gtg<br>Val | gct<br>Ala | atc<br>Ile<br>3440 | att<br>Ile | 11319 |
| at<br>I] | a gco<br>e Ala         | atc<br>Ile     | atg<br>Met<br>3445 | ata<br>Ile | gtt<br>Val | ttc<br>Phe | tcc<br>Ser | aac<br>Asn<br>3450 | aga<br>Arg | gtc<br>Val | ttc<br>Phe | aac<br>Asn | gtt<br>Val<br>3455 | tcc<br>Ser | 11364 |

| _                |                                        |                                                         |                                                  |                                             |                          |                 |              |               |                      |                |                |              |                   |                     |             |       |
|------------------|----------------------------------------|---------------------------------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------|-----------------|--------------|---------------|----------------------|----------------|----------------|--------------|-------------------|---------------------|-------------|-------|
| aa<br>Ly         | aa<br>ys                               | ccc<br>Pro                                              | cta<br>Leu                                       | act<br>Thr<br>3460                          | gac<br>Asp               | ccc<br>Pro      | ttg<br>Leu   | ttc<br>Phe    | tat<br>Tyr<br>3465   | cca<br>Pro     | ccg<br>Pro     | tct<br>Ser   | gat<br>Asp        | ccc<br>Pro<br>3470  | aaa<br>Lys  | 11409 |
| at<br>I:         | tc<br>le                               | ctg<br>Leu                                              | agg<br>Arg                                       | cac<br>His<br>3475                          | ttc<br>Phe               | aac<br>Asn      | ata<br>Ile   | tgt<br>Cys    | cgc<br>Arg<br>3480   | agt<br>Ser     | act<br>Thr     | atg<br>Met   | atg<br>Met        | tat<br>Tyr<br>3485  | cta<br>Leu  | 11454 |
| to<br>Se         | ct<br>er                               | act<br>Thr                                              | gct<br>Ala                                       | tta<br>Leu<br>3490                          | ggt<br>Gly               | gac<br>Asp      | gtc<br>Val   | cct<br>Pro    | agc<br>Ser<br>3495   | ttc<br>Phe     | gca<br>Ala     | aga<br>Arg   | ctt<br>Leu        | cac<br>His<br>3500  | gac<br>Asp  | 11499 |
| сt<br>Le         | tg<br>eu                               | tat<br>Tyr                                              | aac<br>Asn                                       | aga<br>Arg<br>3505                          | cct<br>Pro               | ata<br>Ile      | act<br>Thr   | tat<br>Tyr    | tac<br>Tyr<br>3510   | ttc<br>Phe     | aga<br>Arg     | aag<br>Lys   | caa<br>Gln        | ttc<br>Phe<br>3515  | att<br>Ile  | 11544 |
| CQ<br>A1         | ga<br>rg                               | ggg<br>ggg                                              | aac<br>Asn                                       | gtt<br>Val<br>3520                          | tat<br>Tyr               | cta<br>Leu      | tct<br>Ser   | tgg<br>Trp    | agt<br>Ser<br>3525   | tgg<br>Trp     | tcc<br>Ser     | aac<br>Asn   | gac<br>Asp        | acc<br>Thr<br>3530  | tca<br>Ser  | 11589 |
| gt<br>Vá         | tg<br>al                               | ttc<br>Phe                                              | aaa<br>Lys                                       | agg<br>Arg<br>3535                          | gta<br>Val               | gcc<br>Ala      | tgt<br>Cys   | aat<br>Asn    | tct<br>Ser<br>3540   | agc<br>Ser     | ctg<br>Leu     | agt<br>Ser   | ctg<br>Leu        | tca<br>Ser<br>3545  | tct<br>Ser  | 11634 |
| Ca<br>H:         | ac<br>is                               | tgg<br>Trp                                              | atc<br>Ile                                       | agg<br>Arg<br>3550                          | ttg<br>Leu               | att<br>Ile      | tac<br>Tyr   | aag<br>Lys    | ata<br>Ile<br>3555   | gtg<br>Val     | aag<br>Lys     | gct<br>Ala   | acc<br>Thr        | aga<br>Arg<br>3560  | ctc<br>Leu  | 11679 |
| gt<br>Va         | tt<br>al                               | ggc<br>Gly                                              | agc<br>Ser                                       | atc<br>Ile<br>3565                          | aag<br>Lys               | gat<br>Asp      | cta<br>Leu   | tcc<br>Ser    | aga<br>Arg<br>3570   | gaa<br>Glu     | gtg<br>Val     | gaa<br>Glu   | aga<br>Arg        | cac<br>His<br>3575  | ctt<br>Leu  | 11724 |
| Ca<br>H:         | at<br>is                               | agg<br>Arg                                              | tac<br>Tyr                                       | aac<br>Asn<br>3580                          | agg<br>Arg               | tgg<br>Trp      | atc<br>Ile   | acc<br>Thr    | cta<br>Leu<br>3585   | gag<br>Glu     | gat<br>Asp     | atc<br>Ile   | aga<br>Arg        | tct<br>Ser<br>3590  | aga<br>Arg  | 11769 |
| t<br>Se          | ca<br>er                               | tcc<br>Ser                                              | cta<br>Leu                                       | cta<br>Leu<br>3595                          | gac<br>Asp               | tac<br>Tyr      | agt<br>Ser   | tgc<br>Cys    | ctg<br>Leu<br>3600   | tga            | accg           | gat          | actc              | ctgga               | a           | 11816 |
| go               | cct                                    | gee                                                     | cat o                                            | gctaa                                       | igact                    | c tt            | gtgt         | gatg          | tatc                 | ttga           | aa a           | aaac         | aaga              | t cct               | aaatctg     | 11876 |
| aa               | acc                                    | ttt                                                     | ggt 1                                            | tgttt                                       | gatt                     | g tt            | tttc         | tcat          | tttt                 | gttg           | tt t           | attt         | gtta              | a gcg               | t           | 11930 |
|                  | 210<br>211<br>212<br>213<br>220<br>223 | )> S)<br>.> L)<br>.> T<br>.> O<br>.> O<br>.> F)<br>.> O | EQ II<br>ENGTI<br>YPE :<br>RGAN<br>EATUI<br>FHER | D NO<br>H: 45<br>PRT<br>ISM:<br>RE:<br>INFC | 2<br>50<br>Arti<br>DRMAT | fici<br>ION:    | al S<br>Syn  | eque:<br>thet | nce<br>ic Co         | nstr           | uct            |              |                   |                     |             |       |
| < 4              | 400                                    | )> S]                                                   | EQUEI                                            | NCE :                                       | 2                        |                 |              |               |                      |                |                |              |                   |                     |             |       |
| Me<br>1          | et                                     | Asp                                                     | Ala                                              | Asp                                         | Lys<br>5                 | Ile             | Val          | Phe           | Lys V<br>1           | al A<br>O      | sn A           | sn G         | ln V              | al Va<br>15         | l Ser       |       |
| Le<br>T          | eu                                     | Lys                                                     | Pro                                              | Glu<br>20<br>Leu                            | Ile                      | Ile             | Val .<br>Pro | Asp           | Gln H<br>25<br>Tle T | is G<br>hr L   | lu T           | yr L<br>lv L | ys T<br>3<br>vg A | yr Pr<br>O<br>la Pr | o Ala       |       |
| Le               | eu                                     | Asn                                                     | 35<br>Lys                                        | Ala                                         | Tyr                      | Lys             | Ser          | 40<br>Val :   | Leu S                | er G           | ly M           | et S         | s<br>5<br>er A    | la Al               | a Lys       |       |
| Le               | eu                                     | 50<br>Asp                                               | Pro                                              | Asp                                         | Asp                      | Val             | 55<br>Суз    | Ser           | Tyr L                | eu A           | 6<br>la A      | 0<br>la A    | la M              | et Gl               | n Phe       |       |
| 6 9<br>Pł<br>8 9 | 5<br>he<br>5                           | Glu                                                     | Gly                                              | Thr                                         | Сүв                      | 70<br>Pro<br>90 | Glu          | Asp           | Trp T                | 7<br>hr S<br>9 | 5<br>er T<br>5 | yr G         | ly I              | le Va               | 80<br>1 Ile |       |
| A:<br>10         | la<br>00                               | Arg                                                     | Lys                                              | Gly                                         | Asp                      | Lys<br>105      | Ile          | Thr :         | Pro G                | ly S<br>1      | er L<br>10     | eu V         | al G              | lu Il               | e Lys       |       |
| A:<br>1:         | rg<br>15                               | Thr                                                     | Asp                                              | Val                                         | Glu                      | Gly<br>120      | Asn          | Trp .         | Ala L                | eu T<br>1      | hr G<br>25     | ly G         | ly M              | et Gl               | u Leu       |       |
| T)<br>13         | hr<br>30                               | Arg                                                     | Asp                                              | Pro                                         | Thr                      | Val<br>135      | Pro          | Glu I         | His A                | la S<br>1      | er L<br>40     | eu V         | al G              | ly Le               | u Leu       |       |

| Leu<br>145                                   | Ser                                              | Leu                                             | Tyr                                        | Arg                      | Leu<br>150 | Ser    | Lys       | Ile          | Ser       | Gly<br>155 | Gln | Asn       | Thr       | Gly       | Asn<br>160 |
|----------------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------|------------|--------|-----------|--------------|-----------|------------|-----|-----------|-----------|-----------|------------|
| Tyr<br>165                                   | Lys                                              | Thr                                             | Asn                                        | Ile                      | Ala<br>170 | Asp    | Arg       | Ile          | Glu       | Gln<br>175 | Ile | Phe       | Glu       | Thr       | Ala        |
| Pro<br>180                                   | Phe                                              | Val                                             | Lys                                        | Ile                      | Val<br>185 | Glu    | His       | His          | Thr       | Leu<br>190 | Met | Thr       | Thr       | His       | Lys        |
| Met<br>195                                   | Cys                                              | Ala                                             | Asn                                        | Trp                      | Ser<br>200 | Thr    | Ile       | Pro          | Asn       | Phe<br>205 | Arg | Phe       | Leu       | Ala       | Gly        |
| Thr<br>210                                   | Tyr                                              | Asp                                             | Met                                        | Phe                      | Phe<br>215 | Ser    | Arg       | Ile          | Glu       | His<br>220 | Leu | Tyr       | Ser       | Ala       | Ile        |
| Arg<br>225                                   | Val                                              | Gly                                             | Thr                                        | Val                      | Val<br>230 | Thr    | Ala       | Tyr          | Glu       | Asp<br>235 | Cys | Ser       | Gly       | Leu       | Val<br>240 |
| Ser<br>245                                   | Phe                                              | Thr                                             | Gly                                        | Phe                      | Ile<br>250 | Lys    | Gln       | Ile          | Asn       | Leu<br>255 | Thr | Ala       | Arg       | Glu       | Ala        |
| Ile<br>260                                   | Leu                                              | Tyr                                             | Phe                                        | Phe                      | His<br>265 | Lys    | Asn       | Phe          | Glu       | Glu<br>270 | Glu | Ile       | Arg       | Arg       | Met        |
| Phe<br>275                                   | Glu                                              | Pro                                             | Gly                                        | Gln                      | Glu<br>280 | Thr    | Ala       | Val          | Pro       | His<br>285 | Ser | Tyr       | Phe       | Ile       | His        |
| Phe<br>290                                   | Arg                                              | Ser                                             | Leu                                        | Gly                      | Leu<br>295 | Ser    | Gly       | Lys          | Ser       | Pro<br>300 | Tyr | Ser       | Ser       | Asn       | Ala        |
| Val<br>305                                   | Gly                                              | His                                             | Val                                        | Phe                      | Asn<br>310 | Leu    | Ile       | His          | Phe       | Val<br>315 | Gly | Сүз       | Tyr       | Met       | Gly<br>320 |
| Gln<br>325                                   | Val                                              | Arg                                             | Ser                                        | Leu                      | Asn<br>330 | Ala    | Thr       | Val          | Ile       | Ala<br>335 | Ala | СЛа       | Ala       | Pro       | His        |
| Glu<br>340                                   | Met                                              | Ser                                             | Val                                        | Leu                      | Gly<br>345 | Gly    | Tyr       | Leu          | Gly       | Glu<br>350 | Glu | Phe       | Phe       | Gly       | Lys        |
| Gly<br>355                                   | Thr                                              | Phe                                             | Glu                                        | Arg                      | Arg<br>360 | Phe    | Phe       | Arg          | Asp       | Glu<br>365 | Lys | Glu       | Leu       | Gln       | Glu        |
| Tyr<br>370                                   | Glu                                              | Ala                                             | Ala                                        | Glu                      | Leu<br>375 | Thr    | Lys       | Thr          | Asp       | Val<br>380 | Ala | Leu       | Ala       | Asp       | Asp        |
| Gly<br>385                                   | Thr                                              | Val                                             | Asn                                        | Ser                      | Asp<br>390 | Asp    | Glu       | Asp          | Tyr       | Phe<br>395 | Ser | Gly       | Glu       | Thr       | Arg<br>400 |
| Ser<br>405                                   | Pro                                              | Glu                                             | Ala                                        | Val                      | Tyr<br>410 | Thr    | Arg       | Ile          | Met       | Met<br>415 | Asn | Gly       | Gly       | Arg       | Leu        |
| Lys<br>420                                   | Arg                                              | Ser                                             | His                                        | Ile                      | Arg<br>425 | Arg    | Tyr       | Val          | Ser       | Val<br>430 | Ser | Ser       | Asn       | His       | Gln        |
| Ala<br>435                                   | Arg                                              | Pro                                             | Asn                                        | Ser                      | Phe<br>440 | Ala    | Glu       | Phe          | Leu       | Asn<br>445 | Lys | Thr       | Tyr       | Ser       | Ser        |
| Asp<br>450                                   | Ser                                              |                                                 |                                            |                          |            |        |           |              |           |            |     |           |           |           |            |
| <210<br><211<br><212<br><213<br><220<br><223 | )> SE<br>L> LE<br>2> T<br>3> OF<br>3> FE<br>3> O | EQ II<br>ENGTH<br>PE:<br>CGANJ<br>EATUF<br>CHER | ) NO<br>H: 29<br>PRT<br>SM:<br>RE:<br>INFC | 3<br>97<br>Arti<br>DRMAI | fici.      | al Syr | Seque     | ence<br>ic C | const     | ruct       | :   |           |           |           |            |
| <400                                         | )> SE                                            | QUEN                                            | ICE :                                      | 3                        |            |        |           |              |           |            |     |           |           |           |            |
| Met<br>1                                     | Ser                                              | Lys                                             | Ile                                        | Phe<br>5                 | Val        | Asn    | Pro       | Ser          | Ala<br>10 | Ile        | Arg | Ala       | Gly       | Leu<br>15 | Ala        |
| Asp                                          | Leu                                              | Glu                                             | Met<br>20                                  | Ala                      | Glu        | Glu    | Thr       | Val<br>25    | Asp       | Leu        | Ile | Asn       | Arg<br>30 | Asn       | Ile        |
| Glu                                          | Asp                                              | Asn<br>35                                       | Gln                                        | Ala                      | His        | Leu    | Gln<br>40 | Gly          | Glu       | Pro        | Ile | Glu<br>45 | Val       | Asp       | Asn        |

| Heat Bro Glu App Met Gly Arg Leu His Leu App App Gly Lye Ser Pro<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| when Pro Gly Glu Met Ala Lys Val Gly Glu Gly Lys Tyr Arg Glu Asp<br>$\frac{1}{75}$ for Gly Glu Met Ala Lys Val Gly Glu Gly Lys Tyr Arg Glu Asp<br>$\frac{1}{75}$ for Gly Glu Asp Leu Ser Phe Leu Phe Gln Ser Tyr<br>$\frac{1}{95}$ for Gly Glu Asp Val Glu Heu Val Arg Glu Met Arg Ser Gly Glu<br>$\frac{1}{10}$ for Tyr Ser Gln Try Ser Gln Thr Val Glu Glu I I E I E Ser Tyr<br>$\frac{1}{125}$ for Tyr $\frac{1}{125}$ for Tyr $\frac{1}{125}$ for Tyr $\frac{1}{125}$ for Tyr<br>$\frac{1}{125}$ for Tyr $\frac{1}{125}$ for Tyr $\frac{1}{125}$ for Tyr<br>$\frac{1}{125}$ for Tyr $\frac{1}{125}$ for Tyr $\frac{1}{125}$ for Tyr<br>$\frac{1}{125}$ for Tyr $\frac{1}{125}$ for Tyr $\frac{1}{120}$ for Yal Glu Glu I I E I E Ser Tyr<br>$\frac{1}{125}$ for Ser Gln Arg Glu Ger Gln Ser Ser Lys Glu Thr Thr Pro Thr<br>$\frac{1}{155}$ for Ser Gln Arg Glu Ger Gln Ser Ser Lys Ala Arg Met Ala Ala Glu<br>$\frac{1}{155}$ for Tyr Lys Phe Pro Ser Arg Ser Ser Gly I I E Leu Leu<br>$\frac{1}{155}$ for Tyr Lys Phe Pro Ser Arg Ser Ser Gly I I E Leu Leu<br>$\frac{1}{210}$ for Tyr Lys Phe Pro Ser Arg Ser Ser Gly I Ser Lys<br>$\frac{1}{225}$ for Ser Use Lys Uyr Tyr Lys Phe Pro Ser Arg Ser Ser Gly I Ser Lys<br>$\frac{1}{225}$ for Ser Val Glu Ala Glu Thr Arg Leu Ala His Arg Gly Ser Lys<br>$\frac{1}{225}$ for Ser Val Glu Ser Arg Lys Leu Ser Lys<br>$\frac{1}{210}$ for Yar Lys Pro Gly Val Thr Arg Leu Ala His Arg Gly Ser Lys<br>$\frac{1}{225}$ for Ser Ji Ser Val Glu Ser Arg Lys Leu Ser Lys<br>$\frac{1}{225}$ for Her Gln Leu Leu Val Glu Ser Arg Lys Leu Ser Lys<br>$\frac{1}{225}$ for Her Cln Leu Leu Val Glu Ser Arg Lys Leu Ser Lys<br>$\frac{1}{225}$ for Her Thr<br>$\frac{1}{225}$ for Her Thr<br>$\frac{1}{225}$ for Her Thr<br>$\frac{1}{225}$ for Her Thr<br>$\frac{1}{225}$ for D 10 4<br>$\frac{1}{25}$ for D 10 4<br>$\frac{1}{25}$ for D 10 4<br>$\frac{1}{25}$ for Thr $\frac{1}{5}$ for Construct<br>$\frac{1}{20}$ for Her Thr<br>$\frac{1}{5}$ for Or O Glu Tyr Val Pro Leu As Arg Arg Arg Glu Asp Thr<br>$\frac{1}{5}$ for The Ser Tyr<br>$\frac{1}{25}$ for Pro Glu Tyr Val Pro Leu Lys Glu Leu Thr<br>$\frac{1}{5}$ for Or O Glu Tyr Val Pro Leu Lys Glu Leu Thr<br>$\frac{1}{5}$ for Thr<br>$\frac{1}{5}$ for Thr $\frac{1}{5}$ for Thr<br>$\frac{1}{5}$ for Thr<br>$\frac{1}{5}$ for Thr $\frac{1}{5}$ for Thr<br>$\frac{1}{5}$ for Thr<br>$\frac{1}{5}$ for Thr<br>$\frac$ |
| Phe din Met Asp Glu Gly Glu Asp Leu Ser Phe Leu Phe Gln Ser Tyr 95         eeu Glu Aan Val Gly Val Gln Ile Val Arg Gln Met Arg Ser Gly Glu 110         100       100       10         rug Phe Leu Lyø Ile Trp Ser Gln Thr Val Glu Glu Ile Ile Ser Tyr 125         (al Ala Val Aan Phe Pro Am Pro Pro Gly Lyø Ser Ser Glu Asp Lyø 130         (al Ala Val Aan Phe Pro Am Pro Pro Gly Lyø Ser Ser Glu Asp Lyø 146         (b) Thr Thr Gly Arg Glu Leu Lyø Lyø Glu Thr Thr Pro Thr 150         (c) Tro Ser Gln Arg Glu Ser Gln Ser Ser Lyø Ala Arg Met Ala Ala Gln 175         (c) Ala Ser Gly Pro Ala Leu Glu Trp Ser Ala Thr Am Glu Glu 195         (c) Asp Glu Glu Tyr Lyø Phe Pro Ser Arg Ser Ser Gly Ile Lau Leu 200         (c) Yr Am Phe Glu Glu Leu Lyø Met Asn Leu App Asp Ile Val Lyø Glu 215         (c) Asn Val Pro Gly Val Thr Arg Leu Ala His Asp Gly Ser Lyø 2240         (c) Asn Val Pro Gly Val Thr Arg Leu Ala His Asp Gly Ser Lyø 2240         (c) Asn Val Pro Gly Val Thr Arg Leu Ala His Asp Gly Ser Lyø 2240         (c) Asn Val Pro Gly Val Thr Arg Leu Ala His Asp Gly Ser Lyø 2240         (c) Asn Arg Tyr Thr Ser Cyø 225         (c) Yr Asn Arg Tyr Thr Ser Cyø 226         (c) Sequence         (c) Pro Pro Ala Leu Glu Ser Asp Lyø Leu Ser Lyø Ile Met Gln 275         (c) Sequence:         (c) Pro Tyr Lyø Phe Fro Ser Cyø 225         (c) Sequence:         (c) Sequence:         (c) Pro Yreft:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| eu Glu Asn Val Gly Val Gln IIe Val Arg Gln Met Arg Ser Gly Glu         her Glu Leu Lys IIe Trp Ser Gln Thr Val Glu Glu IIe IIe Ser Tyr         120         Yal Ala Val Asn Phe Pro Asn Pro Pro Gly Lys Ser Ser Glu Asp Lys         130         131         Ser Thr Gln Thr Th Gly Arg Glu Leu Lys Lys Glu Thr Thr Pro Thr         145         Pro Ser Gln Arg Glu Ser Gln Ser Ser Lys Ala Arg Met Ala Ala Gln         175         180         Pro Ser Gly Pro Pro Ala Leu Glu Trp Ser Ala Thr Asn Glu Glu         190         Pro Ser Jys Dys Tyr Lys Phe Pro Ser Arg Ser Ser Gly Tie Leu Leu         210         Pro Asn Phe Glu Gln Leu Lys Lys Met Asn Leu Asp Asp IIe Val Lys Glu         220         Pro Asn Phe Glu Gln Leu Lys Met Asn Leu Asp Asp IIe Val Lys Glu         230       236         245       270         245       270         245       270         246       287         210       287         211 <lendth: 202<="" td="">         2212       225         210       SEQ ID NO 4         211       287         212       287         213&lt; ORGANISK: Artificial Sequence</lendth:>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Here Leu Lyo       11e       Trp       Ser       Gln       Thr       Val       Glu       Glu       Trp       125       Is er       Tyr         1al       Val       Aan       Pro       Pro       Glu       Leu       Lyo       Ser       Ser       Glu       App       Lyo         Val       Glu       Arn       Thr       Thr       Glu       Ser       Ser       Ser       Glu       Arn       Thr       Thr       Glu       Ser       Ser       Glu       Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| rai       Asin Pie Pio       Pio       Pio       Pio       Pio         rai       Ala       Asin Pie Pio       Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 130       133       140         Ser Th Gln Thr Th Gly Arg Glu Leu Lys Lys Glu Thr Thr Pro Thr<br>165       160         Pro Ser Gln Arg Glu Ser Gln Ser Ser Lys Ala Arg Met Ala Ala Gln<br>165       170         144       Ala Ser Gly Pro Pro Ala Leu Glu Thr Ser Ala Thr Asn Glu Glu<br>180       181         Asp Asp Leu Ser Val Glu Ala Glu Ile Ala His Gln Ile Ala Glu Ser<br>200       112         Asp Asp Leu Ser Val Glu Ala Glu Thr Asn Leu Asp Asp Ile Val Lys Glu<br>210       114         Asp Asp Leu Ser Val Glu Ala Glu Thr Arg Leu Ala His Gln Ile Ala Glu Ser<br>220       114         Yr Asn Phe Glu Gln Leu Lys Met Asn Leu Asp Asp Ile Val Lys Glu<br>210       210         Yr Asn Val Pro Gly Val Thr Arg Leu Ala His Asp Gly Ser Lys<br>245       124         Ase Pro Leu Arg Cys Val Leu Gly Trp Val Ala Leu Ala Asn Pro Lys<br>250       128         Asy Asp Leu Asn Arg Tyr Thr Ser Cys<br>220       220         Asp Asp Leu Asn Arg Tyr Thr Ser Cys<br>2210 > SEQ ID NO 4       2215         2211 > LENGTH: 202       2212         2212 > TFER TINFORMATION: Synthetic Construct       10         2203 > GRAINSM: Artificial Sequence       4         2204 > SEQUENCE: 4       4         Met Asn Phe Leu Arg Lys Ile Val Lys Asn Cys Arg Asp Glu Asp Thr<br>10       15         Asn Lys Pro Ser Pro Val Ser Ala Pro Leu Asp Asp Asp Asp Leu Trp<br>20       4         Asn Met Arg Asn Phe Cys Ile Asn Gly Gly Val Lys Val Cys Ser Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 143       150       155       160         Pro Ser Gln Arg Glu Ser Gln Ser Ser Lys Ala Arg Met Ala Ala Glu 175         16 Ala Ser Gly Pro Pro Ala Leu Glu Trp Ser Ala Thr Asn Glu Glu 180         180       185         181       195         182       As Ser Gly Pro Pro Ala Leu Glu Trp Ser Ala Thr Asn Glu Glu 190         183       195         184       Ser Gly Pro Pro Ala Leu Glu Trp Ser Ala Thr Asn Glu Glu 190         185       195         185       195         186       Ser Lys Lys Tyr Lys Phe Pro Ser Arg Ser Ser Gly Ile Leu Leu 200         210       215         210       216         212       216         213       707         214       Lys Glu Ser Lys Lys Glu 215         215       160         125       160         125       160         125       160         125       160         125       160         125       160         126       161         127       163         128       160         129       160         120       160         121       160         121       160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1165 170 175<br>116 Ala Ser Gly Pro Pro Ala Leu Glu Trp Ser Ala Thr Asn Glu Glu 190<br>1180 190<br>1190 190<br>140 Asp Leu Ser Val Glu Ala Glu Ile Ala His Gln The Ala Glu Ser<br>195 200 215 200 110 Ala Glu Ser Arg Ser Ser Gly Ile Leu Leu<br>210 210 215 200 110 Asp Asp Leu Asp Asp Tle Val Lys Glu<br>225 240<br>Ala Lys Asn Val Pro Gly Val Thr Arg Leu Ala His Asp Gly Ser Lys<br>240<br>Ala Lys Asn Val Pro Gly Val Thr Arg Leu Ala His Asp Gly Ser Lys<br>240<br>Ala Lys Asn Val Pro Gly Val Leu Gly Trp Val Ala Leu Ala Asn Pro Lys<br>240<br>240<br>Ala Lys Asn Val Pro Gly Val Leu Gly Trp Val Ala Leu Ala Asn Pro Lys<br>240<br>240<br>Ala Lys Asn Val Pro Gly Val Cheu Gly Trp Val Ala Leu Ala Asn Pro Lys<br>240<br>240<br>240<br>241<br>240<br>240<br>241<br>240<br>241<br>240<br>240<br>241<br>240<br>241<br>240<br>242<br>240<br>241<br>240<br>241<br>240<br>241<br>240<br>241<br>240<br>241<br>240<br>241<br>240<br>241<br>240<br>241<br>240<br>242<br>240<br>241<br>240<br>241<br>240<br>240<br>241<br>240<br>240<br>240<br>240<br>240<br>240<br>240<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 180       185       190         Asp       Asp       Leu       Ser       Val       Glu       Ala       Glu       Ile       Ala       Bis       Glu       Ile       Ala       Glu       Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 195 200 205<br>Phe Ser Lys Lys Tyr Lys Phe Pro Ser Arg Ser Ser Gly Ile Leu Leu<br>210 210 210 210 210 210 210 210 210 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10       210       10       11       10       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11 <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1/17 ABT Phe Git Gift Leu Giy Beet Abh Leu Abh Abb PABP Abp 110 Val Dys Git       240         225       230       235       240         241       Lys Asn Val Pro Gly Val Thr Arg Leu Ala His Asp Gly Ser Lys       255         Leu Pro Leu Arg Cys Val Leu Gly Trp Val Ala Leu Ala Asn Pro Lys       270         260       265       270         Lys Phe Gln Leu Leu Val Glu Ser Asp Lys Leu Ser Lys Ile Met Gln       285         Asp Asp Leu Asn Arg Tyr Thr Ser Cys       290         2121> SEQ ID NO 4       2213> ORGANISM: Artificial Sequence         2223> FEATURE:       223         2230> SEQUENCE: 4         Met Asn Phe Leu Arg Lys Ile Val Lys Asn Cys Arg Asp Glu Asp Thr         15       50         Sin Lys Pro Ser Pro Val Ser Ala Pro Leu Asp Asp Asp Leu Trp         20       25         21       20         223       00         223       10         240       25         220       25         2210> SEQUENCE: 4         Met Asn Phe Leu Arg Lys Ile Val Lys Asn Cys Arg Asp Asp Leu Trp         20       25         20       20         20       20         20       25         21       25         22       25     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <pre>Ala Lys Asn Val Pro Gly Val Thr Arg Leu Ala His Asp Gly Ser Lys 245 250 250 250 250 250 250 250 260 260 260 260 270 260 270 260 270 265 270 280 280 280 285 270 285 270 285 280 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 285 280 28 28 28 28 28 28 28 28 28 28 28 28 28</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Jeu ProLeu Arg Cys ValLeu Gly Trp ValAlaLeu AlaAnn ProLys260265265270270270280285270285270275Leu ValGlu Ser AspLysLeu Ser LysIle Met Gln275290295285285210> SEQ ID NO 42952952210> SEQ ID NO 42952210> SEQ ID NO 4211> LENGTH: 2022212> TYPE: PRT223> ORGANISM: Artificial Sequence220> FEATURE:223> OTHER INFORMATION: Synthetic Construct2400> SEQUENCE: 4Met Asn PheLeu Arg LysIle ValLys Pro Ser Pro ValSer Ala ProLeu Asp AspAgo ProPro Glu TyrVal202525Sen Met Arg Asn PheCys3030202520Ser Pro2025Sen Gly Tyr Ser Phe Arg30252025212523252425252526262627272528272929292020252122232424252525262627252829292929292920292029 <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ys Phe Gln Leu Leu Val Glu Ser Asp Lys Leu Ser Lys Ile Met Gln<br>275 280 280 285 285 285 285 285 285 285 285 285 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Asp Asp Leu Asn Arg Tyr Thr Ser Cys<br>290 295 295 295 295 295 295 295 295 295 295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2210> SEQ ID NO 4<br>2211> LENGTH: 202<br>2212> TYPE: PRT<br>2213> ORGANISM: Artificial Sequence<br>220> FEATURE:<br>2223> OTHER INFORMATION: Synthetic Construct<br>2400> SEQUENCE: 4<br>Met Asn Phe Leu Arg Lys Ile Val Lys Asn Cys Arg Asp Glu Asp Thr<br>5 10 15<br>Sequence Pro Ser Pro Val Ser Ala Pro Leu Asp Asp Asp Asp Leu Trp<br>20 25<br>Meu Pro Pro Pro Glu Tyr Val Pro Leu Lys Glu Leu Thr Ser Lys Lys<br>40<br>Asn Met Arg Asn Phe Cys Ile Asn Gly Gly Val Lys Val Cys Ser Pro<br>50<br>Asn Gly Tyr Ser Phe Arg Ile Leu Arg His Ile Leu Lys Ser Phe Asp<br>75<br>80<br>81<br>81<br>85<br>80<br>81<br>81<br>85<br>80<br>81<br>81<br>85<br>80<br>80<br>81<br>85<br>80<br>80<br>80<br>81<br>85<br>80<br>80<br>80<br>81<br>85<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Met       Asn       Phe       Leu       Arg       Lys       Ile       Val       Lys       Asn       Cys       Arg       Asp       Glu       Asp       Thr         Sln       Lys       Pro       Ser       Pro       Val       Ser       Ala       Pro       Leu       Asp       Asp       Asp       Leu       Trp         Leu       Pro       Pro       Ser       Pro       Val       Pro       Leu       Asp       Asp       Asp       Leu       Trp         Leu       Pro       Pro       Leu       Pro       Leu       Asp       Asp       Asp       Leu       Trp         Leu       Pro       Pro       Leu       Leu       Leu       Trp       Ser       Lys       Lys       Val       Trp         Asp       fro       Pro       Pro       Leu       Lys       Glu       Lue       Trp       Ser       Pro       Lys       Val       Ser       Pro       Lue       Fro       Lue       Lys       Val       Cys       Ser       Pro       Pro       Lue       Lue       Lys       Val       Lys       Pro       Pro       Pro       Pro       Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sin LysProSerProValSerAlaProLeuAspAspAspAspAspAsp $Asp$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| JeuProProGluTyrValProLeuLysGluLeuThrSerLysLysAsnMetArgAsnPheCysIleAsnGlyValLysValCysSerProAsnGlyTyrSerPheArgIleArgHisIleLeuLysValCysSerProAsnGlyTyrSerPheArgIleLeuArgHisIleLeuLysSerPheAspS5TrSerGlyAsnHisArgMetIleGlyLeuAlaLysValValS6SerGlyAsnHisArgMetIleGlyLeuAlaLysValValS6SerGlyAsnHisArgMetIleGlyLeuAlaLysValValS6SerGlySerProGlyProGluGlyMetAsnTrpS6SerGlySerProGlyProGluGlyMetAsnTrpS6SerGlySerProGlyProGlyGlyHetAsnTrpS6SerGlySerProGlyFroGlyGlyHetAsnTrpS6SerSerSerFroGlyFroGlyGly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Asn Met Arg Asn Phe Cys Ile Asn Gly Gly Val Lys Val Cys Ser Pro<br>50 $50$ $55$ $55$ $60$ $60$ $60$ $60$ $60$ $60$ $60$ $60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| As Gly Tyr Ser Phe Arg Ile Leu Arg His Ile Leu Lys Ser Phe Asp<br>70 75 80<br>Slu Ile Tyr Ser Gly As His Arg Met Ile Gly Leu Ala Lys Val Val<br>85 90 95<br>Slu Gly Leu Ala Leu Ser Gly Ser Pro Val Pro Glu Gly Met As Trp<br>100 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Glu Ile Tyr Ser Gly Asn His Arg Met Ile Gly Leu Ala Lys Val Val<br>85 90 95<br>Ile Gly Leu Ala Leu Ser Gly Ser Pro Val Pro Glu Gly Met Asn Trp<br>100 105 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| The Gly Leu Ala Leu Ser Gly Ser Pro Val Pro Glu Gly Met Asn Trp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1011 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Val Tyr Lys Leu Arg Arg Thr Phe Ile Phe Gln Trp Ala Asp Ser Arg

#### -continued

Gly Pro Leu Glu Gly Glu Glu Leu Glu Tyr Ser Gln Glu Ile Thr Trp Asp Asp Asp Thr Glu Phe Val Gly Leu Gln Ile Arg Val Ile Ala Lys Gln Cys His Ile Gln Gly Arg Ile Trp Cys Ile Asn Met Asn Pro Arg 165 170 175 Ala Cys Gln Leu Trp Ser Asp Met Ser Leu Gln Thr Gln Arg Ser Glu Glu Asp Lys Asp Ser Ser Leu Leu Glu <210> SEQ ID NO 5 <211> LENGTH: 524 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <221> NAME/KEY: misc feature <222> LOCATION: (352)..(352) <223> OTHER INFORMATION: The 'Xaa' at location 352 stands for Lys, Asn, Arg, Ser, Thr, Ile, Met, Glu, Asp, Gly, Ala, Val, Gln, His, Pro, Leu, Tyr, Trp, Cys, or Phe. <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct <400> SEQUENCE: 5 Met Val Pro Gln Ala Leu Leu Phe Val Pro Leu Leu Val Phe Pro Leu Cys Phe Gly Lys Phe Pro Ile Tyr Thr Ile Pro Asp Lys Leu Gly Pro Trp Ser Pro Ile Asp Ile His His Leu Ser Cys Pro Asn Asn Leu Val Val Glu Asp Glu Gly Cys Thr Asn Leu Ser Gly Phe Ser Tyr Met Glu Leu Lys Val Gly Tyr Ile Leu Ala Ile Lys Met Asn Gly Phe Thr Cys Thr Gly Val Val Thr Glu Ala Glu Thr Tyr Thr Asn Phe Val Gly Tyr Val Thr Thr Thr Phe Lys Arg Lys His Phe Arg Pro Thr Pro Asp Ala Cys Arg Ala Ala Tyr As<br/>n Trp Lys Met Ala Gly Asp Pro Arg Tyr Glu $% \mathbb{C}$ 115 120 Glu Ser Leu His Asn Pro Tyr Pro Asp Tyr His Trp Leu Arg Thr Val Lys Thr Thr Lys Glu Ser Leu Val Ile Ile Ser Pro Ser Val Ala Asp Leu Asp Pro Tyr Asp Arg Ser Leu His Ser Arg Val Phe Pro Ser Gly Lys Cys Ser Gly Val Ala Val Ser Ser Thr Tyr Cys Ser Thr Asn His Asp Tyr Thr Ile Trp Met Pro Glu Asn Pro Arg Leu Gly Met Ser Cys Asp Ile Phe Thr Asn Ser Arg Gly Lys Arg Ala Ser Lys Gly Ser Glu Thr Cys Gly Phe Val Asp Glu Arg Gly Leu Tyr Lys Ser Leu Lys Gly Ala Cys Lys Leu Lys Leu Cys Gly Val Leu Gly Leu Arg Leu Met Asp

| Gly          | Thr            | Trp            | Val<br>260    | Ala        | Met         | Gln        | Thr        | Ser<br>265 | Asn        | Glu        | Thr        | Lys        | Trp<br>270 | Сүз        | Pro        |
|--------------|----------------|----------------|---------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Pro          | Asp            | Gln<br>275     | Leu           | Val        | Asn         | Leu        | His<br>280 | Asp        | Phe        | Arg        | Ser        | Asp<br>285 | Glu        | Ile        | Glu        |
| His          | Leu<br>290     | Val            | Val           | Glu        | Glu         | Leu<br>295 | Val        | Arg        | Lys        | Arg        | Glu<br>300 | Glu        | Суз        | Leu        | Asp        |
| Ala<br>305   | Leu            | Glu            | Ser           | Ile        | Met<br>310  | Thr        | Thr        | Lys        | Ser        | Val<br>315 | Ser        | Phe        | Arg        | Arg        | Pro<br>320 |
| Ser          | His            | Leu            | Arg           | Lys<br>325 | Leu         | Val        | Pro        | Gly        | Phe<br>330 | Gly        | Lys        | Ala        | Tyr        | Thr<br>335 | Ile        |
| Phe          | Asn            | Lys            | Thr<br>340    | Leu        | Met         | Glu        | Ala        | Asp<br>345 | Ala        | His        | Tyr        | Lys        | Ser<br>350 | Val        | Xaa        |
| Thr          | Trp            | Asn<br>355     | Glu           | Ile        | Leu         | Pro        | Ser<br>360 | Lys        | Gly        | Cys        | Leu        | Arg<br>365 | Val        | Gly        | Gly        |
| Arg          | Cys<br>370     | His            | Pro           | His        | Val         | Asn<br>375 | Gly        | Val        | Phe        | Phe        | Asn<br>380 | Gly        | Ile        | Ile        | Leu        |
| Gly<br>385   | Pro            | Aab            | Gly           | Asn        | Val<br>390  | Leu        | Ile        | Pro        | Glu        | Met<br>395 | Gln        | Ser        | Ser        | Leu        | Leu<br>400 |
| Gln          | Gln            | His            | Met           | Glu<br>405 | Leu         | Leu        | Glu        | Ser        | Ser<br>410 | Val        | Ile        | Pro        | Leu        | Val<br>415 | His        |
| Pro          | Leu            | Ala            | Asp<br>420    | Pro        | Ser         | Thr        | Val        | Phe<br>425 | Lys        | Aab        | Gly        | Asp        | Glu<br>430 | Ala        | Glu        |
| Asp          | Phe            | Val<br>435     | Glu           | Val        | His         | Leu        | Pro<br>440 | Asp        | Val        | His        | Asn        | Gln<br>445 | Val        | Ser        | Gly        |
| Val          | Asp<br>450     | Leu            | Gly           | Leu        | Pro         | Asn<br>455 | Trp        | Gly        | Lys        | Tyr        | Val<br>460 | Leu        | Leu        | Ser        | Ala        |
| Gly<br>465   | Ala            | Leu            | Thr           | Ala        | Leu<br>470  | Met        | Leu        | Ile        | Ile        | Phe<br>475 | Leu        | Met        | Thr        | Суз        | Cys<br>480 |
| Arg          | Arg            | Val            | Asn           | Arg<br>485 | Ser         | Glu        | Pro        | Thr        | Gln<br>490 | His        | Asn        | Leu        | Arg        | Gly<br>495 | Thr        |
| Gly          | Arg            | Glu            | Val<br>500    | Ser        | Val         | Thr        | Pro        | Gln<br>505 | Ser        | Gly        | Lys        | Ile        | Ile<br>510 | Ser        | Ser        |
| Trp          | Glu            | Ser<br>515     | His           | Lys        | Ser         | Gly        | Gly<br>520 | Glu        | Thr        | Arg        | Leu        |            |            |            |            |
| <210         | )> SH          | EQ II<br>ENGTH | ) NO<br>1: 21 | 6<br>127   |             |            |            |            |            |            |            |            |            |            |            |
| <212         | 2> TY<br>3> OF | PE :<br>RGANI  | PRT<br>SM:    | Art:       | ifici       | ial S      | Seque      | ence       |            |            |            |            |            |            |            |
| <220<br><223 | )> FH<br>3> 01 | EATUR<br>THER  | RE:<br>INFO   | ORMA'      | <b>FION</b> | : Syr      | nthet      | ic (       | Const      | ruct       | 5          |            |            |            |            |
| <400         | )> SI          | EQUEI          | ICE :         | 6          |             |            |            |            |            |            |            |            |            |            |            |
| Met<br>1     | Leu            | Aap            | Pro           | Gly<br>5   | Glu         | Val        | Tyr        | Aap        | Asp<br>10  | Pro        | Ile        | Asp        | Pro        | Ile<br>15  | Glu        |
| Leu          | Glu            | Asp            | Glu<br>20     | Pro        | Arg         | Gly        | Thr        | Pro<br>25  | Thr        | Val        | Pro        | Asn        | Ile<br>30  | Leu        | Arg        |
| Asn          | Ser            | Asp<br>35      | Tyr           | Asn        | Leu         | Asn        | Ser<br>40  | Pro        | Leu        | Ile        | Glu        | Asp<br>45  | Pro        | Ala        | Arg        |
| Leu          | Met<br>50      | Leu            | Glu           | Trp        | Leu         | Lys<br>55  | Thr        | Gly        | Asn        | Arg        | Pro<br>60  | Tyr        | Arg        | Met        | Thr        |
| Leu<br>65    | Thr            | Asp            | Asn           | Сув        | Ser<br>70   | Arg        | Ser        | Phe        | Arg        | Val<br>75  | Leu        | Lys        | Asp        | Tyr        | Phe<br>80  |
| Lys          | Lys            | Val            | Asp           | Leu<br>85  | Gly         | Ser        | Leu        | Lys        | Val<br>90  | Gly        | Gly        | Met        | Ala        | Ala<br>95  | Gln        |

| _          | _          | _          |            | _          | _          | _          | _          | _          | _          | _          | _          | _          | _          | _          |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ser        | Met        | Ile        | Ser<br>100 | Leu        | Trp        | Leu        | Tyr        | Gly<br>105 | Ala        | His        | Ser        | Glu        | Ser<br>110 | Asn        | Arg        |
| Ser        | Arg        | Arg<br>115 | СЛа        | Ile        | Thr        | Asp        | Leu<br>120 | Ala        | His        | Phe        | Tyr        | Ser<br>125 | Гла        | Ser        | Ser        |
| Pro        | Ile<br>130 | Glu        | Гла        | Leu        | Leu        | Asn<br>135 | Leu        | Thr        | Leu        | Gly        | Asn<br>140 | Arg        | Gly        | Leu        | Arg        |
| Ile<br>145 | Pro        | Pro        | Glu        | Gly        | Val<br>150 | Leu        | Ser        | Суз        | Leu        | Glu<br>155 | Arg        | Val        | Asp        | Tyr        | Asp<br>160 |
| Asn        | Ala        | Phe        | Gly        | Arg<br>165 | Tyr        | Leu        | Ala        | Asn        | Thr<br>170 | Tyr        | Ser        | Ser        | Tyr        | Leu<br>175 | Phe        |
| Phe        | His        | Val        | Ile<br>180 | Thr        | Leu        | Tyr        | Met        | Asn<br>185 | Ala        | Leu        | Asp        | Trp        | Asp<br>190 | Glu        | Glu        |
| ГЛа        | Thr        | Ile<br>195 | Leu        | Ala        | Leu        | Trp        | Lys<br>200 | Asp        | Leu        | Thr        | Ser        | Val<br>205 | Asp        | Ile        | Gly        |
| ГЛа        | Asp<br>210 | Leu        | Val        | ГÀа        | Phe        | Lys<br>215 | Asp        | Gln        | Ile        | Trp        | Gly<br>220 | Leu        | Pro        | Ile        | Val        |
| Thr<br>225 | Lys        | Asp        | Phe        | Val        | Tyr<br>230 | Ser        | Gln        | Ser        | Ser        | Asn<br>235 | CAa        | Leu        | Phe        | Asp        | Arg<br>240 |
| Asn        | Tyr        | Thr        | Leu        | Met<br>245 | Leu        | ГÀа        | Glu        | Leu        | Phe<br>250 | Leu        | Ser        | Arg        | Phe        | Asn<br>255 | Ser        |
| Leu        | Met        | Val        | Leu<br>260 | Leu        | Ser        | Pro        | Pro        | Glu<br>265 | Pro        | Arg        | Tyr        | Ser        | Asp<br>270 | Asp        | Leu        |
| Ile        | Ser        | Gln<br>275 | Leu        | Суз        | Gln        | Leu        | Tyr<br>280 | Ile        | Ala        | Gly        | Asp        | Gln<br>285 | Val        | Leu        | Ser        |
| Met        | Сув<br>290 | Gly        | Asn        | Ser        | Gly        | Tyr<br>295 | Glu        | Val        | Ile        | Lys        | Ile<br>300 | Leu        | Glu        | Pro        | Tyr        |
| Val<br>305 | Val        | Asn        | Ser        | Leu        | Val<br>310 | Gln        | Arg        | Ala        | Glu        | Lys<br>315 | Phe        | Arg        | Pro        | Leu        | Ile<br>320 |
| His        | Ser        | Leu        | Gly        | Asp<br>325 | Phe        | Pro        | Val        | Phe        | Ile<br>330 | Lys        | Asp        | Lys        | Val        | Ser<br>335 | Gln        |
| Leu        | Glu        | Glu        | Thr<br>340 | Phe        | Gly        | Pro        | Cys        | Ala<br>345 | Arg        | Arg        | Phe        | Phe        | Arg<br>350 | Ala        | Leu        |
| Asp        | Gln        | Phe<br>355 | Asp        | Asn        | Ile        | His        | Asp<br>360 | Leu        | Val        | Phe        | Val        | Tyr<br>365 | Gly        | Суз        | Tyr        |
| Arg        | His<br>370 | Trp        | Gly        | His        | Pro        | Tyr<br>375 | Ile        | Asp        | Tyr        | Arg        | Lys<br>380 | Gly        | Leu        | Ser        | Lys        |
| Leu<br>385 | Tyr        | Asp        | Gln        | Val        | His<br>390 | Ile        | ГÀа        | Lys        | Val        | Ile<br>395 | Aap        | Lys        | Ser        | Tyr        | Gln<br>400 |
| Glu        | Cys        | Leu        | Ala        | Ser<br>405 | Asp        | Leu        | Ala        | Arg        | Arg<br>410 | Ile        | Leu        | Arg        | Trp        | Gly<br>415 | Phe        |
| Asp        | Lys        | Tyr        | Ser<br>420 | Lys        | Trp        | Tyr        | Leu        | Asp<br>425 | Ser        | Arg        | Phe        | Leu        | Ala<br>430 | Arg        | Asp        |
| His        | Pro        | Leu<br>435 | Thr        | Pro        | Tyr        | Ile        | Lys<br>440 | Thr        | Gln        | Thr        | Trp        | Pro<br>445 | Pro        | Lys        | His        |
| Ile        | Val<br>450 | Asp        | Leu        | Val        | Gly        | Asp<br>455 | Thr        | Trp        | His        | Lys        | Leu<br>460 | Pro        | Ile        | Thr        | Gln        |
| Ile<br>465 | Phe        | Glu        | Ile        | Pro        | Glu<br>470 | Ser        | Met        | Asp        | Pro        | Ser<br>475 | Glu        | Ile        | Leu        | Asp        | Asp<br>480 |
| Lys        | Ser        | His        | Ser        | Phe<br>485 | Thr        | Arg        | Thr        | Arg        | Leu<br>490 | Ala        | Ser        | Trp        | Leu        | Ser<br>495 | Glu        |
| Asn        | Arg        | Gly        | Gly<br>500 | Pro        | Val        | Pro        | Ser        | Glu<br>505 | Lys        | Val        | Ile        | Ile        | Thr<br>510 | Ala        | Leu        |
| Ser        | Lys        | Pro<br>515 | Pro        | Val        | Asn        | Pro        | Arg<br>520 | Glu        | Phe        | Leu        | Arg        | Ser<br>525 | Ile        | Asp        | Leu        |

| Gly        | Gly<br>530 | Leu        | Pro        | Asp        | Glu        | Asp<br>535 | Leu        | Ile        | Ile        | Gly        | Leu<br>540 | Lys        | Pro        | Lys        | Glu        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Arg<br>545 | Glu        | Leu        | Lys        | Ile        | Glu<br>550 | Gly        | Arg        | Phe        | Phe        | Ala<br>555 | Leu        | Met        | Ser        | Trp        | Asn<br>560 |
| Leu        | Arg        | Leu        | Tyr        | Phe<br>565 | Val        | Ile        | Thr        | Glu        | Lys<br>570 | Leu        | Leu        | Ala        | Asn        | Tyr<br>575 | Ile        |
| Leu        | Pro        | Leu        | Phe<br>580 | Asp        | Ala        | Leu        | Thr        | Met<br>585 | Thr        | Asp        | Asn        | Leu        | Asn<br>590 | Lys        | Val        |
| Phe        | Lys        | Lys<br>595 | Leu        | Ile        | Asp        | Arg        | Val<br>600 | Thr        | Gly        | Gln        | Gly        | Leu<br>605 | Leu        | Asp        | Tyr        |
| Ser        | Arg<br>610 | Val        | Thr        | Tyr        | Ala        | Phe<br>615 | His        | Leu        | Asp        | Tyr        | Glu<br>620 | Lys        | Trp        | Asn        | Asn        |
| His<br>625 | Gln        | Arg        | Leu        | Glu        | Ser<br>630 | Thr        | Glu        | Asp        | Val        | Phe<br>635 | Ser        | Val        | Leu        | Asp        | Gln<br>640 |
| Val        | Phe        | Gly        | Leu        | Lys<br>645 | Arg        | Val        | Phe        | Ser        | Arg<br>650 | Thr        | His        | Glu        | Phe        | Phe<br>655 | Gln        |
| ГЛа        | Ala        | Trp        | Ile<br>660 | Tyr        | Tyr        | Ser        | Asp        | Arg<br>665 | Ser        | Asp        | Leu        | Ile        | Gly<br>670 | Leu        | Arg        |
| Glu        | Aap        | Gln<br>675 | Ile        | Tyr        | Сүз        | Leu        | Asp<br>680 | Ala        | Ser        | Asn        | Gly        | Pro<br>685 | Thr        | Суз        | Trp        |
| Asn        | Gly<br>690 | Gln        | Asp        | Gly        | Gly        | Leu<br>695 | Glu        | Gly        | Leu        | Arg        | Gln<br>700 | Lys        | Gly        | Trp        | Ser        |
| Leu<br>705 | Val        | Ser        | Leu        | Leu        | Met<br>710 | Ile        | Asp        | Arg        | Glu        | Ser<br>715 | Gln        | Ile        | Arg        | Asn        | Thr<br>720 |
| Arg        | Thr        | Lys        | Ile        | Leu<br>725 | Ala        | Gln        | Gly        | Aab        | Asn<br>730 | Gln        | Val        | Leu        | Суз        | Pro<br>735 | Thr        |
| Tyr        | Met        | Leu        | Ser<br>740 | Pro        | Gly        | Leu        | Ser        | Gln<br>745 | Glu        | Gly        | Leu        | Leu        | Tyr<br>750 | Glu        | Leu        |
| Glu        | Arg        | Ile<br>755 | Ser        | Arg        | Asn        | Ala        | Leu<br>760 | Ser        | Ile        | Tyr        | Arg        | Ala<br>765 | Val        | Glu        | Glu        |
| Gly        | Ala<br>770 | Ser        | Lys        | Leu        | Gly        | Leu<br>775 | Ile        | Thr        | Lys        | Lys        | Glu<br>780 | Glu        | Thr        | Met        | Cys        |
| Ser<br>785 | Tyr        | Asp        | Phe        | Leu        | Ile<br>790 | Tyr        | Gly        | Lys        | Thr        | Pro<br>795 | Leu        | Phe        | Arg        | Gly        | Asn<br>800 |
| Ile        | Leu        | Val        | Pro        | Glu<br>805 | Ser        | Lys        | Arg        | Trp        | Ala<br>810 | Arg        | Val        | Ser        | Суз        | Val<br>815 | Ser        |
| Asn        | Aap        | Gln        | Ile<br>820 | Val        | Asn        | Leu        | Ala        | Asn<br>825 | Ile        | Met        | Ser        | Thr        | Val<br>830 | Ser        | Thr        |
| Asn        | Ala        | Leu<br>835 | Thr        | Val        | Ala        | Gln        | His<br>840 | Ser        | Gln        | Ser        | Leu        | Ile<br>845 | Lys        | Pro        | Met        |
| Gly        | Asp<br>850 | Phe        | Leu        | Leu        | Met        | Ser<br>855 | Val        | Gln        | Ala        | Val        | Phe<br>860 | His        | Tyr        | Leu        | Leu        |
| Phe<br>865 | Ser        | Pro        | Ile        | Leu        | Lys<br>870 | Gly        | Arg        | Val        | Tyr        | Lys<br>875 | Ile        | Leu        | Ser        | Ala        | Glu<br>880 |
| Gly        | Aap        | Ser        | Phe        | Leu<br>885 | Leu        | Ala        | Met        | Ser        | Arg<br>890 | Ile        | Ile        | Tyr        | Leu        | Asp<br>895 | Pro        |
| Ser        | Leu        | Gly        | Gly<br>900 | Val        | Ser        | Gly        | Met        | Ser<br>905 | Leu        | Gly        | Arg        | Phe        | His<br>910 | Ile        | Arg        |
| Gln        | Phe        | Ser<br>915 | Asp        | Pro        | Val        | Ser        | Glu<br>920 | Gly        | Leu        | Ser        | Phe        | Trp<br>925 | Arg        | Glu        | Ile        |
| Trp        | Leu<br>930 | Ser        | Ser        | His        | Glu        | Ser<br>935 | Trp        | Val        | His        | Ala        | Leu<br>940 | Сув        | Gln        | Glu        | Ala        |
| Gly        | Asn        | Pro        | Asp        | Leu        | Gly        | Glu        | Arg        | Thr        | Leu        | Glu        | Ser        | Phe        | Thr        | Arg        | Leu        |

81

| 945 |             |            |            |            | 950   |               |             |                   | 9            | 955   |               |             |              | 960        |
|-----|-------------|------------|------------|------------|-------|---------------|-------------|-------------------|--------------|-------|---------------|-------------|--------------|------------|
| Leu | Glu         | Asp        | Pro        | Thr<br>965 | Thr   | Leu i         | Asn I       | le A              | Arg 6<br>970 | Gly G | ly Ala        | a Se:       | r Pro<br>97! | o Thr<br>5 |
| Ile | Leu         | Leu        | Lys<br>980 | Asp        | Ala   | Ile 2         | Arg I<br>g  | ув <i>А</i><br>85 | la I         | Leu I | 'yr Asj       | 9 Gli<br>99 | u Va:<br>O   | l Asp      |
| Lys | Val         | Glu<br>995 | Asn        | Ser        | Glu   | Phe i         | Arg<br>1000 | Glu               | Ala          | Ile   | Leu Le<br>10  | eu :<br>005 | Ser 1        | Lys Thr    |
| His | Arg<br>1010 | Asp        | ) Asr      | n Phe      | e Ile | Leu<br>101!   | Phe<br>5    | e Leu             | ı Thr        | : Ser | Val<br>1020   | Glu         | Pro          | Leu        |
| Phe | Pro<br>1025 | Arg        | g Phe      | e Leu      | ı Ser | Glu<br>1030   | Leu<br>0    | l Phe             | e Ser        | : Ser | Ser 1035      | Phe         | Leu          | Gly        |
| Ile | Pro<br>1040 | Glu        | ı Ser      | : Ile      | e Ile | Gly<br>104!   | Leu<br>5    | ı Il€             | e Glr        | n Asr | n Ser<br>1050 | Arg         | Thr          | Ile        |
| Arg | Arg<br>1055 | Glr        | n Ph∈      | e Arg      | l Làa | Ser<br>106    | Leu<br>0    | ı Ser             | с Буа        | ; Thr | : Leu<br>1065 | Glu         | Glu          | Ser        |
| Phe | Tyr<br>1070 | Asr        | ı Ser      | Glu        | ı Ile | His<br>107!   | Gly<br>5    | ' Ile             | e Ser        | r Arg | 9 Met<br>1080 | Thr         | Gln          | Thr        |
| Pro | Gln<br>1085 | Arg        | g Val      | . Gly      | 7 Gly | Val<br>1090   | Trp<br>0    | ) Pro             | сув          | s Ser | Ser<br>1095   | Glu         | Arg          | Ala        |
| Asp | Leu<br>1100 | Leu        | ı Arg      | g Glu      | ı Ile | Ser<br>110    | Trp<br>5    | Gly               | / Arg        | д Lуа | 8 Val<br>1110 | Val         | Gly          | Thr        |
| Thr | Val<br>1115 | Pro        | > His      | 9 Pro      | ) Ser | Glu<br>1120   | Met<br>0    | Leu               | ı Gly        | / Leu | 1 Leu<br>1125 | Pro         | Lya          | Ser        |
| Ser | Ile<br>1130 | Sei        | r Cys      | 5 Thr      | суа   | Gly<br>113    | Ala<br>5    | ı Thr             | Gly          | / Gly | 7 Gly<br>1140 | Asn         | Pro          | Arg        |
| Val | Ser<br>1145 | Val        | l Ser      | Val        | . Leu | . Pro<br>1150 | Ser<br>0    | Phe               | e Asp        | Glr.  | n Ser<br>1155 | Phe         | Phe          | Ser        |
| Arg | Gly<br>1160 | Pro        | > Leu      | ı Lys      | g Gly | Tyr<br>116    | Leu<br>5    | ı Gly             | / Ser        | s Ser | Thr<br>1170   | Ser         | Met          | Ser        |
| Thr | Gln<br>1175 | Leu        | ı Ph∈      | e His      | ; Ala | Trp<br>1180   | Glu<br>0    | . Lуя             | 8 Val        | L Thr | Asn<br>1185   | Val         | His          | Val        |
| Val | Lys<br>1190 | Arg        | g Ala      | i Leu      | ı Ser | Leu<br>119!   | Lys<br>5    | Glu               | ı Ser        | : Ile | e Asn<br>1200 | Trp         | Phe          | Ile        |
| Thr | Arg<br>1205 | Asp        | ) Ser      | : Asr      | ı Leu | . Ala<br>1210 | Glr<br>0    | ı Ala             | a Leu        | ı Ile | e Arg<br>1215 | Asn         | Ile          | Met        |
| Ser | Leu<br>1220 | Thr        | r Gly      | v Pro      | ) Asp | Phe<br>122!   | Prc<br>5    | ) Leu             | ı Glu        | ı Glu | 1 Ala<br>1230 | Pro         | Val          | Phe        |
| Lys | Arg<br>1235 | Thr        | r Gly      | / Ser      | : Ala | Leu<br>1240   | His<br>O    | Arg               | g Phe        | е Lуа | Ser<br>1245   | Ala         | Arg          | Tyr        |
| Ser | Glu<br>1250 | Glγ        | / Gly      | 7 Tyr      | : Ser | Ser<br>125!   | Val<br>5    | . Суа             | 9 Pro        | ) Asr | 1 Leu<br>1260 | Leu         | Ser          | His        |
| Ile | Ser<br>1265 | Val        | L Ser      | Thr        | : Asp | Thr<br>1270   | Met<br>0    | Ser               | : Asp        | ) Leu | 1 Thr<br>1275 | Gln         | Asp          | Gly        |
| Lys | Asn<br>1280 | Туг        | r Asp      | ) Phe      | e Met | Phe<br>128!   | Glr.<br>5   | n Pro             | ) Leu        | ı Met | : Leu<br>1290 | Tyr         | Ala          | Gln        |
| Thr | Trp<br>1295 | Thr        | : Ser      | Glu        | ı Leu | . Val<br>1300 | Glr.<br>0   | n Arg             | l yab        | > Thr | Arg<br>1305   | Leu         | Arg          | Asp        |
| Ser | Thr<br>1310 | Ph€        | e His      | s Trp      | ) His | Leu<br>131!   | Arg<br>5    | l CÀt             | a Asr        | ı Arg | ј Суз<br>1320 | Val         | Arg          | Pro        |
| Ile | Asp<br>1325 | Asp        | > Val      | . Thr      | : Leu | . Glu<br>1330 | Thr<br>0    | Ser               | Glr.         | n Ile | e Phe<br>1335 | Glu         | Phe          | Pro        |
| Asp | Val<br>1340 | Sei        | с Буа      | a Arg      | , Ile | Ser<br>134!   | Arg<br>5    | g Met             | : Val        | l Ser | Gly<br>1350   | Ala         | Val          | Pro        |

| H  | is | Phe<br>1355 | Gln | Arg | Leu | Pro | Asp<br>1360 | Ile | Arg | Leu | Arg | Pro<br>1365 | Gly | Asp | Phe |
|----|----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|
| G  | lu | Ser<br>1370 | Leu | Ser | Gly | Arg | Glu<br>1375 | Lys | Ser | His | His | Ile<br>1380 | Gly | Ser | Ala |
| G  | ln | Gly<br>1385 | Leu | Leu | Tyr | Ser | Ile<br>1390 | Leu | Val | Ala | Ile | His<br>1395 | Asp | Ser | Gly |
| Т  | yr | Asn<br>1400 | Asp | Gly | Thr | Ile | Phe<br>1405 | Pro | Ala | Asn | Ile | Tyr<br>1410 | Gly | Lys | Val |
| S  | ər | Pro<br>1415 | Arg | Asp | Tyr | Leu | Arg<br>1420 | Gly | Leu | Ala | Arg | Gly<br>1425 | Val | Leu | Ile |
| G  | ly | Ser<br>1430 | Ser | Ile | Cys | Phe | Leu<br>1435 | Thr | Arg | Met | Thr | Asn<br>1440 | Ile | Asn | Ile |
| A  | sn | Arg<br>1445 | Pro | Leu | Glu | Leu | Ile<br>1450 | Ser | Gly | Val | Ile | Ser<br>1455 | Tyr | Ile | Leu |
| L  | eu | Arg<br>1460 | Leu | Asp | Asn | His | Pro<br>1465 | Ser | Leu | Tyr | Ile | Met<br>1470 | Leu | Arg | Glu |
| P: | ro | Ser<br>1475 | Leu | Arg | Gly | Glu | Ile<br>1480 | Phe | Ser | Ile | Pro | Gln<br>1485 | Lys | Ile | Pro |
| A  | la | Ala<br>1490 | Tyr | Pro | Thr | Thr | Met<br>1495 | Lys | Glu | Gly | Asn | Arg<br>1500 | Ser | Ile | Leu |
| C  | γs | Tyr<br>1505 | Leu | Gln | His | Val | Leu<br>1510 | Arg | Tyr | Glu | Arg | Glu<br>1515 | Ile | Ile | Thr |
| A  | la | Ser<br>1520 | Pro | Glu | Asn | Asp | Trp<br>1525 | Leu | Trp | Ile | Phe | Ser<br>1530 | Aap | Phe | Arg |
| S  | ər | Ala<br>1535 | Lys | Met | Thr | Tyr | Leu<br>1540 | Thr | Leu | Ile | Thr | Tyr<br>1545 | Gln | Ser | His |
| L  | eu | Leu<br>1550 | Leu | Gln | Arg | Val | Glu<br>1555 | Arg | Asn | Leu | Ser | Lys<br>1560 | Ser | Met | Arg |
| A  | ab | Asn<br>1565 | Leu | Arg | Gln | Leu | Ser<br>1570 | Ser | Leu | Met | Arg | Gln<br>1575 | Val | Leu | Gly |
| G  | ly | His<br>1580 | Gly | Glu | Asp | Thr | Leu<br>1585 | Glu | Ser | Asp | Asp | Asn<br>1590 | Ile | Gln | Arg |
| L  | eu | Leu<br>1595 | Lys | Asp | Ser | Leu | Arg<br>1600 | Arg | Thr | Arg | Trp | Val<br>1605 | Asp | Gln | Glu |
| v  | al | Arg<br>1610 | His | Ala | Ala | Arg | Thr<br>1615 | Met | Thr | Gly | Asp | Tyr<br>1620 | Ser | Pro | Asn |
| Ŀ  | γs | Lys<br>1625 | Val | Ser | Arg | Lys | Val<br>1630 | Gly | Сүз | Ser | Glu | Trp<br>1635 | Val | Сүз | Ser |
| A  | la | Gln<br>1640 | Gln | Val | Ala | Val | Ser<br>1645 | Thr | Ser | Ala | Asn | Pro<br>1650 | Ala | Pro | Val |
| S  | ər | Glu<br>1655 | Leu | Asp | Ile | Arg | Ala<br>1660 | Leu | Ser | Lys | Arg | Phe<br>1665 | Gln | Asn | Pro |
| L  | eu | Ile<br>1670 | Ser | Gly | Leu | Arg | Val<br>1675 | Val | Gln | Trp | Ala | Thr<br>1680 | Gly | Ala | His |
| Т  | yr | Lys<br>1685 | Leu | Гла | Pro | Ile | Leu<br>1690 | Asp | Asp | Leu | Asn | Val<br>1695 | Phe | Pro | Ser |
| L  | eu | Cys<br>1700 | Leu | Val | Val | Gly | Asp<br>1705 | Gly | Ser | Gly | Gly | Ile<br>1710 | Ser | Arg | Ala |
| V  | al | Leu<br>1715 | Asn | Met | Phe | Pro | Asp<br>1720 | Ala | Lys | Leu | Val | Phe<br>1725 | Asn | Ser | Leu |
| L  | eu | Glu<br>1730 | Val | Asn | Asp | Leu | Met<br>1735 | Ala | Ser | Gly | Thr | His<br>1740 | Pro | Leu | Pro |
| P: | ro | Ser<br>1745 | Ala | Ile | Met | Arg | Gly<br>1750 | Gly | Asn | Gly | Ile | Val<br>1755 | Ser | Arg | Val |

| Ile | Asp<br>1760 | Phe | Asp | Ser | Ile | Trp<br>1765 | Glu | Lys | Pro | Ser | Asp<br>1770 | Leu | Arg | Asn |
|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|
| Leu | Ala<br>1775 | Thr | Trp | Lys | Tyr | Phe<br>1780 | Gln | Ser | Val | Gln | Lys<br>1785 | Gln | Val | Asn |
| Met | Ser<br>1790 | Tyr | Asp | Leu | Ile | Ile<br>1795 | Cys | Asp | Ala | Glu | Val<br>1800 | Thr | Asp | Ile |
| Ala | Ser<br>1805 | Ile | Asn | Arg | Ile | Thr<br>1810 | Leu | Leu | Met | Ser | Asp<br>1815 | Phe | Ala | Leu |
| Ser | Ile<br>1820 | Asp | Gly | Pro | Leu | Tyr<br>1825 | Leu | Val | Phe | Lys | Thr<br>1830 | Tyr | Gly | Thr |
| Met | Leu<br>1835 | Val | Asn | Pro | Asn | Tyr<br>1840 | Lys | Ala | Ile | Gln | His<br>1845 | Leu | Ser | Arg |
| Ala | Phe<br>1850 | Pro | Ser | Val | Thr | Gly<br>1855 | Phe | Ile | Thr | Gln | Val<br>1860 | Thr | Ser | Ser |
| Phe | Ser<br>1865 | Ser | Glu | Leu | Tyr | Leu<br>1870 | Arg | Phe | Ser | Lys | Arg<br>1875 | Gly | Lys | Leu |
| Phe | Arg<br>1880 | Asp | Ala | Glu | Tyr | Leu<br>1885 | Thr | Ser | Ser | Thr | Leu<br>1890 | Arg | Glu | Met |
| Ser | Leu<br>1895 | Val | Leu | Phe | Asn | Cys<br>1900 | Ser | Ser | Pro | Гла | Ser<br>1905 | Glu | Met | Gln |
| Arg | Ala<br>1910 | Arg | Ser | Leu | Asn | Tyr<br>1915 | Gln | Asp | Leu | Val | Arg<br>1920 | Gly | Phe | Pro |
| Glu | Glu<br>1925 | Ile | Ile | Ser | Asn | Pro<br>1930 | Tyr | Asn | Glu | Met | Ile<br>1935 | Ile | Thr | Leu |
| Ile | Asp<br>1940 | Ser | Asp | Val | Glu | Ser<br>1945 | Phe | Leu | Val | His | Lys<br>1950 | Met | Val | Asp |
| Asp | Leu<br>1955 | Glu | Leu | Gln | Arg | Gly<br>1960 | Thr | Leu | Ser | Lys | Val<br>1965 | Ala | Ile | Ile |
| Ile | Ala<br>1970 | Ile | Met | Ile | Val | Phe<br>1975 | Ser | Asn | Arg | Val | Phe<br>1980 | Asn | Val | Ser |
| Lys | Pro<br>1985 | Leu | Thr | Asp | Pro | Leu<br>1990 | Phe | Tyr | Pro | Pro | Ser<br>1995 | Asp | Pro | Lys |
| Ile | Leu<br>2000 | Arg | His | Phe | Asn | Ile<br>2005 | Сүз | Arg | Ser | Thr | Met<br>2010 | Met | Tyr | Leu |
| Ser | Thr<br>2015 | Ala | Leu | Gly | Asp | Val<br>2020 | Pro | Ser | Phe | Ala | Arg<br>2025 | Leu | His | Asp |
| Leu | Tyr<br>2030 | Asn | Arg | Pro | Ile | Thr<br>2035 | Tyr | Tyr | Phe | Arg | Lys<br>2040 | Gln | Phe | Ile |
| Arg | Gly<br>2045 | Asn | Val | Tyr | Leu | Ser<br>2050 | Trp | Ser | Trp | Ser | Asn<br>2055 | Asp | Thr | Ser |
| Val | Phe<br>2060 | Lys | Arg | Val | Ala | Cys<br>2065 | Asn | Ser | Ser | Leu | Ser<br>2070 | Leu | Ser | Ser |
| His | Trp<br>2075 | Ile | Arg | Leu | Ile | Tyr<br>2080 | Lys | Ile | Val | Lys | Ala<br>2085 | Thr | Arg | Leu |
| Val | Gly<br>2090 | Ser | Ile | Lys | Asp | Leu<br>2095 | Ser | Arg | Glu | Val | Glu<br>2100 | Arg | His | Leu |
| His | Arg<br>2105 | Tyr | Asn | Arg | Trp | Ile<br>2110 | Thr | Leu | Glu | Asp | Ile<br>2115 | Arg | Ser | Arg |
| Ser | Ser<br>2120 | Leu | Leu | Asp | Tyr | Ser<br>2125 | Суз | Leu |     |     |             |     |     |     |
|     |             |     |     |     |     |             |     |     |     |     |             |     |     |     |

<210> SEQ ID NO 7 <211> LENGTH: 1281 <212> TYPE: DNA

| <213> ORGANISM:<br><220> FEATURE:       | Canis familiaris                                                                                                      |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| <221> NAME/KEY:                         | CDS                                                                                                                   |
| <222> LOCATION:                         | (1)(1281)                                                                                                             |
| <400> SEQUENCE:                         | 7                                                                                                                     |
| atg ggg ctg agc<br>Met Gly Leu Ser<br>1 | tat gga att ttc atc tgt ttt ctg ctc ctg gga ggc48Tyr Gly Ile Phe Ile Cys Phe Leu Leu Gly Gly51015                     |
| atg gag ctg tgc                         | tgc ccc cag acc atc tgg cca act gag acc tac tac 96                                                                    |
| Met Glu Leu Cys                         | Cys Pro Gln Thr Ile Trp Pro Thr Glu Thr Tyr Tyr                                                                       |
| 20                                      | 25 30                                                                                                                 |
| cca ttg aca tct                         | agg ccc cca gta atg gtg gac tgt ctg gag tcc cag 144                                                                   |
| Pro Leu Thr Ser                         | Arg Pro Pro Val Met Val Asp Cys Leu Glu Ser Gln                                                                       |
| 35                                      | 40 45                                                                                                                 |
| ctg gtg gtc act                         | gtc agc aaa gac ctt ttt ggt act ggg aag ctc atc 192                                                                   |
| Leu Val Val Thr                         | Val Ser Lys Asp Leu Phe Gly Thr Gly Lys Leu Ile                                                                       |
| 50                                      | 55 60                                                                                                                 |
| agg cca gca gac                         | ctc acc ctg ggt cca gag aac tgt gag ccc ctg gtc 240                                                                   |
| Arg Pro Ala Asp                         | Leu Thr Leu Gly Pro Glu Asn Cys Glu Pro Leu Val                                                                       |
| 65                                      | 70 75 80                                                                                                              |
| tcc atg gac acg<br>Ser Met Asp Thr      | gat gat gtg gtc agg ttt gag gtt ggg ctg cac gag 288<br>Asp Asp Val Val Arg Phe Glu Val Gly Leu His Glu<br>85 90 95    |
| tgt ggc agc agg                         | gtg cag gtg act gac aat gct ctg gtg tac agc acc 336                                                                   |
| Cys Gly Ser Arg                         | Val Gln Val Thr Asp Asn Ala Leu Val Tyr Ser Thr                                                                       |
| 100                                     | 105 110                                                                                                               |
| ttc ctg atc cac                         | agc ccc cgc cct gcg ggc aac ctg tcc atc ctg aga 384                                                                   |
| Phe Leu Ile His                         | Ser Pro Arg Pro Ala Gly Asn Leu Ser Ile Leu Arg                                                                       |
| 115                                     | 120 125                                                                                                               |
| act aat cgt gcc                         | gag gtt ccc atc gag tgc cac tac ccc agg cac agc 432                                                                   |
| Thr Asn Arg Ala                         | Glu Val Pro Ile Glu Cys His Tyr Pro Arg His Ser                                                                       |
| 130                                     | 135 140                                                                                                               |
| aat gtg agc agc                         | cag gcc atc ctg ccc act tgg gtg ccc ttc agg acc 480                                                                   |
| Asn Val Ser Ser                         | Gln Ala Ile Leu Pro Thr Trp Val Pro Phe Arg Thr                                                                       |
| 145                                     | 150 155 160                                                                                                           |
| aca atg ctc ttc<br>Thr Met Leu Phe      | gag gag aag cta gtt ttc tct ctc cgc cta atg gag 528<br>Glu Glu Lys Leu Val Phe Ser Leu Arg Leu Met Glu<br>165 170 175 |
| gag gac tgg ggc                         | tcc gag aag caa tcc ccc aca ttc cag ctg gga gac 576                                                                   |
| Glu Asp Trp Gly                         | Ser Glu Lys Gln Ser Pro Thr Phe Gln Leu Gly Asp                                                                       |
| 180                                     | 185 190                                                                                                               |
| ata gcc cac ctc                         | cag gct gaa gtc cac act ggc agc cat atg cca ctg 624                                                                   |
| Ile Ala His Leu                         | Gln Ala Glu Val His Thr Gly Ser His Met Pro Leu                                                                       |
| 195                                     | 200 205                                                                                                               |
| cga ctt ttt gtg                         | gac cac tgt gtg gcc acg ctg aca cca gat cgg aat 672                                                                   |
| Arg Leu Phe Val                         | Asp His Cys Val Ala Thr Leu Thr Pro Asp Arg Asn                                                                       |
| 210                                     | 215 220                                                                                                               |
| gcc ttc cct cat                         | cac aaa att gtg gac ttc cat ggc tgt ctt gtg gat 720                                                                   |
| Ala Phe Pro His                         | His Lys Ile Val Asp Phe His Gly Cys Leu Val Asp                                                                       |
| 225                                     | 230 235 240                                                                                                           |
| ggt ctc tac aat<br>Gly Leu Tyr Asn      | tcc tct tca gcc ttc aaa gcc ccc aga ccc agg cca768Ser Ser Ser Ala Phe Lys Ala Pro Arg ProArg Pro245250255             |
| gag act ctt cag                         | ttc aca gtg gat gtt ttc cac ttt gct aag gac tca 816                                                                   |
| Glu Thr Leu Gln                         | Phe Thr Val Asp Val Phe His Phe Ala Lys Asp Ser                                                                       |
| 260                                     | 265 270                                                                                                               |
| aga aac acg atc                         | tat atc acc tgc cat ctg aag gtc act ccg gct gac 864                                                                   |
| Arg Asn Thr Ile                         | Tyr Ile Thr Cys His Leu Lys Val Thr Pro Ala Asp                                                                       |
| 275                                     | 280 285                                                                                                               |
| cga gtc cca gac                         | cag cta aac aaa gct tgt tcc ttc atc aag tct acc 912                                                                   |

| Arg                                                                                                                                                                                     | Val<br>290                                                                                                                                            | Pro                                                                                                                            | Asp                                                                                                                        | Gln                                                                                                      | Leu                                                                                                    | Asn<br>295                                                                                             | Lys                                                                                           | Ala                                                                                                  | Cys                                                                                                        | Ser                                                                                    | Phe<br>300                                                                             | Ile                                                                                     | Lys                                                                                           | Ser                                                                                    | Thr                                                                                           |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------|
| aag<br>Lys<br>305                                                                                                                                                                       | agg<br>Arg                                                                                                                                            | tcc<br>Ser                                                                                                                     | tac<br>Tyr                                                                                                                 | cct<br>Pro                                                                                               | gta<br>Val<br>310                                                                                      | gaa<br>Glu                                                                                             | ggc<br>Gly                                                                                    | tcg<br>Ser                                                                                           | gct<br>Ala                                                                                                 | gat<br>Asp<br>315                                                                      | att<br>Ile                                                                             | tgt<br>Cys                                                                              | cgc<br>Arg                                                                                    | tgt<br>Cys                                                                             | tgt<br>Cys<br>320                                                                             | 960  |
| aac<br>Asn                                                                                                                                                                              | aaa<br>Lys                                                                                                                                            | ggc<br>Gly                                                                                                                     | agc<br>Ser                                                                                                                 | tgt<br>Cys<br>325                                                                                        | ggc<br>Gly                                                                                             | ctt<br>Leu                                                                                             | cca<br>Pro                                                                                    | ggc<br>Gly                                                                                           | cgg<br>Arg<br>330                                                                                          | tcc<br>Ser                                                                             | agg<br>Arg                                                                             | agg<br>Arg                                                                              | ctg<br>Leu                                                                                    | tcc<br>Ser<br>335                                                                      | cac<br>His                                                                                    | 1008 |
| cta<br>Leu                                                                                                                                                                              | gag<br>Glu                                                                                                                                            | aga<br>Arg                                                                                                                     | 999<br>Gly<br>340                                                                                                          | tgg<br>Trp                                                                                               | cgc<br>Arg                                                                                             | agg<br>Arg                                                                                             | tct<br>Ser                                                                                    | gtt<br>Val<br>345                                                                                    | tcc<br>Ser                                                                                                 | cac<br>His                                                                             | act<br>Thr                                                                             | aga<br>Arg                                                                              | aat<br>Asn<br>350                                                                             | cgc<br>Arg                                                                             | agg<br>Arg                                                                                    | 1056 |
| cac<br>His                                                                                                                                                                              | gtg<br>Val                                                                                                                                            | act<br>Thr<br>355                                                                                                              | gaa<br>Glu                                                                                                                 | gaa<br>Glu                                                                                               | gca<br>Ala                                                                                             | gag<br>Glu                                                                                             | atc<br>Ile<br>360                                                                             | acc<br>Thr                                                                                           | gtg<br>Val                                                                                                 | glÀ<br>aaa                                                                             | cct<br>Pro                                                                             | ctg<br>Leu<br>365                                                                       | atc<br>Ile                                                                                    | ttc<br>Phe                                                                             | ctg<br>Leu                                                                                    | 1104 |
| gga<br>Gly                                                                                                                                                                              | aag<br>Lys<br>370                                                                                                                                     | gct<br>Ala                                                                                                                     | agt<br>Ser                                                                                                                 | gat<br>Asp                                                                                               | cat<br>His                                                                                             | ggt<br>Gly<br>375                                                                                      | ata<br>Ile                                                                                    | gag<br>Glu                                                                                           | с1 <sup>у</sup><br>ааа                                                                                     | tca<br>Ser                                                                             | acc<br>Thr<br>380                                                                      | tct<br>Ser                                                                              | cct<br>Pro                                                                                    | cac<br>His                                                                             | acc<br>Thr                                                                                    | 1152 |
| tct<br>Ser<br>385                                                                                                                                                                       | gtg<br>Val                                                                                                                                            | atg<br>Met                                                                                                                     | ttg<br>Leu                                                                                                                 | ggc<br>Gly                                                                                               | tta<br>Leu<br>390                                                                                      | ggc<br>Gly                                                                                             | ctg<br>Leu                                                                                    | gcc<br>Ala                                                                                           | acg<br>Thr                                                                                                 | gtg<br>Val<br>395                                                                      | gta<br>Val                                                                             | tcc<br>Ser                                                                              | ctg<br>Leu                                                                                    | act<br>Thr                                                                             | cta<br>Leu<br>400                                                                             | 1200 |
| gct<br>Ala                                                                                                                                                                              | acc<br>Thr                                                                                                                                            | att<br>Ile                                                                                                                     | gtc<br>Val                                                                                                                 | ctg<br>Leu<br>405                                                                                        | gtc<br>Val                                                                                             | ctt<br>Leu                                                                                             | gcc<br>Ala                                                                                    | aag<br>Lys                                                                                           | agg<br>Arg<br>410                                                                                          | cat<br>His                                                                             | cgt<br>Arg                                                                             | act<br>Thr                                                                              | gct<br>Ala                                                                                    | tcc<br>Ser<br>415                                                                      | cac<br>His                                                                                    | 1248 |
| cct<br>Pro                                                                                                                                                                              | gtg<br>Val                                                                                                                                            | ata<br>Ile                                                                                                                     | tgc<br>Cys<br>420                                                                                                          | cct<br>Pro                                                                                               | gca<br>Ala                                                                                             | tct<br>Ser                                                                                             | gtc<br>Val                                                                                    | tcc<br>Ser<br>425                                                                                    | caa<br>Gln                                                                                                 | taa                                                                                    |                                                                                        |                                                                                         |                                                                                               |                                                                                        |                                                                                               | 1281 |
| -210                                                                                                                                                                                    | )> SE                                                                                                                                                 | EQ II<br>ENGTH                                                                                                                 | ) NO<br>H: 42                                                                                                              | 8<br>26                                                                                                  |                                                                                                        |                                                                                                        |                                                                                               |                                                                                                      |                                                                                                            |                                                                                        |                                                                                        |                                                                                         |                                                                                               |                                                                                        |                                                                                               |      |
| <211<br><211<br><212<br><213                                                                                                                                                            | 2> TY<br>3> OF                                                                                                                                        | (PE :<br>RGANI                                                                                                                 | PRT<br>[SM:                                                                                                                | Can:                                                                                                     | ls fa                                                                                                  | amili                                                                                                  | laris                                                                                         | 3                                                                                                    |                                                                                                            |                                                                                        |                                                                                        |                                                                                         |                                                                                               |                                                                                        |                                                                                               |      |
| <211<br><211<br><212<br><213<br><400                                                                                                                                                    | 2> TY<br>3> OF<br>0> SE                                                                                                                               | (PE :<br>RGANI<br>EQUEN                                                                                                        | PRT<br>ISM:<br>ICE:                                                                                                        | Can:<br>8                                                                                                | ls fa                                                                                                  | amili                                                                                                  | lari                                                                                          | 3                                                                                                    |                                                                                                            |                                                                                        |                                                                                        |                                                                                         |                                                                                               |                                                                                        |                                                                                               |      |
| <211<br><212<br><212<br><213<br><400<br>Met<br>1                                                                                                                                        | 2> TY<br>3> OF<br>0> SE<br>Gly                                                                                                                        | (PE :<br>RGAN]<br>EQUEN<br>Leu                                                                                                 | PRT<br>ISM:<br>NCE:<br>Ser                                                                                                 | Can:<br>8<br>Tyr<br>5                                                                                    | is fa<br>Gly                                                                                           | amili<br>Ile                                                                                           | lari:<br>Phe                                                                                  | Ile                                                                                                  | Суз<br>10                                                                                                  | Phe                                                                                    | Leu                                                                                    | Leu                                                                                     | Leu                                                                                           | Gly<br>15                                                                              | Gly                                                                                           |      |
| <211<br><212<br><212<br><400<br>Met<br>1<br>Met                                                                                                                                         | 2> TY<br>3> OF<br>0> SE<br>Gly<br>Glu                                                                                                                 | (PE:<br>RGAN]<br>EQUEN<br>Leu<br>Leu                                                                                           | PRT<br>ISM:<br>JCE:<br>Ser<br>Cys<br>20                                                                                    | Can:<br>8<br>Tyr<br>5<br>Cys                                                                             | is fa<br>Gly<br>Pro                                                                                    | Ile<br>Gln                                                                                             | lari:<br>Phe<br>Thr                                                                           | Ile<br>Ile<br>25                                                                                     | Cys<br>10<br>Trp                                                                                           | Phe<br>Pro                                                                             | Leu<br>Thr                                                                             | Leu<br>Glu                                                                              | Leu<br>Thr<br>30                                                                              | Gly<br>15<br>Tyr                                                                       | Gly<br>Tyr                                                                                    |      |
| <211<br><212<br><212<br><213<br><400<br>Met<br>1<br>Met<br>Pro                                                                                                                          | Glu<br>Leu                                                                                                                                            | (PE:<br>(GAN)<br>EQUEN<br>Leu<br>Leu<br>Thr<br>35                                                                              | PRT<br>ISM:<br>ICE:<br>Ser<br>Cys<br>20<br>Ser                                                                             | Can:<br>8<br>Tyr<br>5<br>Cys<br>Arg                                                                      | is fa<br>Gly<br>Pro<br>Pro                                                                             | Ile<br>Gln<br>Pro                                                                                      | iari:<br>Phe<br>Thr<br>Val<br>40                                                              | Ile<br>Ile<br>25<br>Met                                                                              | Cys<br>10<br>Trp<br>Val                                                                                    | Phe<br>Pro<br>Asp                                                                      | Leu<br>Thr<br>Cys                                                                      | Leu<br>Glu<br>Leu<br>45                                                                 | Leu<br>Thr<br>30<br>Glu                                                                       | Gly<br>15<br>Tyr<br>Ser                                                                | Gly<br>Tyr<br>Gln                                                                             |      |
| <pre>&lt;211 &lt;211 &lt;212 &lt;212 &lt;213 &lt;400 Met 1 Met Pro Leu</pre>                                                                                                            | 2> TY<br>3> OF<br>O> SE<br>Gly<br>Glu<br>Leu<br>Val<br>50                                                                                             | (PE:<br>GAN)<br>EQUEN<br>Leu<br>Leu<br>Thr<br>35<br>Val                                                                        | PRT<br>ISM:<br>JCE:<br>Ser<br>Cys<br>20<br>Ser<br>Thr                                                                      | Can:<br>8<br>Tyr<br>5<br>Cys<br>Arg<br>Val                                                               | is fa<br>Gly<br>Pro<br>Pro<br>Ser                                                                      | Ile<br>Gln<br>Pro<br>Lys<br>55                                                                         | Phe<br>Thr<br>Val<br>40<br>Asp                                                                | Ile<br>Ile<br>25<br>Met<br>Leu                                                                       | Cys<br>10<br>Trp<br>Val<br>Phe                                                                             | Phe<br>Pro<br>Asp<br>Gly                                                               | Leu<br>Thr<br>Cys<br>Thr<br>60                                                         | Leu<br>Glu<br>Leu<br>45<br>Gly                                                          | Leu<br>Thr<br>30<br>Glu<br>Lys                                                                | Gly<br>15<br>Tyr<br>Ser<br>Leu                                                         | Gly<br>Tyr<br>Gln<br>Ile                                                                      |      |
| <pre>&lt;211 &lt;211 &lt;211 &lt;211 &lt;213 &lt;400 Met 1 Met Pro Leu Arg 65</pre>                                                                                                     | 2> TY<br>2> TY<br>3> OF<br>Gly<br>Glu<br>Leu<br>Val<br>50<br>Pro                                                                                      | (PE:<br>CGAN)<br>CQUEN<br>Leu<br>Leu<br>Thr<br>35<br>Val<br>Ala                                                                | PRT<br>ISM:<br>JCE:<br>Ser<br>Cys<br>20<br>Ser<br>Thr<br>Asp                                                               | Can:<br>8<br>Tyr<br>5<br>Cys<br>Arg<br>Val<br>Leu                                                        | is fa<br>Gly<br>Pro<br>Pro<br>Ser<br>Thr<br>70                                                         | Ile<br>Gln<br>Pro<br>Lys<br>55<br>Leu                                                                  | iaris<br>Phe<br>Thr<br>Val<br>40<br>Asp<br>Gly                                                | Ile<br>Ile<br>25<br>Met<br>Leu<br>Pro                                                                | Cys<br>10<br>Trp<br>Val<br>Phe<br>Glu                                                                      | Phe<br>Pro<br>Asp<br>Gly<br>Asn<br>75                                                  | Leu<br>Thr<br>Cys<br>Thr<br>60<br>Cys                                                  | Leu<br>Glu<br>Leu<br>45<br>Gly<br>Glu                                                   | Leu<br>Thr<br>30<br>Glu<br>Lys<br>Pro                                                         | Gly<br>15<br>Tyr<br>Ser<br>Leu<br>Leu                                                  | Gly<br>Tyr<br>Gln<br>Ile<br>Val<br>80                                                         |      |
| <pre>&lt;211 &lt;211 &lt;212 &lt;212 &lt;212 &lt;213 &lt;400 Met 1 Pro Leu Arg 65 Ser</pre>                                                                                             | 2> TY<br>3> OF<br>Gly<br>Glu<br>Leu<br>Val<br>50<br>Pro<br>Met                                                                                        | REE:<br>RGANJ<br>EQUEN<br>Leu<br>Leu<br>Thr<br>35<br>Val<br>Ala<br>Asp                                                         | PRT<br>ISM:<br>JCE:<br>Ser<br>Cys<br>20<br>Ser<br>Thr<br>Asp<br>Thr                                                        | Can:<br>8<br>Tyr 5<br>Cys<br>Arg<br>Val<br>Leu<br>Asp<br>85                                              | is fé<br>Gly<br>Pro<br>Pro<br>Ser<br>Thr<br>70<br>Asp                                                  | amili<br>Ile<br>Gln<br>Pro<br>Lys<br>55<br>Leu<br>Val                                                  | Phe<br>Thr<br>Val<br>40<br>Gly<br>Val                                                         | Ile<br>Ile<br>25<br>Met<br>Leu<br>Pro<br>Arg                                                         | Cys<br>10<br>Trp<br>Val<br>Phe<br>Glu<br>Phe<br>90                                                         | Phe<br>Pro<br>Asp<br>Gly<br>Asn<br>75<br>Glu                                           | Leu<br>Thr<br>Cys<br>Thr<br>60<br>Cys<br>Val                                           | Leu<br>Glu<br>Leu<br>45<br>Gly<br>Glu<br>Gly                                            | Leu<br>Thr<br>30<br>Glu<br>Lys<br>Pro<br>Leu                                                  | Gly<br>15<br>Tyr<br>Ser<br>Leu<br>Leu<br>His<br>95                                     | Gly<br>Tyr<br>Gln<br>Ile<br>Val<br>80<br>Glu                                                  |      |
| <pre>&lt;211 &lt;211 &lt;211 &lt;212 &lt;212 &lt;213 &lt;400 Met 1 Met Pro Leu Arg 65 Ser Cys</pre>                                                                                     | 2> TY<br>3> OF<br>Gly<br>Glu<br>Leu<br>Val<br>50<br>Pro<br>Met<br>Gly                                                                                 | YPE:<br>RGANJ<br>CQUEN<br>Leu<br>Leu<br>Thr<br>35<br>Val<br>Ala<br>Asp<br>Ser                                                  | PRT<br>ISM:<br>JCE:<br>Ser<br>Cys<br>20<br>Ser<br>Thr<br>Asp<br>Thr<br>Arg<br>100                                          | Can:<br>8<br>Tyr 5<br>Cys<br>Arg<br>Val<br>Leu<br>Asp<br>85<br>Val                                       | is fa<br>Gly<br>Pro<br>Pro<br>Ser<br>Thr<br>70<br>Asp<br>Gln                                           | Ile<br>Gln<br>Pro<br>Lys<br>55<br>Leu<br>Val                                                           | laris<br>Phe<br>Thr<br>Val<br>40<br>Asp<br>Gly<br>Val<br>Thr                                  | Ile<br>Ile<br>25<br>Met<br>Leu<br>Pro<br>Arg<br>Asp<br>105                                           | Cys<br>10<br>Trp<br>Val<br>Phe<br>Glu<br>Phe<br>90<br>Asn                                                  | Phe<br>Pro<br>Asp<br>Gly<br>Asn<br>75<br>Glu<br>Ala                                    | Leu<br>Thr<br>Cys<br>Thr<br>60<br>Cys<br>Val<br>Leu                                    | Leu<br>Glu<br>Leu<br>45<br>Gly<br>Glu<br>Gly<br>Val                                     | Leu<br>Thr<br>30<br>Glu<br>Lys<br>Pro<br>Leu<br>Tyr<br>110                                    | Gly<br>15<br>Tyr<br>Ser<br>Leu<br>Leu<br>His<br>95<br>Ser                              | Gly<br>Tyr<br>Gln<br>Ile<br>Val<br>80<br>Glu<br>Thr                                           |      |
| <pre>&lt;211<br/>&lt;211<br/>&lt;212<br/>&lt;213<br/>&lt;400<br/>Met<br/>1<br/>Met<br/>Pro<br/>Leu<br/>Arg<br/>65<br/>Ser<br/>Cys<br/>Phe</pre>                                         | 2> TY<br>3> OF<br>Gly<br>Glu<br>Leu<br>Val<br>50<br>Pro<br>Met<br>Gly<br>Leu                                                                          | YPE:<br>CGANJ<br>EQUEN<br>Leu<br>Leu<br>Leu<br>Thr<br>35<br>Val<br>Ala<br>Asp<br>Ser<br>Ile<br>115                             | PRT<br>ISM:<br>Ser<br>Cys<br>20<br>Ser<br>Thr<br>Asp<br>Thr<br>Arg<br>100<br>His                                           | Can:<br>8<br>Tyr<br>5<br>Cys<br>Arg<br>Val<br>Leu<br>Asp<br>85<br>Val<br>Ser                             | Gly<br>Pro<br>Pro<br>Ser<br>Thr<br>70<br>Asp<br>Gln<br>Pro                                             | amili<br>Ile<br>Gln<br>Pro<br>Lys<br>55<br>Leu<br>Val<br>Val<br>Arg                                    | Iaris<br>Phe<br>Thr<br>Val<br>40<br>Asp<br>Gly<br>Val<br>Thr<br>Pro<br>120                    | Ile<br>Ile<br>25<br>Met<br>Leu<br>Pro<br>Arg<br>105<br>Ala                                           | Cys<br>10<br>Trp<br>Val<br>Phe<br>Glu<br>Phe<br>90<br>Asn<br>Gly                                           | Phe<br>Pro<br>Asp<br>Gly<br>Asn<br>75<br>Glu<br>Ala<br>Asn                             | Leu<br>Thr<br>Cys<br>Thr<br>60<br>Cys<br>Val<br>Leu<br>Leu                             | Leu<br>Glu<br>Leu<br>45<br>Gly<br>Glu<br>Gly<br>Val<br>Ser<br>125                       | Leu<br>Thr<br>30<br>Glu<br>Lys<br>Pro<br>Leu<br>Tyr<br>110<br>Ile                             | Gly<br>15<br>Tyr<br>Ser<br>Leu<br>His<br>95<br>Ser<br>Leu                              | Gly<br>Tyr<br>Gln<br>Ile<br>Val<br>80<br>Glu<br>Thr<br>Arg                                    |      |
| <pre>&lt;211<br/>&lt;212<br/>&lt;212<br/>&lt;212<br/>&lt;400<br/>Met<br/>1<br/>Met<br/>Pro<br/>Leu<br/>Arg<br/>65<br/>Ser<br/>Cys<br/>Phe<br/>Thr</pre>                                 | 2> TY<br>3> OF<br>Gly<br>Glu<br>Leu<br>Val<br>50<br>Pro<br>Met<br>Gly<br>Leu<br>Asn<br>130                                                            | YPE:<br>CQUEN<br>EQUEN<br>Leu<br>Leu<br>Leu<br>Thr<br>35<br>Val<br>Ala<br>Asp<br>Ser<br>Ile<br>115<br>Arg                      | PRT<br>(SM:<br>Ser<br>Cys<br>20<br>Ser<br>Thr<br>Asp<br>Thr<br>Arg<br>100<br>His<br>Ala                                    | Can:<br>8<br>Tyr<br>5<br>Cys<br>Arg<br>Val<br>Leu<br>Asp<br>85<br>Val<br>Ser<br>Glu                      | is fa<br>Gly<br>Pro<br>Pro<br>Ser<br>Thr<br>70<br>Asp<br>Gln<br>Pro<br>Val                             | amili<br>Ile<br>Gln<br>Pro<br>Lys<br>55<br>Leu<br>Val<br>Val<br>Arg<br>Pro<br>135                      | Phe<br>Thr<br>Val<br>40<br>Asp<br>Gly<br>Val<br>Thr<br>Pro<br>120<br>Ile                      | Ile<br>Ile<br>25<br>Met<br>Leu<br>Pro<br>Arg<br>105<br>Ala<br>Glu                                    | Cys<br>10<br>Trp<br>Val<br>Phe<br>Glu<br>Phe<br>90<br>Asn<br>Gly<br>Cys                                    | Phe<br>Pro<br>Asp<br>Gly<br>Asn<br>Ala<br>Asn<br>His                                   | Leu<br>Thr<br>Cys<br>Thr<br>60<br>Cys<br>Val<br>Leu<br>Leu<br>Leu                      | Leu<br>Glu<br>Leu<br>45<br>Gly<br>Gly<br>Glu<br>Gly<br>Val<br>Ser<br>125<br>Pro         | Leu<br>Thr<br>30<br>Glu<br>Lys<br>Pro<br>Leu<br>Tyr<br>110<br>Ile<br>Arg                      | Gly<br>15<br>Tyr<br>Ser<br>Leu<br>His<br>95<br>Ser<br>Leu<br>His                       | Gly<br>Tyr<br>Gln<br>Ile<br>Val<br>80<br>Glu<br>Thr<br>Arg<br>Ser                             |      |
| <pre>&lt;211<br/>&lt;212<br/>&lt;212<br/>&lt;212<br/>&lt;213<br/>&lt;400<br/>Met<br/>1<br/>Pro<br/>Leu<br/>Arg<br/>65<br/>Ser<br/>Cys<br/>Phe<br/>Thr<br/>Asn<br/>145</pre>             | <pre>2&gt; TY<br/>3&gt; OF<br/>Gly<br/>Glu<br/>Leu<br/>Val<br/>50<br/>Pro<br/>Met<br/>Gly<br/>Leu<br/>Asn<br/>130<br/>Val</pre>                       | YPE:<br>CQUEN<br>CQUEN<br>Leu<br>Leu<br>Thr<br>35<br>Val<br>Ala<br>Asp<br>Ser<br>Ile<br>115<br>Arg<br>Ser                      | PRT<br>ISM:<br>Ser<br>Cys<br>20<br>Ser<br>Thr<br>Asp<br>Thr<br>Arg<br>100<br>His<br>Ala<br>Ser                             | Can:<br>8<br>Tyr 5<br>Cys<br>Arg<br>Val<br>Leu<br>Leu<br>Ser<br>Glu<br>Gln                               | is fa<br>Gly<br>Pro<br>Pro<br>Ser<br>Thr<br>70<br>Asp<br>Gln<br>Pro<br>Val<br>Ala<br>150               | amili<br>Ile<br>Gln<br>Pro<br>Lys<br>55<br>Leu<br>Val<br>Val<br>Arg<br>Pro<br>135<br>Ile               | Phe<br>Thr<br>Val<br>40<br>Asp<br>Gly<br>Val<br>Thr<br>Pro<br>120<br>Ile<br>Leu               | Ile<br>Ile<br>25<br>Met<br>Leu<br>Pro<br>Arg<br>Asp<br>105<br>Ala<br>Glu<br>Pro                      | Cys<br>10<br>Trp<br>Val<br>Phe<br>Glu<br>Phe<br>90<br>Asn<br>Gly<br>Cys<br>Thr                             | Phe<br>Pro<br>Asp<br>Gly<br>Asn<br>75<br>Glu<br>Ala<br>Asn<br>His<br>Trp               | Leu<br>Thr<br>Cys<br>Thr<br>60<br>Cys<br>Val<br>Leu<br>Leu<br>Leu<br>Tyr<br>140<br>Val | Leu<br>Glu<br>Leu<br>Gly<br>Glu<br>Gly<br>Val<br>Ser<br>125<br>Pro<br>Pro               | Leu<br>Thr<br>30<br>Glu<br>Lys<br>Pro<br>Leu<br>Tyr<br>110<br>Ile<br>Arg<br>Phe               | Gly<br>15<br>Tyr<br>Ser<br>Leu<br>His<br>Ser<br>Leu<br>His<br>Arg                      | Gly<br>Tyr<br>Gln<br>Ile<br>Val<br>Solu<br>Thr<br>Arg<br>Ser<br>Thr<br>160                    |      |
| <pre>&lt;211<br/>&lt;211<br/>&lt;212<br/>&lt;213<br/>&lt;400<br/>Met<br/>1<br/>Met<br/>Pro<br/>Leu<br/>Arg<br/>65<br/>Ser<br/>Cys<br/>Phe<br/>Thr<br/>Asn<br/>145<br/>Thr</pre>         | <pre>2&gt; TY<br/>3&gt; OF<br/>Gly<br/>Glu<br/>Leu<br/>Val<br/>50<br/>Pro<br/>Met<br/>Gly<br/>Leu<br/>Asn<br/>130<br/>Val<br/>Met</pre>               | YPE:<br>CQUEN<br>EQUEN<br>Leu<br>Leu<br>Thr<br>35<br>Val<br>Ala<br>Asp<br>Ser<br>Ile<br>115<br>Arg<br>Ser<br>Leu               | PRT<br>ISM:<br>Ser<br>Cys<br>20<br>Ser<br>Thr<br>Asp<br>Thr<br>Arg<br>100<br>His<br>Ala<br>Ser<br>Phe                      | Can:<br>8<br>Tyr<br>Cys<br>Arg<br>Val<br>Leu<br>Leu<br>Ssr<br>Glu<br>Gln<br>Glu<br>165                   | is fa<br>Gly<br>Pro<br>Pro<br>Ser<br>Thr<br>70<br>Asp<br>Gln<br>Pro<br>Val<br>Ala<br>150<br>Glu        | amili<br>Ile<br>Gln<br>Pro<br>Lys<br>55<br>Leu<br>Val<br>Val<br>Arg<br>Pro<br>135<br>Ile<br>Lys        | Phe<br>Thr<br>Val<br>40<br>Gly<br>Val<br>Thr<br>Pro<br>120<br>Ile<br>Leu<br>Leu               | Ile<br>Ile<br>25<br>Met<br>Leu<br>Pro<br>Arg<br>105<br>Ala<br>Glu<br>Pro<br>Val                      | Cys<br>10<br>Trp<br>Val<br>Phe<br>Glu<br>Phe<br>90<br>Asn<br>Gly<br>Cys<br>Thr<br>Phe<br>170               | Phe<br>Pro<br>Asp<br>Gly<br>Asn<br>75<br>Glu<br>Ala<br>Asn<br>His<br>Trp<br>155<br>Ser | Leu<br>Thr<br>Cys<br>Thr<br>60<br>Cys<br>Val<br>Leu<br>Leu<br>Tyr<br>140<br>Val<br>Leu | Leu<br>Glu<br>Leu<br>45<br>Gly<br>Glu<br>Gly<br>Val<br>Ser<br>125<br>Pro<br>Pro<br>Arg  | Leu<br>Thr<br>30<br>Glu<br>Lys<br>Pro<br>Leu<br>Tyr<br>110<br>Ile<br>Arg<br>Phe<br>Leu        | Gly<br>15<br>Tyr<br>Ser<br>Leu<br>Leu<br>His<br>Ser<br>Leu<br>His<br>Arg<br>Met        | Gly<br>Tyr<br>Gln<br>Ile<br>Val<br>80<br>Glu<br>Thr<br>Arg<br>Ser<br>Thr<br>160<br>Glu        |      |
| <pre>&lt;211<br/>&lt;212<br/>&lt;212<br/>&lt;212<br/>&lt;400<br/>Met<br/>1<br/>Met<br/>Pro<br/>Leu<br/>Arg<br/>65<br/>Ser<br/>Cys<br/>Phe<br/>Thr<br/>Asn<br/>145<br/>Thr<br/>Glu</pre> | <pre>&gt;&gt; TY<br/>&gt;&gt; OF<br/>Gly<br/>Glu<br/>Leu<br/>Val<br/>50<br/>Pro<br/>Met<br/>Gly<br/>Leu<br/>Asn<br/>130<br/>Val<br/>Met<br/>Asp</pre> | YPE:<br>CQANJ<br>SQUEN<br>Leu<br>Leu<br>Leu<br>Thr<br>35<br>Val<br>Ala<br>Asp<br>Ser<br>Ile<br>115<br>Arg<br>Ser<br>Leu<br>Trp | PRT<br>ISM:<br>Ser<br>Cys<br>20<br>Ser<br>Thr<br>Asp<br>Thr<br>Arg<br>100<br>His<br>Ser<br>Ala<br>Ser<br>Phe<br>Gly<br>180 | Can:<br>8<br>Tyr<br>5<br>Cys<br>Arg<br>Val<br>Leu<br>Asp<br>85<br>Val<br>Ser<br>Glu<br>Glu<br>165<br>Ser | is fa<br>Gly<br>Pro<br>Pro<br>Ser<br>Thr<br>70<br>Asp<br>Gln<br>Pro<br>Val<br>Ala<br>150<br>Glu<br>Glu | amili<br>Ile<br>Gln<br>Pro<br>Lys<br>55<br>Leu<br>Val<br>Val<br>Arg<br>Pro<br>135<br>Ile<br>Lys<br>Lys | Phe<br>Thr<br>Val<br>40<br>Asp<br>Gly<br>Val<br>Thr<br>Pro<br>120<br>Ile<br>Leu<br>Leu<br>Gln | Ile<br>Ile<br>25<br>Met<br>Leu<br>Pro<br>Arg<br>Asp<br>105<br>Ala<br>Glu<br>Pro<br>Val<br>Ser<br>185 | Cys<br>10<br>Trp<br>Val<br>Phe<br>Glu<br>Phe<br>90<br>Asn<br>Gly<br>Cys<br>Thr<br>Thr<br>Phe<br>170<br>Pro | Phe<br>Pro<br>Asp<br>Gly<br>Asn<br>Ala<br>Asn<br>His<br>Trp<br>155<br>Ser<br>Thr       | Leu<br>Thr<br>Cys<br>Cys<br>Val<br>Leu<br>Leu<br>Val<br>Leu<br>Val<br>Leu<br>Phe       | Leu<br>Glu<br>Leu<br>Gly<br>Glu<br>Gly<br>Val<br>Ser<br>125<br>Pro<br>Pro<br>Arg<br>Gln | Leu<br>Thr<br>30<br>Glu<br>Lys<br>Pro<br>Leu<br>Tyr<br>110<br>Ile<br>Arg<br>Phe<br>Leu<br>Leu | Gly<br>15<br>Tyr<br>Ser<br>Leu<br>His<br>Ser<br>Leu<br>His<br>Arg<br>Met<br>175<br>Gly | Gly<br>Tyr<br>Gln<br>Ile<br>Val<br>80<br>Glu<br>Thr<br>Arg<br>Ser<br>Thr<br>160<br>Glu<br>Asp |      |

| cont | - i r | 11101 | 1 |
|------|-------|-------|---|
| COIL |       | rueu  |   |

| -continued                                                                                                                                                                                   | 1            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 195 200 205                                                                                                                                                                                  |              |
| Arg Leu Phe Val Asp His Cys Val Ala Thr Leu Thr Pro Asp Arg210215220                                                                                                                         | g Asn        |
| Ala Phe Pro His His Lys Ile Val Asp Phe His Gly Cys Leu Val<br>225 230 235                                                                                                                   | 1 Asp<br>240 |
| Gly Leu Tyr Asn Ser Ser Ser Ala Phe Lys Ala Pro Arg Pro Arg<br>245 250 259                                                                                                                   | g Pro<br>5   |
| Glu Thr Leu Gln Phe Thr Val Asp Val Phe His Phe Ala Lys Asp<br>260 265 270                                                                                                                   | p Ser        |
| Arg Asn Thr Ile Tyr Ile Thr Cys His Leu Lys Val Thr Pro Ala<br>275 280 285                                                                                                                   | a Asp        |
| Arg Val Pro Asp Gln Leu Asn Lys Ala Cys Ser Phe Ile Lys Ser290295300                                                                                                                         | r Thr        |
| Lys Arg Ser Tyr Pro Val Glu Gly Ser Ala Asp Ile Cys Arg Cys<br>305 310 315                                                                                                                   | в Сув<br>320 |
| Asn Lys Gly Ser Cys Gly Leu Pro Gly Arg Ser Arg Arg Leu Ser<br>325 330 339                                                                                                                   | r His<br>5   |
| Leu Glu Arg Gly Trp Arg Arg Ser Val Ser His Thr Arg Asn Arg<br>340 345 350                                                                                                                   | g Arg        |
| His Val Thr Glu Glu Ala Glu Ile Thr Val Gly Pro Leu Ile Pho<br>355 360 365                                                                                                                   | e Leu        |
| Gly Lys Ala Ser Asp His Gly Ile Glu Gly Ser Thr Ser Pro His<br>370 375 380                                                                                                                   | s Thr        |
| Ser Val Met Leu Gly Leu Gly Leu Ala Thr Val Val Ser Leu Thr<br>385 390 395                                                                                                                   | r Leu<br>400 |
| Ala Thr Ile Val Leu Val Leu Ala Lys Arg His Arg Thr Ala Ser<br>405 410 41                                                                                                                    | r His<br>5   |
| Pro Val Ile Cys Pro Ala Ser Val Ser Gln<br>420 425                                                                                                                                           |              |
| <210> SEQ ID NO 9<br><211> LENGTH: 18<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide<br><400> SEQUENCE: 9 |              |
| aaaactgcag ccaccatg                                                                                                                                                                          | 18           |
| <210> SEQ ID NO 10<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide                     |              |
| <400> SEQUENCE: 10                                                                                                                                                                           |              |
| aactgcagcc accatggggc tgagctatgg aattttcatc tgttttctgc tcc1                                                                                                                                  | t 54         |
| <210> SEQ ID NO 11<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide                     |              |
| <400> SEQUENCE: 11                                                                                                                                                                           |              |
| tttcatctgt tttctgctcc tgggaggcat ggagctgtgc tgcccccaga ccat                                                                                                                                  | t 54         |

<223> OTHER INFORMATION: Synthetic oligonucleotide

-continued

<210> SEQ ID NO 12 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 12 ctgcccccag accatctggc caactgagac ctactaccca ttgacatcta ggcc 54 <210> SEQ ID NO 13 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEOUENCE: 13 54 cccattgaca tctaggcccc cagtaatggt ggactgtctg gagtcccagc tggt <210> SEQ ID NO 14 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 14 ggagtcccag ctggtggtca ctgtcagcaa agaccttttt ggtactggga agct 54 <210> SEQ ID NO 15 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 15 ctttttggtt acgggaaget catcaggeea geagaeetea eeetgggtee agag 54 <210> SEQ ID NO 16 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 16 caccetgggt ceagagaact gtgageeeet ggteteeatg gacaeggatg atgt 54 <210> SEQ ID NO 17 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 17 catggacacg gatgatgtgg tcaggtttga ggttgggctg cacgagtgtg gcag 54 <210> SEQ ID NO 18 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

# \_

96

| -continued                                                                                                                                                               |    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| <400> SEQUENCE: 18                                                                                                                                                       |    |  |
| gtgctgtaca ccagagcatt gtcagtcacc tgcaccctgc tgccacactc gtgc                                                                                                              | 54 |  |
| <210> SEQ ID NO 19<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synethic oligonucleotide  |    |  |
| <400> SEQUENCE: 19                                                                                                                                                       |    |  |
| caggttgeee geagggeggg ggetgtggat caggaaggtg etgtaeaeea gage                                                                                                              | 54 |  |
| <210> SEQ ID NO 20<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |    |  |
| <400> SEQUENCE: 20                                                                                                                                                       |    |  |
| actcgatggg gacctcggca cgattagttc tcaggatgga caggttgccc gcag                                                                                                              | 54 |  |
| <210> SEQ ID NO 21<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |    |  |
| <400> SEQUENCE: 21                                                                                                                                                       |    |  |
| ggcctggctg ctcacattgc tgtgcctggg gtagtggcac tcgatgggga cctc                                                                                                              | 54 |  |
| <210> SEQ ID NO 22<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |    |  |
| <400> SEQUENCE: 22                                                                                                                                                       |    |  |
| agagcattgt ggtcctgaag ggcacccaag tgggcaggat ggcctggctg ctca                                                                                                              | 54 |  |
| <210> SEQ ID NO 23<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |    |  |
| <400> SEQUENCE: 23                                                                                                                                                       |    |  |
| ccattaggcg gagagagaaa actagcttct cctcgaagag cattgtggtc ctga                                                                                                              | 54 |  |
| <210> SEQ ID NO 24<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |    |  |
| <400> SEQUENCE: 24                                                                                                                                                       |    |  |
| atgtggggga ttgcttctcg gagccccagt cctcctccat taggcggaga gaga                                                                                                              | 54 |  |
| <210> SEQ ID NO 25<br><211> LENGTH: 54                                                                                                                                   |    |  |

<212> TYPE: DNA

| -continued                                                                                                                                                               |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <pre></pre> <pre><cli><cli><cli><cli><cli><cli><cli><cli><cli><c< td=""><td></td></c<></cli></cli></cli></cli></cli></cli></cli></cli></cli></pre>                       |    |
| <223> OTHER INFORMATION: Synthetic oligonucleotide                                                                                                                       |    |
| <400> SEQUENCE: 25                                                                                                                                                       |    |
| cttcagcctg gaggtgggct atgtctccca gctggaatgt gggggattgc ttct                                                                                                              | 54 |
| <210> SEQ ID NO 26<br><211> LENGTH: 53<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence                                                                         |    |
| <220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide                                                                                                     |    |
| <400> SEQUENCE: 26                                                                                                                                                       |    |
| acaaaaagtc gcagtggcat atggctgcca gtgtggactt cagcctggag gtg                                                                                                               | 53 |
| <210> SEQ ID NO 27<br><211> LENGTH: 40<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |    |
| <400> SEQUENCE: 27                                                                                                                                                       |    |
| tggcagccat atgccactgc gactttttgt ggaccactgt                                                                                                                              | 40 |
| <210> SEQ ID NO 28<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |    |
| <400> SEQUENCE: 28                                                                                                                                                       |    |
| gactttttgt ggaccactgt gtggccacgc tgacaccaga tcggaatgcc ttcc                                                                                                              | 54 |
| <210> SEQ ID NO 29<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |    |
| <400> SEQUENCE: 29                                                                                                                                                       |    |
| cagatoggaa tgoottooot catoacaaaa ttgtggaott ooatggotgt ottg                                                                                                              | 54 |
| <210> SEQ ID NO 30<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |    |
| <400> SEQUENCE: 30                                                                                                                                                       |    |
| gactteeatg getgtettgt ggatggtete tacaatteet etteageett caaa                                                                                                              | 54 |
| <210> SEQ ID NO 31<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |    |
| <400> SEQUENCE: 31                                                                                                                                                       |    |
| aatteetett cageetteaa ageeeccaga eecaggeeag agaetettea gtte                                                                                                              | 54 |

<223> OTHER INFORMATION: Synthetic oligonucleotide

-continued

100

<210> SEQ ID NO 32 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 32 gccagagact cttcagttca cagtggatgt tttccacttt gctaaggact caag 54 <210> SEQ ID NO 33 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEOUENCE: 33 54 ccactttgct aaggactcaa gaaacacgat ctatatcacc tgccatctga aggt <210> SEQ ID NO 34 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 34 acctgccatc tgaaggtcac tccggctgac cgagtcccag accagctaaa caaa 54 <210> SEQ ID NO 35 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 35 cccagaccag ctaaacaaag cttgttcctt catcaagtct accaagaggt ccta 54 <210> SEQ ID NO 36 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 36 caagtotaco aagaggtoot accotgtaga aggotoggot gatatttgto gotg 54 <210> SEQ ID NO 37 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 37 accggcctgg aaggccacag ctgcctttgt tacaacagcg acaaatatca gccg 54 <210> SEQ ID NO 38 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

102

| -continued                                                                                                                                                               |    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| <400> SEQUENCE: 38                                                                                                                                                       |    |  |
| gacetgegee accetetete taggtgggae ageeteetgg aeeggeetgg aagg                                                                                                              | 54 |  |
| <210> SEQ ID NO 39<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |    |  |
| <400> SEQUENCE: 39                                                                                                                                                       |    |  |
| ttetteagte acgtgeetge gatttetagt gtgggaaaca gaeetgegee acce                                                                                                              | 54 |  |
| <210> SEQ ID NO 40<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |    |  |
| <400> SEQUENCE: 40                                                                                                                                                       |    |  |
| tteecaggaa gateagagge eecaeggtga tetetgette tteagteaeg tgee                                                                                                              | 54 |  |
| <210> SEQ ID NO 41<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |    |  |
| <400> SEQUENCE: 41                                                                                                                                                       |    |  |
| agaggttgac ccctctatac catgatcact agcctttccc aggaagatca gagg                                                                                                              | 54 |  |
| <210> SEQ ID NO 42<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |    |  |
| <400> SEQUENCE: 42                                                                                                                                                       |    |  |
| ccaggcctaa gcccaacatc acagaggtgt gaggagaggt tgacccctct atac                                                                                                              | 54 |  |
| <210> SEQ ID NO 43<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |    |  |
| <400> SEQUENCE: 43                                                                                                                                                       |    |  |
| ccaggacaat ggtagctaga gtcagggata ccaccgtggc caggcctaag ccca                                                                                                              | 54 |  |
| <210> SEQ ID NO 44<br><211> LENGTH: 54<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |    |  |
| <400> SEQUENCE: 44                                                                                                                                                       |    |  |
| gggtgggaag cagtacgatg cctcttggca aggaccagga caatggtagc taga                                                                                                              | 54 |  |
| <210> SEQ ID NO 45<br><211> LENGTH: 54                                                                                                                                   |    |  |

<212> TYPE: DNA

rontinued

104

| -continued                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                |
| <400> SEQUENCE: 45                                                                                                                                                                                                                                                                                             |
| cggtacctta ttgggagaca gatgcagggc atatcacagg gtgggaagca gtac 54                                                                                                                                                                                                                                                 |
| <pre>&lt;210&gt; SEQ ID NO 46<br/>&lt;211&gt; LENGTH: 24<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Artificial Sequence<br/>&lt;220&gt; FEATURE:<br/>&lt;223&gt; OTHER INFORMATION: Synthetic oligonucleotide</pre>                                                                                   |
| <400> SEQUENCE: 46                                                                                                                                                                                                                                                                                             |
| gacggcggta ccttattggg agac 24                                                                                                                                                                                                                                                                                  |
| <pre>&lt;210&gt; SEQ ID NO 47<br/>&lt;211&gt; LENGTH: 30<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Canis familiaris<br/>&lt;220&gt; FEATURE:<br/>&lt;221&gt; NAME/KEY: CDS<br/>&lt;222&gt; LOCATION: (1)(30)</pre>                                                                                   |
| <400> SEQUENCE: 47                                                                                                                                                                                                                                                                                             |
| gaa cac tgg agc tac ggt ttg aga ccc ggg 30<br>Glu His Trp Ser Tyr Gly Leu Arg Pro Gly<br>1 5 10                                                                                                                                                                                                                |
| <210> SEQ ID NO 48<br><211> LENGTH: 10<br><212> TYPE: PRT<br><213> ORGANISM: Canis familiaris                                                                                                                                                                                                                  |
| <400> SEQUENCE: 48                                                                                                                                                                                                                                                                                             |
| Glu His Trp Ser Tyr Gly Leu Arg Pro Gly<br>1 5 10                                                                                                                                                                                                                                                              |
| <pre>&lt;210&gt; SEQ ID NO 49<br/>&lt;211&gt; LENGTH: 1605<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Artificial Sequence<br/>&lt;220&gt; FEATURE:<br/>&lt;220&gt; FEATURE:<br/>&lt;220&gt; FEATURE:<br/>&lt;220&gt; FEATURE:<br/>&lt;221&gt; NAME/KEY: CDS<br/>&lt;222&gt; LOCATION: (1)(1605)</pre> |
| <400> SEQUENCE: 49                                                                                                                                                                                                                                                                                             |
| atg gtt cct cag gct ctc ctg ttt gta ccc ctt ctg gtt ttt cca ttg 48<br>Met Val Pro Gln Ala Leu Leu Phe Val Pro Leu Leu Val Phe Pro Leu<br>1 5 10 15                                                                                                                                                             |
| tgt ttt ggg gaa cac tgg agc tac ggt ttg aga ccc ggg aaa ttc cct 96<br>Cys Phe Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly Lys Phe Pro<br>20 25 30                                                                                                                                                              |
| att tac acg ata cca gac aag ctt ggt ccc tgg agt ccg att gac ata 144<br>Ile Tyr Thr Ile Pro Asp Lys Leu Gly Pro Trp Ser Pro Ile Asp Ile<br>35 40 45                                                                                                                                                             |
| cat cac ctc agc tgc cca aac aat ttg gta gtg gag gac gaa gga tgc 192<br>His His Leu Ser Cys Pro Asn Asn Leu Val Val Glu Asp Glu Gly Cys<br>50 55 60                                                                                                                                                             |
| acc aac ctg tca ggg ttc tcc tac atg gaa ctt aaa gtt gga tac atc 240<br>Thr Asn Leu Ser Gly Phe Ser Tyr Met Glu Leu Lys Val Gly Tyr Ile<br>65 70 75 80                                                                                                                                                          |
| tta gcc ata aaa gtg aac ggg ttc act tgc aca ggc gtt gtg acg gag 288                                                                                                                                                                                                                                            |

| Leu               | Ala               | Ile               | Lys               | Val<br>85         | Asn               | Gly               | Phe               | Thr                    | Суз<br>90              | Thr               | Gly               | Val               | Val               | Thr<br>95         | Glu               |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------|------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| gct<br>Ala        | gaa<br>Glu        | acc<br>Thr        | tac<br>Tyr<br>100 | act<br>Thr        | aac<br>Asn        | ttc<br>Phe        | gtt<br>Val        | ggt<br>Gly<br>105      | tat<br>Tyr             | gtc<br>Val        | aca<br>Thr        | acc<br>Thr        | acg<br>Thr<br>110 | ttc<br>Phe        | aaa<br>Lys        | 336  |
| aga<br>Arg        | aag<br>Lys        | cat<br>His<br>115 | ttc<br>Phe        | cgc<br>Arg        | cca<br>Pro        | aca<br>Thr        | cca<br>Pro<br>120 | gat<br>Asp             | gca<br>Ala             | tgt<br>Cys        | aga<br>Arg        | gcc<br>Ala<br>125 | gcg<br>Ala        | tac<br>Tyr        | aac<br>Asn        | 384  |
| tgg<br>Trp        | aag<br>Lys<br>130 | atg<br>Met        | gcc<br>Ala        | ggt<br>Gly        | gac<br>Asp        | ccc<br>Pro<br>135 | aga<br>Arg        | tat<br>Tyr             | gaa<br>Glu             | gag<br>Glu        | tct<br>Ser<br>140 | cta<br>Leu        | cac<br>His        | aat<br>Asn        | ccg<br>Pro        | 432  |
| tac<br>Tyr<br>145 | cct<br>Pro        | gac<br>Asp        | tac<br>Tyr        | cgc<br>Arg        | tgg<br>Trp<br>150 | ctt<br>Leu        | cga<br>Arg        | act<br>Thr             | gta<br>Val             | aaa<br>Lys<br>155 | acc<br>Thr        | acc<br>Thr        | aag<br>Lys        | gag<br>Glu        | tct<br>Ser<br>160 | 480  |
| ctc<br>Leu        | gtt<br>Val        | atc<br>Ile        | ata<br>Ile        | tct<br>Ser<br>165 | cca<br>Pro        | agt<br>Ser        | gtg<br>Val        | gca<br>Ala             | gat<br>Asp<br>170      | ttg<br>Leu        | gac<br>Asp        | cca<br>Pro        | tat<br>Tyr        | gac<br>Asp<br>175 | aga<br>Arg        | 528  |
| tcc<br>Ser        | ctt<br>Leu        | cac<br>His        | tcg<br>Ser<br>180 | agg<br>Arg        | gtc<br>Val        | ttc<br>Phe        | cct<br>Pro        | agc<br>Ser<br>185      | elà<br>aaa             | aag<br>Lys        | tgc<br>Cys        | tca<br>Ser        | gga<br>Gly<br>190 | gta<br>Val        | gcg<br>Ala        | 576  |
| gtg<br>Val        | tct<br>Ser        | tct<br>Ser<br>195 | acc<br>Thr        | tac<br>Tyr        | tgc<br>Cys        | tcc<br>Ser        | act<br>Thr<br>200 | aac<br>Asn             | cac<br>His             | gat<br>Asp        | tac<br>Tyr        | acc<br>Thr<br>205 | att<br>Ile        | tgg<br>Trp        | atg<br>Met        | 624  |
| ccc<br>Pro        | gag<br>Glu<br>210 | aat<br>Asn        | ccg<br>Pro        | aga<br>Arg        | cta<br>Leu        | 999<br>Gly<br>215 | atg<br>Met        | tct<br>Ser             | tgt<br>Cys             | gac<br>Asp        | att<br>Ile<br>220 | ttt<br>Phe        | acc<br>Thr        | aat<br>Asn        | agt<br>Ser        | 672  |
| aga<br>Arg<br>225 | glà<br>aaa        | aag<br>Lys        | aga<br>Arg        | gca<br>Ala        | tcc<br>Ser<br>230 | aaa<br>Lys        | glà<br>âââ        | agt<br>Ser             | gag<br>Glu             | act<br>Thr<br>235 | tgc<br>Cys        | ggc<br>Gly        | ttt<br>Phe        | gta<br>Val        | gat<br>Asp<br>240 | 720  |
| gaa<br>Glu        | aga<br>Arg        | ggc<br>Gly        | cta<br>Leu        | tat<br>Tyr<br>245 | aag<br>Lys        | tct<br>Ser        | tta<br>Leu        | aaa<br>Lys             | gga<br>Gly<br>250      | gca<br>Ala        | tgc<br>Cys        | aaa<br>Lys        | ctc<br>Leu        | aag<br>Lys<br>255 | tta<br>Leu        | 768  |
| tgt<br>Cys        | gga<br>Gly        | gtt<br>Val        | cta<br>Leu<br>260 | gga<br>Gly        | ctt<br>Leu        | aga<br>Arg        | ctt<br>Leu        | atg<br>Met<br>265      | gat<br>Asp             | gga<br>Gly        | aca<br>Thr        | tgg<br>Trp        | gtc<br>Val<br>270 | tcg<br>Ser        | atg<br>Met        | 816  |
| caa<br>Gln        | aca<br>Thr        | tca<br>Ser<br>275 | aat<br>Asn        | gaa<br>Glu        | acc<br>Thr        | aaa<br>Lys        | tgg<br>Trp<br>280 | tgc<br>Cys             | cct<br>Pro             | ccc<br>Pro        | gat<br>Asp        | aag<br>Lys<br>285 | ttg<br>Leu        | gtg<br>Val        | aac<br>Asn        | 864  |
| ctg<br>Leu        | cac<br>His<br>290 | gac<br>Asp        | ttt<br>Phe        | cgc<br>Arg        | tca<br>Ser        | gac<br>Asp<br>295 | gaa<br>Glu        | att<br>Ile             | gag<br>Glu             | cac<br>His        | ctt<br>Leu<br>300 | gtt<br>Val        | gta<br>Val        | gag<br>Glu        | gag<br>Glu        | 912  |
| ttg<br>Leu<br>305 | gtc<br>Val        | agg<br>Arg        | aag<br>Lys        | aga<br>Arg        | gag<br>Glu<br>310 | gag<br>Glu        | tgt<br>Cys        | ctg<br>Leu             | gat<br>Asp             | gca<br>Ala<br>315 | cta<br>Leu        | gag<br>Glu        | tcc<br>Ser        | atc<br>Ile        | atg<br>Met<br>320 | 960  |
| aca<br>Thr        | acc<br>Thr        | aag<br>Lys        | tca<br>Ser        | gtg<br>Val<br>325 | agt<br>Ser        | ttc<br>Phe        | aga<br>Arg        | cgt<br>Arg             | ctc<br>Leu<br>330      | agt<br>Ser        | cat<br>His        | tta<br>Leu        | aga<br>Arg        | aaa<br>Lys<br>335 | ctt<br>Leu        | 1008 |
| gtc<br>Val        | cct<br>Pro        | с1<br>даа         | ttt<br>Phe<br>340 | gga<br>Gly        | aaa<br>Lys        | gca<br>Ala        | tat<br>Tyr        | acc<br>Thr<br>345      | ata<br>Ile             | ttc<br>Phe        | aac<br>Asn        | aag<br>Lys        | acc<br>Thr<br>350 | ttg<br>Leu        | atg<br>Met        | 1056 |
| gaa<br>Glu        | gcc<br>Ala        | gat<br>Asp<br>355 | gct<br>Ala        | cac<br>His        | tac<br>Tyr        | aag<br>Lys        | tca<br>Ser<br>360 | gtc<br>Val             | gaa<br>Glu             | act<br>Thr        | tgg<br>Trp        | aat<br>Asn<br>365 | gag<br>Glu        | atc<br>Ile        | ctc<br>Leu        | 1104 |
| cct<br>Pro        | tca<br>Ser<br>370 | aaa<br>Lys        | д1У<br>ааа        | tgt<br>Cys        | tta<br>Leu        | aga<br>Arg<br>375 | gtt<br>Val        | д1 <sup>д</sup><br>ааа | д1 <sup>у</sup><br>ааа | agg<br>Arg        | tgt<br>Cys<br>380 | cat<br>His        | cct<br>Pro        | cat<br>His        | gtg<br>Val        | 1152 |
| aac<br>Asn<br>385 | д1 <i></i><br>даа | gtg<br>Val        | ttt<br>Phe        | ttc<br>Phe        | aat<br>Asn<br>390 | ggt<br>Gly        | ata<br>Ile        | ata<br>Ile             | tta<br>Leu             | gga<br>Gly<br>395 | cct<br>Pro        | gac<br>Asp        | ggc<br>Gly        | aat<br>Asn        | gtc<br>Val<br>400 | 1200 |
| tta               | atc               | cca               | gag               | atg               | caa               | tca               | tcc               | ctc                    | ctc                    | cag               | caa               | cat               | atg               | gag               | ttg               | 1248 |

106

| Leu Ile Pro Glu Met Gln Ser Ser Leu Leu Gln Gln His Met Glu Leu<br>405 410 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|--|--|--|--|--|--|--|
| ttg gaa too tog gtt ato ooc ott gtg oac ooc otg goa gao oog tot<br>Leu Glu Ser Ser Val Ile Pro Leu Val His Pro Leu Ala Asp Pro Ser<br>420 425 430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1296 |  |  |  |  |  |  |  |  |  |  |  |  |
| acc gtt ttc aag gac ggt gac gag gct gag gat ttt gtt gaa gtt cac<br>Thr Val Phe Lys Asp Gly Asp Glu Ala Glu Asp Phe Val Glu Val His<br>435 440 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1344 |  |  |  |  |  |  |  |  |  |  |  |  |
| ctt ccc gat gtg cac aat cag gtc tca gga gtt gac ttg ggt ctc ccg<br>Leu Pro Asp Val His Asn Gln Val Ser Gly Val Asp Leu Gly Leu Pro<br>450 455 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1392 |  |  |  |  |  |  |  |  |  |  |  |  |
| aac tgg ggg aag tat gta tta ctg agt gca ggg gcc ctg act gcc ttgAsn Trp Gly Lys Tyr Val Leu Leu Ser Ala Gly Ala Leu Thr Ala Leu465470475480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1440 |  |  |  |  |  |  |  |  |  |  |  |  |
| atg ttg ata att ttc ctg atg aca tgt tgt aga aga gtc aat cga tca<br>Met Leu Ile Ile Phe Leu Met Thr Cys Cys Arg Arg Val Asn Arg Ser<br>485 490 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1488 |  |  |  |  |  |  |  |  |  |  |  |  |
| gaa cct acg caa cac aat ctc aga ggg aca ggg agg gag gtg tca gtc<br>Glu Pro Thr Gln His Asn Leu Arg Gly Thr Gly Arg Glu Val Ser Val<br>500 505 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1536 |  |  |  |  |  |  |  |  |  |  |  |  |
| act ccc caa agc ggg aag atc ata tct tca tgg gaa tca cac aag agt<br>Thr Pro Gln Ser Gly Lys Ile Ile Ser Ser Trp Glu Ser His Lys Ser<br>515 520 525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1584 |  |  |  |  |  |  |  |  |  |  |  |  |
| ggg ggt gag acc ata ctg taa<br>Gly Gly Glu Thr Ile Leu<br>530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1605 |  |  |  |  |  |  |  |  |  |  |  |  |
| <pre>&lt;210&gt; SEQ ID NO 50<br/>&lt;211&gt; LENGTH: 534<br/>&lt;212&gt; TYPE: PRT<br/>&lt;212&gt; ORGANISM: Artificial Sequence<br/>&lt;220&gt; FEATURE:<br/>&lt;223&gt; OTHER INFORMATION: Synthetic Construct<br/>&lt;400&gt; SEQUENCE: 50</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |  |  |  |  |  |  |  |  |  |  |  |  |
| <213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic Construct<br><400> SEQUENCE: 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |  |  |  |  |  |  |  |  |  |  |  |  |
| <pre>&lt;213&gt; ORGANISM: Artificial Sequence<br/>&lt;220&gt; FEATURE:<br/>&lt;223&gt; OTHER INFORMATION: Synthetic Construct<br/>&lt;400&gt; SEQUENCE: 50<br/>Met Val Pro Gln Ala Leu Leu Phe Val Pro Leu Leu Val Phe Pro Leu<br/>1 5 10 15</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |  |  |  |  |  |  |  |  |  |  |  |  |
| <pre>&lt;213&gt; ORGANISM: Artificial Sequence<br/>&lt;220&gt; FEATURE:<br/>&lt;223&gt; OTHER INFORMATION: Synthetic Construct<br/>&lt;400&gt; SEQUENCE: 50<br/>Met Val Pro Gln Ala Leu Leu Phe Val Pro Leu Leu Val Phe Pro Leu<br/>1 5 10 15<br/>Cys Phe Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly Lys Phe Pro<br/>20 25 30</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |  |  |  |  |  |  |  |  |  |  |  |  |
| <pre>&lt;213&gt; ORGANISM: Artificial Sequence<br/>&lt;220&gt; FEATURE:<br/>&lt;223&gt; OTHER INFORMATION: Synthetic Construct<br/>&lt;400&gt; SEQUENCE: 50<br/>Met Val Pro Gln Ala Leu Leu Phe Val Pro Leu Leu Val Phe Pro Leu<br/>1 5 10 15<br/>Cys Phe Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly Lys Phe Pro<br/>20 25 30<br/>Ile Tyr Thr Ile Pro Asp Lys Leu Gly Pro Trp Ser Pro Ile Asp Ile<br/>35 40 45</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |  |  |  |  |  |  |  |  |  |  |  |
| <pre>&lt;213&gt; ORGANISM: Artificial Sequence<br/>&lt;220&gt; FEATURE:<br/>&lt;223&gt; OTHER INFORMATION: Synthetic Construct<br/>&lt;400&gt; SEQUENCE: 50<br/>Met Val Pro Gln Ala Leu Leu Phe Val Pro Leu Leu Val Phe Pro Leu<br/>1 5 10 15<br/>Cys Phe Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly Lys Phe Pro<br/>20 25 20 30<br/>Ile Tyr Thr Ile Pro Asp Lys Leu Gly Pro Trp Ser Pro Ile Asp Ile<br/>35 40 45<br/>His His Leu Ser Cys Pro Asn Asn Leu Val Val Glu Asp Glu Gly Cys<br/>50 55 60</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |  |  |  |  |  |  |  |  |  |  |  |  |
| <pre>&lt;213 &gt; ORGANISM: Artificial Sequence<br/>&lt;220 &gt; FEATURE:<br/>&lt;223 &gt; OTHER INFORMATION: Synthetic Construct<br/>&lt;400 &gt; SEQUENCE: 50<br/>Met Val Pro Gln Ala Leu Leu Phe Val Pro Leu Leu Val Phe Pro Leu<br/>1 5<br/>Cys Phe Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly Lys Phe Pro<br/>20 11e Tyr Thr Ile Pro Asp Lys Leu Gly Pro Trp Ser Pro Ile Asp Ile<br/>40 45<br/>His His Leu Ser Cys Pro Asn Asn Leu Val Val Glu Asp Glu Gly Cys<br/>50 Thr Asn Leu Ser Gly Phe Ser Tyr Met Glu Leu Lys Val Gly Tyr Ile<br/>65 70 75 80</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |  |  |  |  |  |  |  |  |  |  |  |  |
| <pre>&lt;213&gt; ORGANISM: Artificial Sequence<br/>&lt;220&gt; FEATURE:<br/>&lt;223&gt; OTHER INFORMATION: Synthetic Construct<br/>&lt;400&gt; SEQUENCE: 50<br/>Met Val Pro Gln Ala Leu Leu Phe Val Pro Leu Leu Val Phe Pro Leu<br/>1 10 15<br/>Cys Phe Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly Lys Phe Pro<br/>20 25 20 20 20 20 20 20 20 20 20 20 20 20 20</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |  |  |  |  |  |  |  |  |  |
| <pre>&lt;213&gt; ORGANISM: Artificial Sequence<br/>&lt;220&gt; FEATURE:<br/>&lt;223&gt; OTHER INFORMATION: Synthetic Construct<br/>&lt;400&gt; SEQUENCE: 50<br/>Met Val Pro Gln Ala Leu Leu Phe Val Pro Leu Leu Val Phe Pro Leu<br/>1 5 10 10 11 10 11 15 15 15 10 10 11 10 15 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10</pre> |      |  |  |  |  |  |  |  |  |  |  |  |  |
| <pre>&lt;213&gt; ORGANISM: Artificial Sequence<br/>&lt;220&gt; FEATURE:<br/>&lt;223&gt; OTHER INFORMATION: Synthetic Construct<br/>&lt;400&gt; SEQUENCE: 50<br/>Met Val Pro Gln Ala Leu Leu Phe Val Pro Leu Leu Val Phe Pro Leu<br/>1 10 10 11 15 15 15 15 10 10 10 15 10 10 15 10 10 15 10 10 15 10 10 15 10 10 15 10 10 15 10 10 10 15 10 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |  |  |  |  |  |  |  |  |  |  |  |  |
| <pre>&lt;213 &gt; ORGANISM: Artificial Sequence<br/>&lt;220 &gt; FEATURE:<br/>&lt;223 &gt; OTHER INFORMATION: Synthetic Construct<br/>&lt;400 &gt; SEQUENCE: 50<br/>Met Val Pro Gln Ala Leu Leu Phe Val Pro Leu Leu Val Phe Pro Leu<br/>1 10<br/>Cys Phe Gly Glu His Trp Ser Tyr Gly Leu Arg Pro Gly Lys Phe Pro<br/>20<br/>Ile Tyr Thr Ile Pro Asp Lys Leu Gly Pro Trp Ser Pro Ile Asp Ile<br/>40<br/>His His Leu Ser Cys Pro Asn Asn Leu Val Val Glu Asp Glu Gly Cys<br/>50<br/>Thr Asn Leu Ser Gly Phe Ser Tyr Met Glu Leu Lys Val Gly Tyr Ile<br/>65<br/>Ala Glu Thr Tyr Thr Asn Phe Val Gly Pro Trp Ser Dro Ile Asp So<br/>Ala Glu Thr Tyr Thr Asn Phe Val Gly Tyr Val Thr Thr Thr Phe Lys<br/>10<br/>Arg Lys His Phe Arg Pro Thr Pro Asp Ala Cys Arg Ala Ala Tyr Asn<br/>120<br/>Thr Lys Met Ala Gly Asp Pro Arg Tyr Glu Glu Ser Leu His Asn Pro<br/>130</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |  |  |  |  |  |  |  |  |  |  |  |  |
| <pre>&lt;213 &gt; ORGANISM: Artificial Sequence<br/>&lt;220 &gt; FEATURE:<br/>&lt;223 &gt; OTHER INFORMATION: Synthetic Construct<br/>&lt;400 &gt; SEQUENCE: 50<br/>Met Val Pro Gln Ala Leu Leu Phe Val Pro Leu Leu Val Phe Pro Leu<br/>1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |  |  |  |  |  |  |  |  |  |  |  |  |
| <pre>&lt;113 &gt; ORGANISM: Artificial Sequence<br/>&lt;223 &gt; OTHER INFORMATION: Synthetic Construct<br/>&lt;400 &gt; SEQUENCE: 50<br/>Met Val Pro Gln Ala Leu Leu Phe Val Pro Leu Leu Val Phe Pro Leu<br/>1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |  |  |  |  |  |  |  |  |  |  |  |

Val Ser Ser Thr Tyr Cys Ser Thr Asn His Asp Tyr Thr Ile Trp Met Pro Glu Asn Pro Arg Leu Gly Met Ser Cys Asp Ile Phe Thr Asn Ser Arg Gly Lys Arg Ala Ser Lys Gly Ser Glu Thr Cys Gly Phe Val Asp Glu Arg Gly Leu Tyr Lys Ser Leu Lys Gly Ala Cys Lys Leu Lys Leu Cys Gly Val Leu Gly Leu Arg Leu Met Asp Gly Thr Trp Val Ser Met Gln Thr Ser Asn Glu Thr Lys Trp Cys Pro Pro Asp Lys Leu Val Asn Leu His Asp Phe Arg Ser Asp Glu Ile Glu His Leu Val Val Glu Glu Leu Val Arg Lys Arg Glu Glu Cys Leu Asp Ala Leu Glu Ser Ile Met Thr Thr Lys Ser Val Ser Phe Arg Arg Leu Ser His Leu Arg Lys Leu Val Pro Gly Phe Gly Lys Ala Tyr Thr Ile Phe Asn Lys Thr Leu Met Glu Ala Asp Ala His Tyr Lys Ser Val Glu Thr Trp Asn Glu Ile Leu Pro Ser Lys Gly Cys Leu Arg Val Gly Gly Arg Cys His Pro His Val Asn Gly Val Phe Phe Asn Gly Ile Ile Leu Gly Pro Asp Gly Asn Val Leu Ile Pro Glu Met Gln Ser Ser Leu Leu Gln Gln His Met Glu Leu Leu Glu Ser Ser Val Ile Pro Leu Val His Pro Leu Ala Asp Pro Ser Thr Val Phe Lys Asp Gly Asp Glu Ala Glu Asp Phe Val Glu Val His Leu Pro Asp Val His Asn Gln Val Ser Gly Val Asp Leu Gly Leu Pro Asn Trp Gly Lys Tyr Val Leu Leu Ser Ala Gly Ala Leu Thr Ala Leu 465 470 475 480 Met Leu Ile Ile Phe Leu Met Thr Cys Cys Arg Arg Val Asn Arg Ser Glu Pro Thr Gln His Asn Leu Arg Gly Thr Gly Arg Glu Val Ser Val Thr Pro Gln Ser Gly Lys Ile Ile Ser Ser Trp Glu Ser His Lys Ser Gly Gly Glu Thr Ile Leu <210> SEO ID NO 51 <211> LENGTH: 1635 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Recombinant Rabies Virus Glycoprotein N-2GnRH <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)..(1635) <400> SEQUENCE: 51

| atg<br>Met<br>1   | gtt<br>Val        | cct<br>Pro        | cag<br>Gln        | gct<br>Ala<br>5   | ctc<br>Leu        | ctg<br>Leu        | ttt<br>Phe        | gta<br>Val        | ccc<br>Pro<br>10  | ctt<br>Leu        | ctg<br>Leu        | gtt<br>Val        | ttt<br>Phe        | cca<br>Pro<br>15  | ttg<br>Leu        |   | 48  |  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---|-----|--|
| tgt<br>Cys        | ttt<br>Phe        | 999<br>999        | gaa<br>Glu<br>20  | cac<br>His        | tgg<br>Trp        | agc<br>Ser        | tac<br>Tyr        | ggt<br>Gly<br>25  | ttg<br>Leu        | aga<br>Arg        | ccc<br>Pro        | 999<br>Gly        | gaa<br>Glu<br>30  | cac<br>His        | tgg<br>Trp        |   | 96  |  |
| agc<br>Ser        | tac<br>Tyr        | ggt<br>Gly<br>35  | ttg<br>Leu        | aga<br>Arg        | ccc<br>Pro        | ggg<br>Gly        | aaa<br>Lys<br>40  | ttc<br>Phe        | cct<br>Pro        | att<br>Ile        | tac<br>Tyr        | acg<br>Thr<br>45  | ata<br>Ile        | cca<br>Pro        | gac<br>Asp        | 1 | .44 |  |
| aag<br>Lys        | ctt<br>Leu<br>50  | ggt<br>Gly        | ccc<br>Pro        | tgg<br>Trp        | agt<br>Ser        | ccg<br>Pro<br>55  | att<br>Ile        | gac<br>Asp        | ata<br>Ile        | cat<br>His        | cac<br>His<br>60  | ctc<br>Leu        | agc<br>Ser        | tgc<br>Cys        | cca<br>Pro        | 1 | .92 |  |
| aac<br>Asn<br>65  | aat<br>Asn        | ttg<br>Leu        | gta<br>Val        | gtg<br>Val        | gag<br>Glu<br>70  | gac<br>Asp        | gaa<br>Glu        | gga<br>Gly        | tgc<br>Cys        | acc<br>Thr<br>75  | aac<br>Asn        | ctg<br>Leu        | tca<br>Ser        | д1У<br>ддд        | ttc<br>Phe<br>80  | 2 | 40  |  |
| tcc<br>Ser        | tac<br>Tyr        | atg<br>Met        | gaa<br>Glu        | ctt<br>Leu<br>85  | aaa<br>Lys        | gtt<br>Val        | gga<br>Gly        | tac<br>Tyr        | atc<br>Ile<br>90  | tta<br>Leu        | gcc<br>Ala        | ata<br>Ile        | aaa<br>Lys        | gtg<br>Val<br>95  | aac<br>Asn        | 2 | 88  |  |
| д1у<br>д9д        | ttc<br>Phe        | act<br>Thr        | tgc<br>Cys<br>100 | aca<br>Thr        | ggc<br>Gly        | gtt<br>Val        | gtg<br>Val        | acg<br>Thr<br>105 | gag<br>Glu        | gct<br>Ala        | gaa<br>Glu        | acc<br>Thr        | tac<br>Tyr<br>110 | act<br>Thr        | aac<br>Asn        | 3 | 36  |  |
| ttc<br>Phe        | gtt<br>Val        | ggt<br>Gly<br>115 | tat<br>Tyr        | gtc<br>Val        | aca<br>Thr        | acc<br>Thr        | acg<br>Thr<br>120 | ttc<br>Phe        | aaa<br>Lys        | aga<br>Arg        | aag<br>Lys        | cat<br>His<br>125 | ttc<br>Phe        | cgc<br>Arg        | cca<br>Pro        | 3 | 84  |  |
| aca<br>Thr        | cca<br>Pro<br>130 | gat<br>Asp        | gca<br>Ala        | tgt<br>Cys        | aga<br>Arg        | gcc<br>Ala<br>135 | gcg<br>Ala        | tac<br>Tyr        | aac<br>Asn        | tgg<br>Trp        | aag<br>Lys<br>140 | atg<br>Met        | gcc<br>Ala        | ggt<br>Gly        | gac<br>Asp        | 4 | 32  |  |
| ccc<br>Pro<br>145 | aga<br>Arg        | tat<br>Tyr        | gaa<br>Glu        | gag<br>Glu        | tct<br>Ser<br>150 | cta<br>Leu        | cac<br>His        | aat<br>Asn        | ccg<br>Pro        | tac<br>Tyr<br>155 | cct<br>Pro        | gac<br>Asp        | tac<br>Tyr        | cgc<br>Arg        | tgg<br>Trp<br>160 | 4 | 80  |  |
| ctt<br>Leu        | cga<br>Arg        | act<br>Thr        | gta<br>Val        | aaa<br>Lys<br>165 | acc<br>Thr        | acc<br>Thr        | aag<br>Lys        | gag<br>Glu        | tct<br>Ser<br>170 | ctc<br>Leu        | gtt<br>Val        | atc<br>Ile        | ata<br>Ile        | tct<br>Ser<br>175 | cca<br>Pro        | 5 | 528 |  |
| agt<br>Ser        | gtg<br>Val        | gca<br>Ala        | gat<br>Asp<br>180 | ttg<br>Leu        | gac<br>Asp        | cca<br>Pro        | tat<br>Tyr        | gac<br>Asp<br>185 | aga<br>Arg        | tcc<br>Ser        | ctt<br>Leu        | cac<br>His        | tcg<br>Ser<br>190 | agg<br>Arg        | gtc<br>Val        | 5 | 576 |  |
| ttc<br>Phe        | cct<br>Pro        | agc<br>Ser<br>195 | ggg<br>ggg        | aag<br>Lys        | tgc<br>Cys        | tca<br>Ser        | gga<br>Gly<br>200 | gta<br>Val        | gcg<br>Ala        | gtg<br>Val        | tct<br>Ser        | tct<br>Ser<br>205 | acc<br>Thr        | tac<br>Tyr        | tgc<br>Cys        | 6 | 24  |  |
| tcc<br>Ser        | act<br>Thr<br>210 | aac<br>Asn        | cac<br>His        | gat<br>Asp        | tac<br>Tyr        | acc<br>Thr<br>215 | att<br>Ile        | tgg<br>Trp        | atg<br>Met        | ccc<br>Pro        | gag<br>Glu<br>220 | aat<br>Asn        | ccg<br>Pro        | aga<br>Arg        | cta<br>Leu        | 6 | 572 |  |
| 999<br>Gly<br>225 | atg<br>Met        | tct<br>Ser        | tgt<br>Cys        | gac<br>Asp        | att<br>Ile<br>230 | ttt<br>Phe        | acc<br>Thr        | aat<br>Asn        | agt<br>Ser        | aga<br>Arg<br>235 | ggg<br>Gly        | aag<br>Lys        | aga<br>Arg        | gca<br>Ala        | tcc<br>Ser<br>240 | 7 | 20  |  |
| aaa<br>Lys        | 999<br>Gly        | agt<br>Ser        | gag<br>Glu        | act<br>Thr<br>245 | tgc<br>Cys        | ggc<br>Gly        | ttt<br>Phe        | gta<br>Val        | gat<br>Asp<br>250 | gaa<br>Glu        | aga<br>Arg        | ggc<br>Gly        | cta<br>Leu        | tat<br>Tyr<br>255 | aag<br>Lys        | 7 | 68  |  |
| tct<br>Ser        | tta<br>Leu        | aaa<br>Lys        | gga<br>Gly<br>260 | gca<br>Ala        | tgc<br>Cys        | aaa<br>Lys        | ctc<br>Leu        | aag<br>Lys<br>265 | tta<br>Leu        | tgt<br>Cys        | gga<br>Gly        | gtt<br>Val        | cta<br>Leu<br>270 | gga<br>Gly        | ctt<br>Leu        | 8 | 316 |  |
| aga<br>Arg        | ctt<br>Leu        | atg<br>Met<br>275 | gat<br>Asp        | gga<br>Gly        | aca<br>Thr        | tgg<br>Trp        | gtc<br>Val<br>280 | tcg<br>Ser        | atg<br>Met        | caa<br>Gln        | aca<br>Thr        | tca<br>Ser<br>285 | aat<br>Asn        | gaa<br>Glu        | acc<br>Thr        | 8 | 364 |  |
| aaa<br>Lys        | tgg<br>Trp<br>290 | tgc<br>Cys        | cct<br>Pro        | ccc<br>Pro        | gat<br>Asp        | aag<br>Lys<br>295 | ttg<br>Leu        | gtg<br>Val        | aac<br>Asn        | ctg<br>Leu        | cac<br>His<br>300 | gac<br>Asp        | ttt<br>Phe        | cgc<br>Arg        | tca<br>Ser        | g | 912 |  |
| gac<br>Asp<br>305 | gaa<br>Glu        | att<br>Ile        | gag<br>Glu        | cac<br>His        | ctt<br>Leu<br>310 | gtt<br>Val        | gta<br>Val        | gag<br>Glu        | gag<br>Glu        | ttg<br>Leu<br>315 | gtc<br>Val        | agg<br>Arg        | aag<br>Lys        | aga<br>Arg        | gag<br>Glu<br>320 | g | 960 |  |

-continued

| gag<br>Glu                                           | tgt<br>Cys                                         | ctg<br>Leu                                        | gat<br>Asp                                  | gca<br>Ala<br>325        | cta<br>Leu        | gag<br>Glu        | tcc<br>Ser        | atc<br>Ile        | atg<br>Met<br>330 | aca<br>Thr        | acc<br>Thr        | aag<br>Lys        | tca<br>Ser        | gtg<br>Val<br>335 | agt<br>Ser        | 1008 |
|------------------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------|--------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| ttc<br>Phe                                           | aga<br>Arg                                         | cgt<br>Arg                                        | ctc<br>Leu<br>340                           | agt<br>Ser               | cat<br>His        | tta<br>Leu        | aga<br>Arg        | aaa<br>Lys<br>345 | ctt<br>Leu        | gtc<br>Val        | cct<br>Pro        | 999<br>Gly        | ttt<br>Phe<br>350 | gga<br>Gly        | aaa<br>Lys        | 1056 |
| gca<br>Ala                                           | tat<br>Tyr                                         | acc<br>Thr<br>355                                 | ata<br>Ile                                  | ttc<br>Phe               | aac<br>Asn        | aag<br>Lys        | acc<br>Thr<br>360 | ttg<br>Leu        | atg<br>Met        | gaa<br>Glu        | gcc<br>Ala        | gat<br>Asp<br>365 | gct<br>Ala        | cac<br>His        | tac<br>Tyr        | 1104 |
| aag<br>Lys                                           | tca<br>Ser<br>370                                  | gtc<br>Val                                        | gaa<br>Glu                                  | act<br>Thr               | tgg<br>Trp        | aat<br>Asn<br>375 | gag<br>Glu        | atc<br>Ile        | ctc<br>Leu        | cct<br>Pro        | tca<br>Ser<br>380 | aaa<br>Lys        | ggg<br>Gly        | tgt<br>Cys        | tta<br>Leu        | 1152 |
| aga<br>Arg<br>385                                    | gtt<br>Val                                         | glà<br>dâð                                        | glà<br>dâð                                  | agg<br>Arg               | tgt<br>Cys<br>390 | cat<br>His        | cct<br>Pro        | cat<br>His        | gtg<br>Val        | aac<br>Asn<br>395 | glà<br>dâð        | gtg<br>Val        | ttt<br>Phe        | ttc<br>Phe        | aat<br>Asn<br>400 | 1200 |
| ggt<br>Gly                                           | ata<br>Ile                                         | ata<br>Ile                                        | tta<br>Leu                                  | gga<br>Gly<br>405        | cct<br>Pro        | gac<br>Asp        | ggc<br>Gly        | aat<br>Asn        | gtc<br>Val<br>410 | tta<br>Leu        | atc<br>Ile        | cca<br>Pro        | gag<br>Glu        | atg<br>Met<br>415 | caa<br>Gln        | 1248 |
| tca<br>Ser                                           | tcc<br>Ser                                         | ctc<br>Leu                                        | ctc<br>Leu<br>420                           | cag<br>Gln               | caa<br>Gln        | cat<br>His        | atg<br>Met        | gag<br>Glu<br>425 | ttg<br>Leu        | ttg<br>Leu        | gaa<br>Glu        | tcc<br>Ser        | tcg<br>Ser<br>430 | gtt<br>Val        | atc<br>Ile        | 1296 |
| ccc<br>Pro                                           | ctt<br>Leu                                         | gtg<br>Val<br>435                                 | cac<br>His                                  | ccc<br>Pro               | ctg<br>Leu        | gca<br>Ala        | gac<br>Asp<br>440 | ccg<br>Pro        | tct<br>Ser        | acc<br>Thr        | gtt<br>Val        | ttc<br>Phe<br>445 | aag<br>Lys        | gac<br>Asp        | ggt<br>Gly        | 1344 |
| gac<br>Asp                                           | gag<br>Glu<br>450                                  | gct<br>Ala                                        | gag<br>Glu                                  | gat<br>Asp               | ttt<br>Phe        | gtt<br>Val<br>455 | gaa<br>Glu        | gtt<br>Val        | cac<br>His        | ctt<br>Leu        | ccc<br>Pro<br>460 | gat<br>Asp        | gtg<br>Val        | cac<br>His        | aat<br>Asn        | 1392 |
| cag<br>Gln<br>465                                    | gtc<br>Val                                         | tca<br>Ser                                        | gga<br>Gly                                  | gtt<br>Val               | gac<br>Asp<br>470 | ttg<br>Leu        | ggt<br>Gly        | ctc<br>Leu        | ccg<br>Pro        | aac<br>Asn<br>475 | tgg<br>Trp        | д1у<br>д9д        | aag<br>Lys        | tat<br>Tyr        | gta<br>Val<br>480 | 1440 |
| tta<br>Leu                                           | ctg<br>Leu                                         | agt<br>Ser                                        | gca<br>Ala                                  | 999<br>Gly<br>485        | gcc<br>Ala        | ctg<br>Leu        | act<br>Thr        | gcc<br>Ala        | ttg<br>Leu<br>490 | atg<br>Met        | ttg<br>Leu        | ata<br>Ile        | att<br>Ile        | ttc<br>Phe<br>495 | ctg<br>Leu        | 1488 |
| atg<br>Met                                           | aca<br>Thr                                         | tgt<br>Cys                                        | tgt<br>Cys<br>500                           | aga<br>Arg               | aga<br>Arg        | gtc<br>Val        | aat<br>Asn        | cga<br>Arg<br>505 | tca<br>Ser        | gaa<br>Glu        | cct<br>Pro        | acg<br>Thr        | caa<br>Gln<br>510 | cac<br>His        | aat<br>Asn        | 1536 |
| ctc<br>Leu                                           | aga<br>Arg                                         | 999<br>Gly<br>515                                 | aca<br>Thr                                  | 999<br>Gly               | agg<br>Arg        | gag<br>Glu        | gtg<br>Val<br>520 | tca<br>Ser        | gtc<br>Val        | act<br>Thr        | ccc<br>Pro        | caa<br>Gln<br>525 | agc<br>Ser        | 999<br>Gly        | aag<br>Lys        | 1584 |
| atc<br>Ile                                           | ata<br>Ile<br>530                                  | tct<br>Ser                                        | tca<br>Ser                                  | tgg<br>Trp               | gaa<br>Glu        | tca<br>Ser<br>535 | cac<br>His        | aag<br>Lys        | agt<br>Ser        | д1À<br>ааа        | ggt<br>Gly<br>540 | gag<br>Glu        | acc<br>Thr        | ata<br>Ile        | ctg<br>Leu        | 1632 |
| taa                                                  |                                                    |                                                   |                                             |                          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1635 |
| <210<br><211<br><211<br><211<br><211<br><220<br><221 | 0> SI<br>1> LI<br>2> TY<br>3> OF<br>0> FI<br>3> OT | EQ II<br>ENGTH<br>(PE :<br>RGANI<br>EATUH<br>THER | D NO<br>H: 54<br>PRT<br>ISM:<br>RE:<br>INF( | 52<br>44<br>Art:<br>ORMA | ific:<br>FION     | ial s<br>: Syn    | Seque             | ence              | Const             | ruci              | -                 |                   |                   |                   |                   |      |
| <40                                                  | )> SI                                              | EQUEI                                             | ICE :                                       | 52                       |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |
| Met<br>1                                             | Val                                                | Pro                                               | Gln                                         | Ala<br>5                 | Leu               | Leu               | Phe               | Val               | Pro<br>10         | Leu               | Leu               | Val               | Phe               | Pro<br>15         | Leu               |      |
| Сүв                                                  | Phe                                                | Gly                                               | Glu<br>20                                   | His                      | Trp               | Ser               | Tyr               | Gly<br>25         | Leu               | Arg               | Pro               | Gly               | Glu<br>30         | His               | Trp               |      |
| Ser                                                  | Tyr                                                | Gly<br>35                                         | Leu                                         | Arg                      | Pro               | Gly               | Lys<br>40         | Phe               | Pro               | Ile               | Tyr               | Thr<br>45         | Ile               | Pro               | Asp               |      |
| Lys                                                  | Leu<br>50                                          | Gly                                               | Pro                                         | Trp                      | Ser               | Pro<br>55         | Ile               | Asp               | Ile               | His               | His<br>60         | Leu               | Ser               | Суз               | Pro               |      |

| Ash Ash Leu Val Val $\frac{1}{70}$ Ash Qiu $\frac{1}{70}$ Ash Qiu $\frac{1}{75}$ Ash Leu Set Gly $\frac{1}{90}$ Ser Tyr Met Glu Leu Lyo       Val Gly Tyr Ile Leu Ala Ile Los Val $\frac{1}{90}$ Glu Tyr Ile Leu Ala Ile Los Val $\frac{1}{95}$ Gly Phe Thr $\frac{1}{100}$ Gly Tyr Ile Lu Ala Glu Thr $\frac{1}{100}$ Gly Ash $\frac{1}{90}$ Glu Ala Glu Thr $\frac{1}{100}$ Thr Ash $\frac{1}{100}$ Phe Val Gly Tyr Val Thr Thr Thr Thr Phe Los Ash Lou Ash $\frac{1}{100}$ Gly Ash $\frac{1}{100}$ Free Ash $\frac{1}{100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ser Tyr Met Glu Leu Lys Val Gly Tyr 11e Lu Ala IIe Lys Val Asn 95<br>Gly Phe Th Cys Thr Gly Val Val Thr 105 Glu Ala Glu Thr Tyr Thr Aran 110<br>Phe Val Gly Tyr Val Thr Thr Thr Phe Lys Arg Lys His Phe Arg Pro<br>115 Thr Pro Aap Ala Cys Arg Ala Ala Tyr Asn Tr Lys Met Ala Gly Arg Trp<br>130 Thr Ya Ang Ala Cys Arg Ala Ala Tyr Asn Tr Lys Met Ala Gly Arg Trp<br>140 Thr Val Lys Thr Thr Lys Glu Ser Leu Val IIe IIe Ser Pro<br>155 Thr Val Lys Thr Thr Lys Glu Ser Leu Val IIe IIe Ser Arg Val<br>165 Thr An Ang Ser Gly Val Ala Var Ser Gly Val IIe IIe Ser Arg Val<br>165 Thr Ann His Asp Tyr Thr 11e Trp Met Pro Glu Ann Pro Arg Leu<br>270 Ser Thr Ann His Asp Tyr Thr IIe Trp Met Pro Glu Ann Pro Arg Leu<br>271 Thr Cys 275 Glu Glu Thr Trp Val Asp Arg Ser Leu Val Ser Ser Thr Tyr Cys<br>282 Thr Ann His Asp Tyr Thr IIe Trp Met Pro Glu Ann Pro Arg Leu<br>272 Ser Val Ala Asp Glu Thr Cys Gly Phe Val Asp Glu Arg Gly Leu Tyr Lys<br>194 Gly Ser Glu Thr Cys Gly Phe Val Asp Glu Arg Gly Leu Tyr Lys<br>275 Ser Leu Lys Glu Thr Cys Gly Phe Val Asp Glu Arg Gly Leu Tyr Lys<br>276 Thr Ann His Asp Tyr Thr Val Ser Met Gln Thr Ser Asn Glu Thr<br>276 275 Thr Cys Pro Pro Asp Lys Leu Lys Leu Cys Glu Val Leu Gly Leu<br>276 Arg Leu Met Asp Gly Thr Trp Val Glu Ser Met Gln Thr Ser Asn Glu Thr<br>276 275 Thr Cys Pro Pro Asp Lys Leu Ala Asn Leu His Asp Phe Arg Ser<br>379 Glu IIe Glu His Leu Val Val Glu Glu Leu Val Arg Lys Arg Glu<br>370 Glu Cys Leu Asp Ala Leu Glu Ser IIe Met Thr Thr Lys Ser Val Ser<br>370 Asg Arg Leu Ser His Leu Arg Lys Leu Val Pro Gly Phe Gly Leu<br>375 The Arg Arg Leu Glu Thr Trp Ang Glu IIe Leu Pro Ser Lys Glu Asg Ala His Tyr<br>375 Thr IIe Phe Asn Lys Thr Leu Met Glu Ala Asp Ala His Tyr<br>376 Thr Glu Glu Thr Trp Ang Glu Jan Ala Chu His Asp Gly Val Phe Phe Asg<br>376 Thr Ala Glu Arg Cys His Pro His Val Asg Gly Cal His Asg<br>478 Val Gly Gly Arg Cys His Pro His Val Asg Gly Val Phe Phe Asg<br>379 Glu IIe Glu Arg Cys His Pro His Val Asg Gly Val Phe Phe Asg<br>370 Glu Val His Arg Cys His Pro His Val Asg Gly Val Phe Phe Asg<br>370 Glu Val His His Pro Leu Ala Asg Pro Ser Thr Val Phe Lys Asg Cys<br>473 T |
| Gly Phe       Thr       Gyo Thr       Gly Val       Val       Thr       Thr<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pie       Val       fir       fir<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ind       And       Yad       And       Yad       Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Leu       Arg       Thr       Val       Lyg       Thr       Lyg       Thr       Arg       Ser       Leu       Ala       Aep       Leu       Aep       Tyr       Aep       Arg       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ser       Val       Ala       Asp       Leu       Asp       Pro       Tyr       Asp       Arg       Ser       Leu       His       Ser       Arg       Val         Phe       Pro       Ser       Gly       Val       Ala       Val       Ala       Val       Ser       Ser       Thr       Tyr       Cyr       Ser       Cly       Val       Ala       Val       Ser       Ser       Thr       Tyr       Cyr       Ser       Cly       Na       Na       Ser       Cyr       Asp       Tyr       Tile       Tyr       Ne       Pro       Clu       Asp       Clu       Asp       Ala       Asp       Clu       Asp       Clu       Asp       Gly       Asp       Glu       Asp       Clu       Asp       Clu       Asp       Glu       As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Phe       Pro       Ser       Gly       Val       Ala       Val       Ser       Ser       Thr       Tyr       Cyr         Ser       Thr       Aon       His       Aop       Tyr       Thr       Lie       Tyr       Met       Pro       Glu       Aon       Pro       Aus       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ser       Intr       Aen       His       Aep       Tyr       Thr       Ile       Tyr       Met       Pro       Glu       Aen       Aes       220         Gly       Met       Ser       Cys       Aep       Ile       Thr       Aen       Ser       Arg       Gly       Lys       Aeg       Gly       Lue       Tyr       Lys       Gly       Aes       Cyr       Gly       Aes       Cyr       Gly       Val       Lyr       Cyr       Ror       Ror       Asp       Lyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 223       Net       Ser       Cys       Asp       11e       Phe       Van       Asp       Calu       Arg       Calu       Tyr       Lyr       Calu       Tyr       Cyr       Calu       Tyr       Cyr       Calu       Tyr       Calu       Tyr       Calu       Tyr       Calu       Tyr       Calu       Tyr       Calu       Tyr       Calu       Calu       Tyr       Calu       Calu       Tyr       Calu       Calu       Calu       Calu       Tyr       Calu       Calu       Calu       Calu       Calu       Calu       Calu       Tyr       Calu       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Lys       Gly       Ser       Glu       Thr       Cys       Gly       Phe       Val       App       Glu       Arg       Gly       Leu       Tyr       Lyr       Lyr       Cys       Gly       Val       Leu       Cys       Gly       Val       Cys       Gly       Val       Cys       Gly       Val       Cys       Gly       Tyr       Cys       Cys       Gly       Tyr       Cys       Arg       Cys       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ser       Leu       Lys       Gly       Al       Cys       Lys       Luc       Lys       Luc       Cys       Gly       Val       Caro         Arg       Leu       Met       Asp       Gly       Th       Trp       Val       Ser       Met       Gln       Thr       Ses       Met       Gln       Thr       Ses       Met       Asp       Glu       Thr         Lys       Trp       Cys       Pro       Pro       Pro       Pro       Lys       Lys       Luc       Asp       Asp       Pro       Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Arg       Leu       Met       Asp       Gly       Thr       Trp       Val       Ser       Met       Gln       Thr       Ser       Asn       Glu       Thr         Lys       Trp       Cys       Pro       Pro       Asp       Lys       Leu       Val       Asn       Leu       His       Asp       Asp       Asn       Lu       His       Asp       Asp       Ser         Arg       Glu       Ile       Glu       His       Leu       Val       Val       Glu       Glu       Lus       Arg       Lys       Arg       Cus       Asp       Ala       Leu       Glu       Ser       Ile       Mat       Thr       Lus       Arg       Lys       Ser       Val       Ser       Ile       Mat       Ser       Val       Ser       Val       Arg       Lys       Ser       Val       Ser       Val       Arg       Lys       Safe       Val       Arg       Lys       Safe       Val       His       Yrr       Safe       Ile       Phe       Asp       Safe       Ile       Asp       Ala       Asp       Ala       Asp       Ala       Asp       Ala       Asp       Ala       Asp <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LysTrp<br>290CysProAspLysLeuValAsnLeuHisAspPheArgSerAspGluIleGluGluHisLuuValValGluGluLeuArgArgArgGlu310GluCysLeuAspAlaLeuGluGluGluGluGluGluSerMagSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerValSerSerValSerSerSerSerValSer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Asp<br>305GluIleGluHisLeuValValGluGluSitsValArgLysArgArgSitsGluCysLeuAspAlaLeuGluSerIleMetSitsThrThrLysSerValSerPheArgArgLeuSerHisLeuArgLysLeuYalProGluPhoGlySerAlaTyrThrIlePhoAsnLysThrLeuMetGluAlaAspAlaHisTyrAlaTyrThrThrPhoAsnLysThrIntoMetGluAngAspAlaHisTyrAlaTyrThrThrIntoPhoAsnLysThrIntoMetGluAngAspAlaHisTyrAlaTyrThrThrNrAsnGluThrNrAsnSitsTyrSitsTyrAlaGluGluThrTyrAsnGluIntoNrSitsThrNrSitsTyrSitsAlaGluGluThrTyrAsnGluThrNrSitsTyrSitsTyrSitsTyrAsnGluGluAsnGluAsnGluAsnSitsThrNrAsnSitsTyrAsnAsnGluG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GluCysLeuAspAlaLeuGluSerI.eMetThrLysSerValSerPheArgArgLeuSerHisLeuArgLysLeuValProGlyPhoGlyLysAlaTyrThrThrArgArgLuSerLysMetGluAlaAspAlaHisTyrAlaTyrThrThrIlePhoAsnLysThrMetGluAlaAspAlaHisTyrArgSerValGluThrTrpAsnGluIleLeuProSerLysGlyValPhoAsn385ValGlyArgCysHisProHisValAsnAsnSerLysAsn385ValGlyArgCysHisProHisValAsnSerLysAsnAsn385ValGlyArgCysHisProHisValAsnSerLysAsnAsnAsnSerAsnAsnAsnSerAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PheArgArgLeuSerHisLeuArgLysJusValProGlyPheGlyLysAlaTyrThrJ1ePheAsnLysThrGluMetGluAlaAspAlaHisTyrLysSerValGluThrTrpAsnGluIleLeuMetGluAlaAspAlaHisTyrLysSerValGluThrTrpAsnGluIleLeuProSerLysGlyVysLeuArgValGlyGlyArgCysHisProHisValAsnGlyValPhePheAsn385ValGlyGlyArgCysHisProHisValAsnSerLysGlyCysLeu370ValGlyArgCysHisProHisValAsnSerLysGlyCysLeu385ValGlyArgCysHisProHisNaSerGlyValPheAsn385ValGlyGlyArgCysAsnGlyAsnValLeuHisPheAsn385ValGlyGlyAsnGlyAsnValLeuHisNaAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsnAsn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AlaTyrThrIlePheAsnLysThrMetMetGluAlaAspAlaHisTyrLysSerValGluThrTrpAsnGluIleLeuProSerLysGlyGlyCysLeuArgValGlyGlyArgCysHisProHisValAsnGlyValPhePheAsn385ValGlyGlyArgCysHisProHisValAsnGlyValPhePheAsn385ValIleLueGlyArgCysHisProHisValAsnGlyValPhePheAsn385ValIleLueGlyArgCysHisProHisValAsnSasnGlyValPheAsnAsn385ValGlyAlaGlyProAspGlyAsnValLeuIleIlePheAsnAsn385ValGlyGlyProAspGlyAspClyAsnValLeuIleIlePhoAsnAsn386ValAlaProAspProAspClyAspClyAspClyIleIleAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspAspA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LysSerValGluThrTrpAsnGluIleLeuProSerLysGlyCysLeuArgValGlyGlyArgCysHisProHisValAsnGlyValPhePheAsn385ValIleGlyGlyArgCysHisProHisValAsnGlyValPhePheAsn385ValIleGlyGlyArgCysFroAspGlyAsnValLeuIleProGluMetGlnGlyIleIleLeuGlnGlnHisMetGluLeuLeuGluSerSerValHisProAspChuValHisProLeuAlaAspProSerThrValPheLysAspGlyAspGluAlaGluAspPheValGluValHisLeuProAspGlyAspGlyAspGluAlaGluAspPheValGluValHisLeuAspAspValAspAspGluAlaGluAspPheValHisLeuPhoAspValHisAspAspGluAlaGluAspPheValHisLeuPhoAspValAspAspGluAlaGlu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Arg Val Gly Gly Arg Cys His Pro His Val Asn Gly Val Phe Phe Asn<br>395Asn Gly Val Phe Phe Asn<br>400Gly Ile Ile Leu Gly Pro Asp Gly Asn Val Leu Ile Pro Glu Met Gln<br>405Ile Asn Val Leu Ile Pro Glu Met Gln<br>415Ser Ser Leu Leu Gln Gln His Met Glu Leu Leu Glu Ser Ser Val Ile<br>420Ile Asp Pro Ser Thr Val Phe Lys Asp Gly<br>445Pro Leu Val His Pro Leu Ala Asp Pro Ser Thr Val Phe Lys Asp Gly<br>450Pro Asp Phe Val Glu Val His Leu Pro Asp Val His Asn<br>460Gln Val Ser Gly Val Asp Leu Gly Leu Pro Asn Trp Gly Lys Tyr Val<br>480Leu Leu Ser Ala Gly Ala Leu Thr Ala Leu Met Leu Ile Ile Phe Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Gly Ile Ile Leu Gly Pro Asp Gly Asn Val Leu Ile Pro Glu Met Gln<br>410Ser Ser Leu Leu Gln Gln His Met Glu Leu Leu Glu Ser Ser Val Ile<br>420Pro Leu Val His Pro Leu Ala Asp Pro Ser Thr Val Phe Lys Asp Gly<br>445Asp Glu Ala Glu Asp Phe Val Glu Val His Leu Pro Asp Val His Asn<br>450Gln Val Ser Gly Val Asp Leu Gly Leu Pro Asp Trp Gly Lys Tyr Val<br>480Leu Leu Ser Ala Gly Ala Leu Thr Ala Leu Met Leu Ile Ile Phe Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SerSerLeuLeuGlnHisMetGluLeuLeuGluSerSerValIleProLeuValHisProLeuAlaAspProSerThrValPheLysAspGlyAspGluAlaGluAspPheValGluValHisLeuProAspValHisAspGlnValSerGlyValAspLeuGlyLeuProAsnTrpGlyLysTyrVal465ValSerAlaGlyAlaLeuThrAlaLeuMetLeuIlePheLeuLeuLeuSerAlaGlyAlaLeuThrAlaLeuMetLeuIlePheLeu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Pro Leu Val His Pro Leu Ala Asp Pro Ser Thr Val Phe Lys Asp Gly<br>435<br>Asp Glu Ala Glu Asp Phe Val Glu Val His Leu Pro Asp Val His Asn<br>450<br>Gln Val Ser Gly Val Asp Leu Gly Leu Pro Asn Trp Gly Lys Tyr Val<br>465<br>Leu Leu Ser Ala Gly Ala Leu Thr Ala Leu Met Leu Ile Ile Phe Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Asp Glu Ala Glu Asp Phe Val Glu Val His Leu Pro Asp Val His Asn<br>450<br>Gln Val Ser Gly Val Asp Leu Gly Leu Pro Asn Trp Gly Lys Tyr Val<br>465<br>Leu Leu Ser Ala Gly Ala Leu Thr Ala Leu Met Leu Ile Ile Phe Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Gln Val Ser Gly Val Asp Leu Gly Leu Pro Asn Trp Gly Lys Tyr Val<br>465 470 475 480<br>Leu Leu Ser Ala Gly Ala Leu Thr Ala Leu Met Leu Ile Ile Phe Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Leu Leu Ser Ala Gly Ala Leu Thr Ala Leu Met Leu Ile Ile Phe Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 195 400 405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Met Thr Cys Cys Arg Arg Val Asn Arg Ser Glu Pro Thr Gln His Asn Leu Arg Gly Thr Gly Arg Glu Val Ser Val Thr Pro Gln Ser Gly Lys Ile Ile Ser Ser Trp Glu Ser His Lys Ser Gly Gly Glu Thr Ile Leu <210> SEQ ID NO 53 <211> LENGTH: 1605 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Recombinant Rabies Virus Glycoprotein GnRH-p3 <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)..(1605) <400> SEQUENCE: 53 atg gtt cct cag gct ctc ctg ttt gta ccc ctt ctg gtt ttt cca ttg Met Val Pro Gln Ala Leu Leu Phe Val Pro Leu Leu Val Phe Pro Leu tgt ttt ggg aaa ttc cct att tac acg ata cca gac aag ctt ggt ccc Cys Phe Gly Lys Phe Pro Ile Tyr Thr Ile Pro Asp Lys Leu Gly Pro 2.0 tgg agt ccg att gac ata cat cac ctc agc tgc cca aac aat ttg gta Trp Ser Pro Ile Asp Ile His His Leu Ser Cys Pro Asn Asn Leu Val gtg gag gac gaa gga tgc acc aac ctg tca ggg ttc tcc tac atg gaa Val Glu Asp Glu Gly Cys Thr Asn Leu Ser Gly Phe Ser Tyr Met Glu ctt aaa gtt gga tac atc tta gcc ata aaa gtg aac ggg ttc act tgc Leu Lys Val Gly Tyr Ile Leu Ala Ile Lys Val Asn Gly Phe Thr Cys aca ggc gtt gtg acg gag gct gaa acc tac act aac ttc gtt ggt tat Thr Gly Val Val Thr Glu Ala Glu Thr Tyr Thr Asn Phe Val Gly Tyr gtc aca acc acg ttc aaa aga aag cat ttc cgc cca aca cca gat gca Val Thr Thr Thr Phe Lys Arg Lys His Phe Arg Pro Thr Pro Asp Ala tgt aga gcc gcg tac aac tgg aag atg gcc ggt gac ccc aga tat gaa Cys Arg Ala Ala Tyr Asn Trp Lys Met Ala Gly Asp Pro Arg Tyr Glu 115 120 125 gag tet eta cae aat eeg tae eet gae tae ege tgg ett ega aet gta Glu Ser Leu His Asn Pro Tyr Pro Asp Tyr Arg Trp Leu Arg Thr Val aaa acc acc aag gag tct ctc gtt atc ata tct cca agt gtg gca gat Lys Thr Thr Lys Glu Ser Leu Val Ile Ile Ser Pro Ser Val Ala Asp ttg gac cca tat gac aga tcc ctt cac tcg agg gtc ttc cct agc ggg Leu Asp Pro Tyr Asp Arg Ser Leu His Ser Arg Val Phe Pro Ser Gly aag t<br/>ge tca gga gta gcg gtg tct tct acc tac tgc tcc act a<br/>ac cac Lys Cys Ser Gly Val Ala Val Ser Ser Thr Tyr Cys Ser Thr As<br/>n His  $\ensuremath{\mathsf{Ser}}$ gat tac acc att tgg atg ccc gag aat ccg aga cta ggg atg tct tgt Asp Tyr Thr Ile Trp Met Pro Glu Asn Pro Arg Leu Gly Met Ser Cys 2.05 gac att ttt acc aat agt aga ggg aag aga gca tcc aaa gaa cac tgg Asp Ile Phe Thr Asn Ser Arg Gly Lys Arg Ala Ser Lys Glu His Trp age tae ggt ttg aga eee ggg ggg agt gag aet tge gge ttt gta gat 

#### -continued

| Ser<br>225        | Tyr               | Gly                    | Leu               | Arg               | Pro<br>230        | Gly               | Gly               | Ser               | Glu               | Thr<br>235        | Суз               | Gly               | Phe               | Val               | Asp<br>240        |      |  |
|-------------------|-------------------|------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|--|
| gaa<br>Glu        | aga<br>Arg        | ggc<br>Gly             | cta<br>Leu        | tat<br>Tyr<br>245 | aag<br>Lys        | tct<br>Ser        | tta<br>Leu        | aaa<br>Lys        | gga<br>Gly<br>250 | gca<br>Ala        | tgc<br>Cys        | aaa<br>Lys        | ctc<br>Leu        | aag<br>Lys<br>255 | tta<br>Leu        | 768  |  |
| tgt<br>Cys        | gga<br>Gly        | gtt<br>Val             | cta<br>Leu<br>260 | gga<br>Gly        | ctt<br>Leu        | aga<br>Arg        | ctt<br>Leu        | atg<br>Met<br>265 | gat<br>Asp        | gga<br>Gly        | aca<br>Thr        | tgg<br>Trp        | gtc<br>Val<br>270 | tcg<br>Ser        | atg<br>Met        | 816  |  |
| caa<br>Gln        | aca<br>Thr        | tca<br>Ser<br>275      | aat<br>Asn        | gaa<br>Glu        | acc<br>Thr        | aaa<br>Lys        | tgg<br>Trp<br>280 | tgc<br>Cys        | cct<br>Pro        | ccc<br>Pro        | gat<br>Asp        | aag<br>Lys<br>285 | ttg<br>Leu        | gtg<br>Val        | aac<br>Asn        | 864  |  |
| ctg<br>Leu        | cac<br>His<br>290 | gac<br>Asp             | ttt<br>Phe        | cgc<br>Arg        | tca<br>Ser        | gac<br>Asp<br>295 | gaa<br>Glu        | att<br>Ile        | gag<br>Glu        | cac<br>His        | ctt<br>Leu<br>300 | gtt<br>Val        | gta<br>Val        | gag<br>Glu        | gag<br>Glu        | 912  |  |
| ttg<br>Leu<br>305 | gtc<br>Val        | agg<br>Arg             | aag<br>Lys        | aga<br>Arg        | gag<br>Glu<br>310 | gag<br>Glu        | tgt<br>Cys        | ctg<br>Leu        | gat<br>Asp        | gca<br>Ala<br>315 | cta<br>Leu        | gag<br>Glu        | tcc<br>Ser        | atc<br>Ile        | atg<br>Met<br>320 | 960  |  |
| aca<br>Thr        | acc<br>Thr        | aag<br>Lys             | tca<br>Ser        | gtg<br>Val<br>325 | agt<br>Ser        | ttc<br>Phe        | aga<br>Arg        | cgt<br>Arg        | ctc<br>Leu<br>330 | agt<br>Ser        | cat<br>His        | tta<br>Leu        | aga<br>Arg        | aaa<br>Lys<br>335 | ctt<br>Leu        | 1008 |  |
| gtc<br>Val        | cct<br>Pro        | д1 <sup>у</sup><br>ааа | ttt<br>Phe<br>340 | gga<br>Gly        | aaa<br>Lys        | gca<br>Ala        | tat<br>Tyr        | acc<br>Thr<br>345 | ata<br>Ile        | ttc<br>Phe        | aac<br>Asn        | aag<br>Lys        | acc<br>Thr<br>350 | ttg<br>Leu        | atg<br>Met        | 1056 |  |
| gaa<br>Glu        | gcc<br>Ala        | gat<br>Asp<br>355      | gct<br>Ala        | cac<br>His        | tac<br>Tyr        | aag<br>Lys        | tca<br>Ser<br>360 | gtc<br>Val        | gaa<br>Glu        | act<br>Thr        | tgg<br>Trp        | aat<br>Asn<br>365 | gag<br>Glu        | atc<br>Ile        | ctc<br>Leu        | 1104 |  |
| cct<br>Pro        | tca<br>Ser<br>370 | aaa<br>Lys             | glà<br>daa        | tgt<br>Cys        | tta<br>Leu        | aga<br>Arg<br>375 | gtt<br>Val        | gly<br>ggg        | gly<br>ggg        | agg<br>Arg        | tgt<br>Cys<br>380 | cat<br>His        | cct<br>Pro        | cat<br>His        | gtg<br>Val        | 1152 |  |
| aac<br>Asn<br>385 | д1у<br>999        | gtg<br>Val             | ttt<br>Phe        | ttc<br>Phe        | aat<br>Asn<br>390 | ggt<br>Gly        | ata<br>Ile        | ata<br>Ile        | tta<br>Leu        | gga<br>Gly<br>395 | cct<br>Pro        | gac<br>Asp        | ggc<br>Gly        | aat<br>Asn        | gtc<br>Val<br>400 | 1200 |  |
| tta<br>Leu        | atc<br>Ile        | cca<br>Pro             | gag<br>Glu        | atg<br>Met<br>405 | caa<br>Gln        | tca<br>Ser        | tcc<br>Ser        | ctc<br>Leu        | ctc<br>Leu<br>410 | cag<br>Gln        | caa<br>Gln        | cat<br>His        | atg<br>Met        | gag<br>Glu<br>415 | ttg<br>Leu        | 1248 |  |
| ttg<br>Leu        | gaa<br>Glu        | tcc<br>Ser             | tcg<br>Ser<br>420 | gtt<br>Val        | atc<br>Ile        | ccc<br>Pro        | ctt<br>Leu        | gtg<br>Val<br>425 | cac<br>His        | ccc<br>Pro        | ctg<br>Leu        | gca<br>Ala        | gac<br>Asp<br>430 | ccg<br>Pro        | tct<br>Ser        | 1296 |  |
| acc<br>Thr        | gtt<br>Val        | ttc<br>Phe<br>435      | aag<br>Lys        | gac<br>Asp        | ggt<br>Gly        | gac<br>Asp        | gag<br>Glu<br>440 | gct<br>Ala        | gag<br>Glu        | gat<br>Asp        | ttt<br>Phe        | gtt<br>Val<br>445 | gaa<br>Glu        | gtt<br>Val        | cac<br>His        | 1344 |  |
| ctt<br>Leu        | ccc<br>Pro<br>450 | gat<br>Asp             | gtg<br>Val        | cac<br>His        | aat<br>Asn        | cag<br>Gln<br>455 | gtc<br>Val        | tca<br>Ser        | gga<br>Gly        | gtt<br>Val        | gac<br>Asp<br>460 | ttg<br>Leu        | ggt<br>Gly        | ctc<br>Leu        | ccg<br>Pro        | 1392 |  |
| aac<br>Asn<br>465 | tgg<br>Trp        | д1У<br>даа             | aag<br>Lys        | tat<br>Tyr        | gta<br>Val<br>470 | tta<br>Leu        | ctg<br>Leu        | agt<br>Ser        | gca<br>Ala        | 999<br>Gly<br>475 | gcc<br>Ala        | ctg<br>Leu        | act<br>Thr        | gcc<br>Ala        | ttg<br>Leu<br>480 | 1440 |  |
| atg<br>Met        | ttg<br>Leu        | ata<br>Ile             | att<br>Ile        | ttc<br>Phe<br>485 | ctg<br>Leu        | atg<br>Met        | aca<br>Thr        | tgt<br>Cys        | tgt<br>Cys<br>490 | aga<br>Arg        | aga<br>Arg        | gtc<br>Val        | aat<br>Asn        | cga<br>Arg<br>495 | tca<br>Ser        | 1488 |  |
| gaa<br>Glu        | cct<br>Pro        | acg<br>Thr             | caa<br>Gln<br>500 | cac<br>His        | aat<br>Asn        | ctc<br>Leu        | aga<br>Arg        | 999<br>Gly<br>505 | aca<br>Thr        | glÀ<br>aaa        | agg<br>Arg        | gag<br>Glu        | gtg<br>Val<br>510 | tca<br>Ser        | gtc<br>Val        | 1536 |  |
| act               | ccc               | caa                    | agc               | ggg               | aag               | atc               | ata               | tct               | tca               | tgg               | gaa               | tca               | cac               | aag               | agt               | 1584 |  |

ac Thr Pro Gln Ser Gly Lys Ile Ile Ser Ser Trp Glu Ser His Lys Ser515520525 ggg ggt gag acc ata ctg taa Gly Gly Glu Thr Ile Leu 530
| <210> SEQ ID NO 54<br><211> LENGTH: 534                        |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
|----------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| <212> TYPE: PRT<br><213> ORGANISM: Artificial Sequence         |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| <220> FEATURE:<br><223> OTHER INFORMATION: Synthetic Construct |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| <400> SEQUENCE: 54                                             |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1                                                       | Val        | Pro        | Gln        | Ala<br>5   | Leu        | Leu        | Phe        | Val        | Pro<br>10  | Leu        | Leu        | Val        | Phe        | Pro<br>15  | Leu        |
| Суз                                                            | Phe        | Gly        | Lуз<br>20  | Phe        | Pro        | Ile        | Tyr        | Thr<br>25  | Ile        | Pro        | Asp        | Lys        | Leu<br>30  | Gly        | Pro        |
| Trp                                                            | Ser        | Pro<br>35  | Ile        | Asp        | Ile        | His        | His<br>40  | Leu        | Ser        | Суз        | Pro        | Asn<br>45  | Asn        | Leu        | Val        |
| Val                                                            | Glu<br>50  | Asp        | Glu        | Gly        | Суз        | Thr<br>55  | Asn        | Leu        | Ser        | Gly        | Phe<br>60  | Ser        | Tyr        | Met        | Glu        |
| Leu<br>65                                                      | Lys        | Val        | Gly        | Tyr        | Ile<br>70  | Leu        | Ala        | Ile        | Lys        | Val<br>75  | Asn        | Gly        | Phe        | Thr        | Сув<br>80  |
| Thr                                                            | Gly        | Val        | Val        | Thr<br>85  | Glu        | Ala        | Glu        | Thr        | Tyr<br>90  | Thr        | Asn        | Phe        | Val        | Gly<br>95  | Tyr        |
| Val                                                            | Thr        | Thr        | Thr<br>100 | Phe        | Lys        | Arg        | Lys        | His<br>105 | Phe        | Arg        | Pro        | Thr        | Pro<br>110 | Aap        | Ala        |
| Суз                                                            | Arg        | Ala<br>115 | Ala        | Tyr        | Asn        | Trp        | Lys<br>120 | Met        | Ala        | Gly        | Asp        | Pro<br>125 | Arg        | Tyr        | Glu        |
| Glu                                                            | Ser<br>130 | Leu        | His        | Asn        | Pro        | Tyr<br>135 | Pro        | Asp        | Tyr        | Arg        | Trp<br>140 | Leu        | Arg        | Thr        | Val        |
| Lys<br>145                                                     | Thr        | Thr        | Lys        | Glu        | Ser<br>150 | Leu        | Val        | Ile        | Ile        | Ser<br>155 | Pro        | Ser        | Val        | Ala        | Asp<br>160 |
| Leu                                                            | Aab        | Pro        | Tyr        | Asp<br>165 | Arg        | Ser        | Leu        | His        | Ser<br>170 | Arg        | Val        | Phe        | Pro        | Ser<br>175 | Gly        |
| Lys                                                            | Суз        | Ser        | Gly<br>180 | Val        | Ala        | Val        | Ser        | Ser<br>185 | Thr        | Tyr        | Суз        | Ser        | Thr<br>190 | Asn        | His        |
| Asp                                                            | Tyr        | Thr<br>195 | Ile        | Trp        | Met        | Pro        | Glu<br>200 | Asn        | Pro        | Arg        | Leu        | Gly<br>205 | Met        | Ser        | Сув        |
| Asp                                                            | Ile<br>210 | Phe        | Thr        | Asn        | Ser        | Arg<br>215 | Gly        | Lys        | Arg        | Ala        | Ser<br>220 | Lys        | Glu        | His        | Trp        |
| Ser<br>225                                                     | Tyr        | Gly        | Leu        | Arg        | Pro<br>230 | Gly        | Gly        | Ser        | Glu        | Thr<br>235 | Cya        | Gly        | Phe        | Val        | Asp<br>240 |
| Glu                                                            | Arg        | Gly        | Leu        | Tyr<br>245 | Lys        | Ser        | Leu        | Lys        | Gly<br>250 | Ala        | Сүз        | Lys        | Leu        | Lys<br>255 | Leu        |
| Сүз                                                            | Gly        | Val        | Leu<br>260 | Gly        | Leu        | Arg        | Leu        | Met<br>265 | Asp        | Gly        | Thr        | Trp        | Val<br>270 | Ser        | Met        |
| Gln                                                            | Thr        | Ser<br>275 | Asn        | Glu        | Thr        | Lys        | Trp<br>280 | Суз        | Pro        | Pro        | Asp        | Lys<br>285 | Leu        | Val        | Asn        |
| Leu                                                            | His<br>290 | Asp        | Phe        | Arg        | Ser        | Asp<br>295 | Glu        | Ile        | Glu        | His        | Leu<br>300 | Val        | Val        | Glu        | Glu        |
| Leu<br>305                                                     | Val        | Arg        | Lys        | Arg        | Glu<br>310 | Glu        | Cys        | Leu        | Asp        | Ala<br>315 | Leu        | Glu        | Ser        | Ile        | Met<br>320 |
| Thr                                                            | Thr        | Lys        | Ser        | Val<br>325 | Ser        | Phe        | Arg        | Arg        | Leu<br>330 | Ser        | His        | Leu        | Arg        | Lys<br>335 | Leu        |
| Val                                                            | Pro        | Gly        | Phe<br>340 | Gly        | Lys        | Ala        | Tyr        | Thr<br>345 | Ile        | Phe        | Asn        | Lys        | Thr<br>350 | Leu        | Met        |
| Glu                                                            | Ala        | Asp<br>355 | Ala        | His        | Tyr        | Lys        | Ser<br>360 | Val        | Glu        | Thr        | Trp        | Asn<br>365 | Glu        | Ile        | Leu        |
| Pro                                                            | Ser<br>370 | Lys        | Gly        | Суз        | Leu        | Arg<br>375 | Val        | Gly        | Gly        | Arg        | Cys<br>380 | His        | Pro        | His        | Val        |

## -continued

Asn Gly Val Phe Phe Asn Gly Ile Ile Leu Gly Pro Asp Gly Asn Val 385 390 395 400 Leu Ile Pro Glu Met Gln Ser Ser Leu Leu Gln Gln His Met Glu Leu 405 410 415 Leu Glu Ser Ser Val Ile Pro Leu Val His Pro Leu Ala Asp Pro Ser 420 425 430 Thr Val Phe Lys Asp Gly Asp Glu Ala Glu Asp Phe Val Glu Val His 440 445 435 Leu Pro Asp Val His Asn Gln Val Ser Gly Val Asp Leu Gly Leu Pro 455 450 460 Asn Trp Gly Lys Tyr Val Leu Leu Ser Ala Gly Ala Leu Thr Ala Leu 465 480 470 475 Met Leu Ile Ile Phe Leu Met Thr Cys Cys Arg Arg Val Asn Arg Ser 485 490 495 Glu Pro Thr Gln His Asn Leu Arg Gly Thr Gly Arg Glu Val Ser Val 500 505 510 Thr Pro Gln Ser Gly Lys Ile Ile Ser Ser Trp Glu Ser His Lys Ser 515 525 520 Gly Gly Glu Thr Ile Leu 530 <210> SEQ ID NO 55 <211> LENGTH: 11 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 55 Cys Glu His Trp Ser Tyr Gly Leu Arg Pro Gly 5 10 <210> SEQ ID NO 56 <211> LENGTH: 21 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 56 Cys Glu His Trp Ser Tyr Gly Leu Arg Pro Gly Glu His Trp Ser Tyr 10 15 1 5 Gly Leu Arg Pro Gly 20 <210> SEQ ID NO 57 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide <400> SEOUENCE: 57 gaacactgga gctacggttt gagacccggg gaacactgga gctacggttt gagacccggg <210> SEQ ID NO 58 <211> LENGTH: 69 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

<223> OTHER INFORMATION: Synthetic oligonucleotide

60

<sup>124</sup> 

-continued

126

| Solicinada                                                                                                                                                                |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <400> SEQUENCE: 58                                                                                                                                                        |     |
| ccaacctgtc agggttctcc gaacactgga gctacggttt gagacccggg tacatggaac                                                                                                         | 60  |
| ttaaagttg                                                                                                                                                                 | 69  |
| <210> SEQ ID NO 59<br><211> LENGTH: 39<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide  |     |
| <400> SEQUENCE: 59                                                                                                                                                        |     |
| ggagaaccet gaeaggttgg tgeateette gteeteeae                                                                                                                                | 39  |
| <210> SEQ ID NO 60<br><211> LENGTH: 100<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide |     |
| <400> SEQUENCE: 60                                                                                                                                                        |     |
| ggtttttcca ttgtgttttg gggaacactg gagctacggt ttgagacccg gggaacactg                                                                                                         | 60  |
| gagctacggt ttgagacccg ggaaattccc tatttacacg                                                                                                                               | 100 |
| <210> SEQ ID NO 61<br><211> LENGTH: 40<br><212> TYPE: DNA<br><213> ORGANISM: Artificial Sequence<br><220> FEATURE:<br><223> OTHER INFORMATION: Synthetic oligonucleotide  |     |
| <400> SEQUENCE: 61                                                                                                                                                        |     |
| cccaaaacac aatggaaaaa ccagaagggg tacaaacagg                                                                                                                               | 40  |
| <210> SEQ ID NO 62<br><211> LENGTH: 1319<br><212> TYPE: DNA<br><213> ORGANISM: Canis familiaris                                                                           |     |
| <400> SEQUENCE: 62                                                                                                                                                        |     |
| ggttaccagt gggagtgact ggaggagcta tggggctgag ctatggaatt ttcatctgtt                                                                                                         | 60  |
| ttetgeteet gggaggeatg gagetgtget geeeceagae eatetggeea aetgagaeet                                                                                                         | 120 |
| actacccatt gacatctagg cccccagtaa tggtggactg tctggagtcc cagctggtgg                                                                                                         | 180 |
| tcactgtcag caaagacctt tttggtactg ggaagctcat caggccagca gacctcaccc                                                                                                         | 240 |
| tgggtccaga gaactgtgag cccctggtct ccatggacac ggatgatgtg gtcaggtttg                                                                                                         | 300 |
| aggttggget geacgagtgt ggeageaggg tgeaggtgae tgaeaatget etggtgtaea                                                                                                         | 360 |
| gcacctteet gatecacage eccegeeetg egggeaacet gtecateetg agaactaate                                                                                                         | 420 |
| grgccgaggt ceccategag tgccactace ccaggcacag caatgtgage agecaggeca                                                                                                         | 480 |
| etatogonat setanogon gentanogon conservation etanogone etanogone etanogone                                                                                                | 540 |
| addacatado coacetocad detdaadtoo acactdocad coatatdoca etocoactt                                                                                                          | 660 |
| tigtagacca ctgtgtggcc acgetgacac cagateggaa tgeetteet                                                                                                                     | 720 |
| ttgtggatt ccatggtgt cttgtgatg dtgttgaag ttgtttta gettesaag                                                                                                                | 780 |
| cccccagacc caggecagag acteticagt tcacagtgg totttecac titgctaagg                                                                                                           | 840 |

## US 8,524,247 B2

| 1 | 27 | 7 |
|---|----|---|
|   | 2  | 1 |

## -continued

|                                                                                                                                                                                                                                                                                                                |                                                                                                    |                                                        |                                                   |                                |                   |                   |                   | -                 | con               | tin               | ued               |                   |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|--------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| actcaagaaa c                                                                                                                                                                                                                                                                                                   | acgate                                                                                             | tat a                                                  | tcac                                              | ctgco                          | c ato             | ctgaa             | aggt              | cact              | teeg              | gct q             | gacco             | gagtee            | 900  |
| cagaccagct a                                                                                                                                                                                                                                                                                                   | aacaaaq                                                                                            | gct t                                                  | gttc                                              | cttca                          | a tca             | aagto             | ctac              | caa               | gaggi             | tcc 1             | tacco             | tgtag             | 960  |
| aaggctcggc t                                                                                                                                                                                                                                                                                                   | gatatt                                                                                             | tgt c                                                  | gctgi                                             | ttgta                          | a aca             | aaago             | gcag              | ctg               | tggc              | ctt «             | ccago             | gccggt            | 1020 |
| ccaggaggct g                                                                                                                                                                                                                                                                                                   | Jtcccaco                                                                                           | cta g                                                  | agaga                                             | agggt                          | gg g              | cgcaç             | ggtc              | tgt               | ttcc              | cac a             | actaç             | gaaatc            | 1080 |
| gcaggcacgt g                                                                                                                                                                                                                                                                                                   | jactgaaq                                                                                           | gaa g                                                  | caga                                              | gatca                          | a cc              | gtggg             | ggcc              | tct               | gatci             | ttc (             | ctggg             | gaaagg            | 1140 |
| ctagtgatca t                                                                                                                                                                                                                                                                                                   | ggtataq                                                                                            | gag g                                                  | ggtca                                             | aacct                          | c ct              | cctca             | acac              | ctc               | tgtga             | atg 1             | ttggg             | gcttag            | 1200 |
| gcctggccac g                                                                                                                                                                                                                                                                                                   | ıgtggtat                                                                                           | tee e                                                  | tgaci                                             | tctaç                          | g cta             | accat             | tgt               | cct               | ggtc              | stt               | gccaa             | agaggc            | 1260 |
| atcgtactgc t                                                                                                                                                                                                                                                                                                   | teccaco                                                                                            | cct g                                                  | tgata                                             | atgco                          | c ct              | gcato             | ctgt              | ctc               | ccaat             | taa a             | agaat             | aagc              | 1319 |
| <pre>&lt;210&gt; SEQ II<br/>&lt;211&gt; LENGTH<br/>&lt;212&gt; TYPE:<br/>&lt;213&gt; ORGANI<br/>&lt;220&gt; FEATUF<br/>&lt;223&gt; OTHER<br/>&lt;220&gt; FEATUF<br/>&lt;221&gt; NAME/F<br/>&lt;222&gt; LOCATI<br/>&lt;220&gt; FEATUF<br/>&lt;221&gt; NAME/F<br/>&lt;222&gt; LOCATI<br/>&lt;220&gt; CTHER</pre> | ) NO 63<br>I: 1602<br>DNA<br>SM: Art<br>E:<br>INFORM<br>E:<br>CON: (1)<br>E:<br>CON: (1)<br>INFORM | tific<br>ATION<br>S<br>)(1<br>sc_fea<br>D54).<br>ATION | ial :<br>: Syn<br>602)<br>ature<br>.(10!<br>: n : | Seque<br>nthet<br>56)<br>is a, | ence<br>cic (     | Const<br>g, c     | truct             | t                 |                   |                   |                   |                   |      |
| <400> SEQUEN                                                                                                                                                                                                                                                                                                   | ICE: 63                                                                                            |                                                        |                                                   |                                |                   |                   |                   |                   |                   |                   |                   |                   |      |
| atg gtt cct<br>Met Val Pro<br>1                                                                                                                                                                                                                                                                                | cag gct<br>Gln Ala<br>5                                                                            | t ctc<br>a Leu                                         | ctg<br>Leu                                        | ttt<br>Phe                     | gta<br>Val        | ccc<br>Pro<br>10  | ctt<br>Leu        | ctg<br>Leu        | gtt<br>Val        | ttt<br>Phe        | cca<br>Pro<br>15  | ttg<br>Leu        | 48   |
| tgt ttt ggg<br>Cys Phe Gly                                                                                                                                                                                                                                                                                     | aaa tto<br>Lys Phe<br>20                                                                           | c cct<br>e Pro                                         | att<br>Ile                                        | tac<br>Tyr                     | acg<br>Thr<br>25  | ata<br>Ile        | cca<br>Pro        | gac<br>Asp        | aag<br>Lys        | ctt<br>Leu<br>30  | ggt<br>Gly        | ccc<br>Pro        | 96   |
| tgg agc ccg<br>Trp Ser Pro<br>35                                                                                                                                                                                                                                                                               | att gad<br>Ile Asp                                                                                 | c ata<br>p Ile                                         | cat<br>His                                        | cac<br>His<br>40               | ctc<br>Leu        | agc<br>Ser        | tgc<br>Cys        | cca<br>Pro        | aac<br>Asn<br>45  | aat<br>Asn        | ttg<br>Leu        | gta<br>Val        | 144  |
| gtg gag gac<br>Val Glu Asp<br>50                                                                                                                                                                                                                                                                               | gaa gga<br>Glu Gly                                                                                 | a tgc<br>y Cys                                         | acc<br>Thr<br>55                                  | aac<br>Asn                     | ctg<br>Leu        | tca<br>Ser        | glà<br>aaa        | ttc<br>Phe<br>60  | tcc<br>Ser        | tac<br>Tyr        | atg<br>Met        | gaa<br>Glu        | 192  |
| ctt aaa gtt<br>Leu Lys Val<br>65                                                                                                                                                                                                                                                                               | gga tao<br>Gly Tyi                                                                                 | c atc<br>r Ile<br>70                                   | tta<br>Leu                                        | gcc<br>Ala                     | ata<br>Ile        | aaa<br>Lys        | atg<br>Met<br>75  | aac<br>Asn        | д1À<br>ааа        | ttc<br>Phe        | act<br>Thr        | tgc<br>Cys<br>80  | 240  |
| aca ggc gtt<br>Thr Gly Val                                                                                                                                                                                                                                                                                     | gtg aco<br>Val Thi<br>85                                                                           | g gag<br>r Glu                                         | gct<br>Ala                                        | gaa<br>Glu                     | acc<br>Thr        | tat<br>Tyr<br>90  | act<br>Thr        | aac<br>Asn        | ttc<br>Phe        | gtt<br>Val        | ggt<br>Gly<br>95  | tat<br>Tyr        | 288  |
| gtc aca acc<br>Val Thr Thr                                                                                                                                                                                                                                                                                     | acg tto<br>Thr Phe<br>100                                                                          | c aaa<br>e Lys                                         | aga<br>Arg                                        | aag<br>Lys                     | cat<br>His<br>105 | ttc<br>Phe        | cgc<br>Arg        | cca<br>Pro        | aca<br>Thr        | cca<br>Pro<br>110 | gat<br>Asp        | gca<br>Ala        | 336  |
| tgt aga gcc<br>Cys Arg Ala<br>115                                                                                                                                                                                                                                                                              | gcg tao<br>Ala Tyi                                                                                 | c aac<br>r Asn                                         | tgg<br>Trp                                        | aag<br>Lys<br>120              | atg<br>Met        | gcc<br>Ala        | ggt<br>Gly        | gac<br>Asp        | ccc<br>Pro<br>125 | aga<br>Arg        | tat<br>Tyr        | gaa<br>Glu        | 384  |
| gag tct cta<br>Glu Ser Leu<br>130                                                                                                                                                                                                                                                                              | cac aat<br>His Asr                                                                                 | t ccg<br>n Pro                                         | tac<br>Tyr<br>135                                 | cct<br>Pro                     | gac<br>Asp        | tac<br>Tyr        | cac<br>His        | tgg<br>Trp<br>140 | ctt<br>Leu        | cga<br>Arg        | act<br>Thr        | gta<br>Val        | 432  |
| aaa acc acc<br>Lys Thr Thr<br>145                                                                                                                                                                                                                                                                              | aag gaq<br>Lys Glu                                                                                 | g tct<br>1 Ser<br>150                                  | ctc<br>Leu                                        | gtt<br>Val                     | atc<br>Ile        | ata<br>Ile        | tct<br>Ser<br>155 | cca<br>Pro        | agt<br>Ser        | gtg<br>Val        | gca<br>Ala        | gat<br>Asp<br>160 | 480  |
| ttg gac cca<br>Leu Asp Pro                                                                                                                                                                                                                                                                                     | tat gad<br>Tyr Asp<br>165                                                                          | c aga<br>p Arg<br>5                                    | tcc<br>Ser                                        | ctt<br>Leu                     | cac<br>His        | tcg<br>Ser<br>170 | agg<br>Arg        | gtc<br>Val        | ttc<br>Phe        | cct<br>Pro        | agc<br>Ser<br>175 | glà<br>aaa        | 528  |
| aag tgc tca<br>Lys Cys Ser                                                                                                                                                                                                                                                                                     | gga gta<br>Gly Val<br>180                                                                          | a gcg<br>l Ala                                         | gtg<br>Val                                        | tct<br>Ser                     | tct<br>Ser<br>185 | acc<br>Thr        | tac<br>Tyr        | tgc<br>Cys        | tcc<br>Ser        | act<br>Thr<br>190 | aac<br>Asn        | cac<br>His        | 576  |

## -continued

| gat<br>Asp        | tac<br>Tyr        | acc<br>Thr<br>195 | att<br>Ile        | tgg<br>Trp        | atg<br>Met        | ccc<br>Pro        | gag<br>Glu<br>200 | aat<br>Asn        | ccg<br>Pro        | aga<br>Arg        | cta<br>Leu        | 999<br>Gly<br>205 | atg<br>Met        | tct<br>Ser        | tgt<br>Cys        | 624  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| gac<br>Asp        | att<br>Ile<br>210 | ttt<br>Phe        | acc<br>Thr        | aat<br>Asn        | agt<br>Ser        | agg<br>Arg<br>215 | ggg<br>ggg        | aag<br>Lys        | aga<br>Arg        | gca<br>Ala        | tcc<br>Ser<br>220 | aaa<br>Lys        | 999<br>Gly        | agt<br>Ser        | gag<br>Glu        | 672  |
| act<br>Thr<br>225 | tgc<br>Cys        | ggc<br>Gly        | ttt<br>Phe        | gta<br>Val        | gat<br>Asp<br>230 | gaa<br>Glu        | aga<br>Arg        | ggc<br>Gly        | cta<br>Leu        | tat<br>Tyr<br>235 | aag<br>Lys        | tct<br>Ser        | tta<br>Leu        | aaa<br>Lys        | gga<br>Gly<br>240 | 720  |
| gca<br>Ala        | tgc<br>Cys        | aaa<br>Lys        | ctc<br>Leu        | aag<br>Lys<br>245 | tta<br>Leu        | tgt<br>Cys        | gga<br>Gly        | gtt<br>Val        | cta<br>Leu<br>250 | gga<br>Gly        | ctt<br>Leu        | aga<br>Arg        | ctt<br>Leu        | atg<br>Met<br>255 | gat<br>Asp        | 768  |
| gga<br>Gly        | aca<br>Thr        | tgg<br>Trp        | gtc<br>Val<br>260 | gcg<br>Ala        | atg<br>Met        | caa<br>Gln        | aca<br>Thr        | tca<br>Ser<br>265 | aat<br>Asn        | gaa<br>Glu        | acc<br>Thr        | aaa<br>Lys        | tgg<br>Trp<br>270 | tgc<br>Cys        | ccc<br>Pro        | 816  |
| ccc<br>Pro        | gat<br>Asp        | cag<br>Gln<br>275 | ttg<br>Leu        | gtg<br>Val        | aac<br>Asn        | ctg<br>Leu        | cac<br>His<br>280 | gac<br>Asp        | ttt<br>Phe        | cgc<br>Arg        | tca<br>Ser        | gac<br>Asp<br>285 | gaa<br>Glu        | att<br>Ile        | gag<br>Glu        | 864  |
| cac<br>His        | ctt<br>Leu<br>290 | gtt<br>Val        | gta<br>Val        | gag<br>Glu        | gag<br>Glu        | ttg<br>Leu<br>295 | gtc<br>Val        | agg<br>Arg        | aag<br>Lys        | aga<br>Arg        | gag<br>Glu<br>300 | gag<br>Glu        | tgt<br>Cys        | ctg<br>Leu        | gat<br>Asp        | 912  |
| gca<br>Ala<br>305 | cta<br>Leu        | gag<br>Glu        | tcc<br>Ser        | atc<br>Ile        | atg<br>Met<br>310 | aca<br>Thr        | acc<br>Thr        | aag<br>Lys        | tca<br>Ser        | gtg<br>Val<br>315 | agt<br>Ser        | ttc<br>Phe        | aga<br>Arg        | cgt<br>Arg        | ccc<br>Pro<br>320 | 960  |
| agt<br>Ser        | cat<br>His        | tta<br>Leu        | aga<br>Arg        | aaa<br>Lys<br>325 | ctt<br>Leu        | gtc<br>Val        | cct<br>Pro        | д1À<br>ддд        | ttt<br>Phe<br>330 | gga<br>Gly        | ааа<br>Lys        | gca<br>Ala        | tat<br>Tyr        | acc<br>Thr<br>335 | ata<br>Ile        | 1008 |
| ttc<br>Phe        | aac<br>Asn        | aag<br>Lys        | acc<br>Thr<br>340 | ttg<br>Leu        | atg<br>Met        | gaa<br>Glu        | gcc<br>Ala        | gat<br>Asp<br>345 | gct<br>Ala        | cac<br>His        | tac<br>Tyr        | aag<br>Lys        | tca<br>Ser<br>350 | gtc<br>Val        | nnn<br>Xaa        | 1056 |
| act<br>Thr        | tgg<br>Trp        | aat<br>Asn<br>355 | gag<br>Glu        | atc<br>Ile        | ctc<br>Leu        | cct<br>Pro        | tca<br>Ser<br>360 | aaa<br>Lys        | д17<br>ддд        | tgt<br>Cys        | tta<br>Leu        | aga<br>Arg<br>365 | gtt<br>Val        | д17<br>ддд        | glà<br>dàa        | 1104 |
| agg<br>Arg        | tgt<br>Cys<br>370 | cat<br>His        | cct<br>Pro        | cat<br>His        | gtg<br>Val        | aac<br>Asn<br>375 | glà<br>dâð        | gtg<br>Val        | ttt<br>Phe        | ttc<br>Phe        | aat<br>Asn<br>380 | ggt<br>Gly        | ata<br>Ile        | ata<br>Ile        | tta<br>Leu        | 1152 |
| gga<br>Gly<br>385 | cct<br>Pro        | gac<br>Asp        | ggc<br>Gly        | aat<br>Asn        | gtc<br>Val<br>390 | tta<br>Leu        | atc<br>Ile        | cca<br>Pro        | gag<br>Glu        | atg<br>Met<br>395 | caa<br>Gln        | tca<br>Ser        | tcc<br>Ser        | ctc<br>Leu        | ctc<br>Leu<br>400 | 1200 |
| cag<br>Gln        | caa<br>Gln        | cat<br>His        | atg<br>Met        | gag<br>Glu<br>405 | ttg<br>Leu        | ttg<br>Leu        | gaa<br>Glu        | tcc<br>Ser        | tcg<br>Ser<br>410 | gtt<br>Val        | atc<br>Ile        | ccc<br>Pro        | ctt<br>Leu        | gtg<br>Val<br>415 | cac<br>His        | 1248 |
| ccc<br>Pro        | ctg<br>Leu        | gca<br>Ala        | gac<br>Asp<br>420 | ccg<br>Pro        | tct<br>Ser        | acc<br>Thr        | gtt<br>Val        | ttc<br>Phe<br>425 | aag<br>Lys        | gac<br>Asp        | ggt<br>Gly        | gac<br>Asp        | gag<br>Glu<br>430 | gct<br>Ala        | gag<br>Glu        | 1296 |
| gat<br>Asp        | ttt<br>Phe        | gtt<br>Val<br>435 | gaa<br>Glu        | gtt<br>Val        | cac<br>His        | ctt<br>Leu        | ccc<br>Pro<br>440 | gat<br>Asp        | gtg<br>Val        | cac<br>His        | aat<br>Asn        | cag<br>Gln<br>445 | gtc<br>Val        | tca<br>Ser        | gga<br>Gly        | 1344 |
| gtt<br>Val        | gac<br>Asp<br>450 | ttg<br>Leu        | ggt<br>Gly        | ctc<br>Leu        | ccg<br>Pro        | aac<br>Asn<br>455 | tgg<br>Trp        | glà<br>aaa        | aag<br>Lys        | gaa<br>Glu        | cac<br>His<br>460 | tgg<br>Trp        | agc<br>Ser        | tac<br>Tyr        | ggt<br>Gly        | 1392 |
| ttg<br>Leu<br>465 | aga<br>Arg        | ccc<br>Pro        | 999<br>999        | tat<br>Tyr        | gta<br>Val<br>470 | tta<br>Leu        | ctg<br>Leu        | agt<br>Ser        | gca<br>Ala        | 999<br>Gly<br>475 | gcc<br>Ala        | ctg<br>Leu        | act<br>Thr        | gcc<br>Ala        | ttg<br>Leu<br>480 | 1440 |

atg ttg ata att ttc ctg atg aca tgt tgt aga aga gtc aat cga tca 1488 Met Leu Ile Ile Phe Leu Met Thr Cys Cys Arg Arg Val Asn Arg Ser 485 490 495

gaa cct acg caa cac aat ctc aga ggg aca ggg agg ggg gtg tca gtc1536Glu Pro Thr Gln His Asn Leu Arg Gly Thr Gly Arg Glu Val Ser Val500505510

act ccc caa agc ggg aag atc ata tct tca tgg gaa tca cac aag agt 1584 Thr Pro Gln Ser Gly Lys Ile Ile Ser Ser Trp Glu Ser His Lys Ser 520 515 525 1602 ggg ggt gag acc aga ctg Gly Gly Glu Thr Arg Leu 530 <210> SEQ ID NO 64 <211> LENGTH: 534 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <221> NAME/KEY: misc\_feature <222> LOCATION: (352)..(352) <223> OTHER INFORMATION: The 'Xaa' at location 352 stands for Lys, Asn, Arg, Ser, Thr, Ile, Met, Glu, Asp, Gly, Ala, Val, Gln, His, Pro, Leu, Tyr, Trp, Cys, or Phe. <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct <400> SEOUENCE: 64 Met Val Pro Gln Ala Leu Leu Phe Val Pro Leu Leu Val Phe Pro Leu 10 5 1 15 Cys Phe Gly Lys Phe Pro Ile Tyr Thr Ile Pro Asp Lys Leu Gly Pro 25 30 2.0 Trp Ser Pro Ile Asp Ile His His Leu Ser Cys Pro Asn Asn Leu Val 35 40 45 Val Glu Asp Glu Gly Cys Thr Asn Leu Ser Gly Phe Ser Tyr Met Glu 50 55 60 Leu Lys Val Gly Tyr Ile Leu Ala Ile Lys Met Asn Gly Phe Thr Cys 70 75 Thr Gly Val Val Thr Glu Ala Glu Thr Tyr Thr Asn Phe Val Gly Tyr 85 90 Val Thr Thr Thr Phe Lys Arg Lys His Phe Arg Pro Thr Pro Asp Ala 100 105 110 Cys Arg Ala Ala Tyr Asn Trp Lys Met Ala Gly Asp Pro Arg Tyr Glu 125 115 120 Glu Ser Leu His Asn Pro Tyr Pro Asp Tyr His Trp Leu Arg Thr Val 130 135 140 Lys Thr Thr Lys Glu Ser Leu Val Ile Ile Ser Pro Ser Val Ala $\ensuremath{\operatorname{Asp}}$ 150 155 145 Leu Asp Pro Tyr Asp Arg Ser Leu His Ser Arg Val Phe Pro Ser Gly 165 170 175 Lys Cys Ser Gly Val Ala Val Ser Ser Thr<br/> Tyr Cys Ser Thr $\mbox{Asn}$  His 185 180 190 Asp Tyr Thr Ile Trp Met Pro Glu Asn Pro Arg Leu Gly Met Ser Cys 195 200 205 Asp Ile Phe Thr Asn Ser Arg Gly Lys Arg Ala Ser Lys Gly Ser Glu 210 215 220 Thr Cys Gly Phe Val Asp Glu Arg Gly Leu Tyr Lys Ser Leu Lys Gly 225 230 235 240 Ala Cys Lys Leu Lys Leu Cys Gly Val Leu Gly Leu Arg Leu Met Asp 250 255 245 Gly Thr Trp Val Ala Met Gln Thr Ser Asn Glu Thr Lys Trp Cys Pro 260 265 270 Pro Asp Gln Leu Val Asn Leu His Asp Phe Arg Ser Asp Glu Ile Glu 285 275 280 His Leu Val Val Glu Glu Leu Val Arg Lys Arg Glu Glu Cys Leu Asp

55

60

65

|            | 290        |            |            |            |            | 295        |            |            |            |            | 300        |            |            |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ala<br>305 | Leu        | Glu        | Ser        | Ile        | Met<br>310 | Thr        | Thr        | Lys        | Ser        | Val<br>315 | Ser        | Phe        | Arg        | Arg        | Pro<br>320 |
| Ser        | His        | Leu        | Arg        | Lys<br>325 | Leu        | Val        | Pro        | Gly        | Phe<br>330 | Gly        | Lys        | Ala        | Tyr        | Thr<br>335 | Ile        |
| Phe        | Asn        | Lys        | Thr<br>340 | Leu        | Met        | Glu        | Ala        | Asp<br>345 | Ala        | His        | Tyr        | Lys        | Ser<br>350 | Val        | Xaa        |
| Thr        | Trp        | Asn<br>355 | Glu        | Ile        | Leu        | Pro        | Ser<br>360 | Lys        | Gly        | Сүз        | Leu        | Arg<br>365 | Val        | Gly        | Gly        |
| Arg        | Cys<br>370 | His        | Pro        | His        | Val        | Asn<br>375 | Gly        | Val        | Phe        | Phe        | Asn<br>380 | Gly        | Ile        | Ile        | Leu        |
| Gly<br>385 | Pro        | Asp        | Gly        | Asn        | Val<br>390 | Leu        | Ile        | Pro        | Glu        | Met<br>395 | Gln        | Ser        | Ser        | Leu        | Leu<br>400 |
| Gln        | Gln        | His        | Met        | Glu<br>405 | Leu        | Leu        | Glu        | Ser        | Ser<br>410 | Val        | Ile        | Pro        | Leu        | Val<br>415 | His        |
| Pro        | Leu        | Ala        | Asp<br>420 | Pro        | Ser        | Thr        | Val        | Phe<br>425 | Lys        | Aab        | Gly        | Asp        | Glu<br>430 | Ala        | Glu        |
| Asp        | Phe        | Val<br>435 | Glu        | Val        | His        | Leu        | Pro<br>440 | Asp        | Val        | His        | Asn        | Gln<br>445 | Val        | Ser        | Gly        |
| Val        | Asp<br>450 | Leu        | Gly        | Leu        | Pro        | Asn<br>455 | Trp        | Gly        | Lys        | Glu        | His<br>460 | Trp        | Ser        | Tyr        | Gly        |
| Leu<br>465 | Arg        | Pro        | Gly        | Tyr        | Val<br>470 | Leu        | Leu        | Ser        | Ala        | Gly<br>475 | Ala        | Leu        | Thr        | Ala        | Leu<br>480 |
| Met        | Leu        | Ile        | Ile        | Phe<br>485 | Leu        | Met        | Thr        | Сүз        | Cys<br>490 | Arg        | Arg        | Val        | Asn        | Arg<br>495 | Ser        |
| Glu        | Pro        | Thr        | Gln<br>500 | His        | Asn        | Leu        | Arg        | Gly<br>505 | Thr        | Gly        | Arg        | Glu        | Val<br>510 | Ser        | Val        |
| Thr        | Pro        | Gln<br>515 | Ser        | Gly        | Lys        | Ile        | Ile<br>520 | Ser        | Ser        | Trp        | Glu        | Ser<br>525 | His        | Lys        | Ser        |
| Gly        | Gly<br>530 | Glu        | Thr        | Arg        | Leu        |            |            |            |            |            |            |            |            |            |            |

The invention claimed is:

1. A recombinant rabies virus, wherein the genome of the recombinant rabies virus comprises rabies virus nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycopro-<sup>45</sup> tein (G) and RNA-dependent RNA polymerase (L) genes and a heterologous nucleic acid sequence encoding a gonadotropin-releasing hormone (GnRH) protein, wherein the heterologous nucleic acid sequence encoding the GnRH protein is at least 95% identical to SEQ ID NO: 47.

2. The recombinant rabies virus of claim 1, wherein the G gene is relocated between the N gene and the P gene in the genome of the recombinant rabies virus.

3. The recombinant rabies virus of claim 1, wherein the rabies virus glycoprotein comprises a Glu at amino acid position 333.

**4**. The recombinant rabies virus of claim **1**, comprising two copies of the heterologous nucleic acid sequence encoding the GnRH protein.

**5**. The recombinant rabies virus of claim **1**, wherein the heterologous nucleic acid molecule encoding the GnRH protein is inserted within the rabies virus glycoprotein gene.

6. The recombinant rabies virus of claim 5, wherein the heterologous nucleic acid sequence encoding the GnRH protein is inserted following the signal sequence (nucleotides 1-57 of SEQ ID NO: 49) of the glycoprotein gene.

7. The recombinant rabies virus of claim 6, wherein the glycoprotein gene comprises the nucleic acid sequence of SEQ ID NO: 49 or SEQ ID NO: 51.

**8**. The recombinant rabies virus of claim **5**, wherein the heterologous nucleic acid sequence encoding the GnRH protein is inserted immediately following antigenic site Ha (nucleotide 663 of SEQ ID NO: 53) of the glycoprotein gene.

**9**. The recombinant rabies virus of claim **8**, wherein the glycoprotein gene comprises the nucleic acid sequence of SEQ ID NO: 53.

**10**. The recombinant rabies virus of claim **5**, wherein the heterologous nucleic acid sequence encoding the GnRH protein is inserted at the junction of the ectodomain and transmembrane domain (following nucleotide 1374 of SEQ ID NO: 63) of the glycoprotein gene.

**11**. The recombinant rabies virus of claim **10**, wherein the glycoprotein gene comprises the nucleic acid sequence of SEQ ID NO: 63.

**12**. An immunogenic composition comprising the recombinant rabies virus of claim **1** and a pharmaceutically acceptable carrier, an adjuvant, or both.

**13**. A method of immunizing a non-human animal against rabies virus infection and inhibiting fertility of the animal, comprising administering to the animal a therapeutically effective amount of the immunogenic composition of claim **12**.

5

14. The method of claim 13, wherein the animal is a dog, cat, rat, mouse, bat, fox, raccoon, squirrel, opossum, coyote or wolf.

**15**. The method of claim **13**, wherein the immunogenic composition is administered orally.

16. The method of claim 13, wherein the immunogenic composition is administered through food-baits.

17. The method of claim 13, wherein the animal is a domestic animal.

18. The method of claim 13, wherein the animal is a wild 10 animal.

\* \* \* \* \*