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(57) ABSTRACT 
Although it can be farnesylated, the mutant lamin A protein 
expressed in Hutchinson Gilford Progeria Syndrome (HGPS) 
cannot be defarnesylated because the characteristic mutation 
causes deletion of a cleavage site necessary for binding the 
protease ZMPSTE24 and effecting defarnesylation. The 
result is an aberrant farnesylated protein (called “progerin”) 
that alters normal laminA function as a dominant negative, as 
well as assuming its own aberrant function through its asso 
ciation with the nuclear membrane. The retention of farnesy 
lation, and potentially other abnormal properties of progerin 
and other abnormal lamin gene protein products, produces 
disease. Farnesyltransferase inhibitors (FTIs) (both direct 
effectors and indirect inhibitors) will inhibit the formation of 
progerin, cause a decrease in lamin A protein, and/or an 
increase prelamin A protein. Decreasing the amount of aber 
rant protein improves cellular effects caused by and progerin 
expression. Similarly, treatment with FTIs should improve 
disease status in progeria and other laminopathies. In addi 
tion, elements of atherosclerosis and aging in non-laminopa 
thy individuals will improve after treatment with farnesyl 
transferase inhibitors. 

14 Claims, 15 DraWing Sheets 
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FARNESYLTRANSFERASE INHIBITORS FOR 
TREATMENT OF LAMINOPATHIES, 

CELLULAR AGING AND 
ATHEROSCLEROSIS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This is a continuation of co-pending US. patent applica 
tion Ser. No. 13/567,432, ?led Aug. 6, 2012; which is a 
division of US. patent application Ser. No. 12/905,838, ?led 
Oct. 15, 2010, which issued as US. Pat. No. 8,257,915 on 
Sep. 4, 2012; which is a division of US. patent application 
Ser. No. 11/828,117, ?led Jul. 25, 2007, which issued as US. 
Pat. No. 7,838,531 on Nov. 23, 2010; which is a continuation 
in-part of International Application No. PCT/US2006/ 
002977, ?led Jan. 27, 2006; which in turn claims the bene?t 
ofU.S. ProvisionalApplication No. 60/648,307, ?led Jan. 28, 
2005 and US. Provisional Application No. 60/707,192, ?led 
Aug. 9, 2005; and a continuation-in-part of US. Utility appli 
cation Ser. No. 10/943,400, ?led Sep. 17, 2004, which issued 
as US. Pat. No. 7,297,942 on Nov. 20, 2007; which is a 
continuation of International Application No. PCT/US2003/ 
033058, ?led Oct. 17, 2003, which in turn claims the bene?t 
of US. ProvisionalApplicationNo. 60/463,084, ?ledApr. 14, 
2003, and US. Provisional Application No. 60/419,541, ?led 
Oct. 18, 2002. Each of these applications is incorporated 
herein in their entirety. 

FIELD 

This disclosure relates to treatment of laminopathies, cel 
lular aging and aging-related conditions, and more particu 
larly to the use of famesyltransferase inhibitors (FTIs) and 
other compounds and compositions to treat such conditions. 
It also relates to methods of identifying agents useful in 
treating, for instance, laminopathies. 

BACKGROUND 

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare 
genetic disease that affects children in the ?rst decade of life 
and causes a remarkable phenotype resembling many aspects 
of aging. Affected children develop an extremely aged 
appearance, a lack of subcutaneous fat, growth retardation 
and severe atherosclerosis. Affected children die of prema 
ture atherosclerosis at an average age of 13 years. Progeria is 
a disease in which some, but not all, of its manifestations (in 
vivo and in vitro) represent a model of accelerated aging 
(reviewed in Sweeney & Weiss, Gerontology 38:139-152, 
1992). Clinical features common to progeria and normal 
aging include alopecia (although the pattern of hair loss dif 
fers), sclerodermatosis, atherosclerosis, lipofuscin deposi 
tion, nail dystrophy, hypermelanosis, decreased adipose tis 
sue, and osteoporosis. Clinical differences include sequelae 
of maldevelopment in progeria, with coxa valga, distal bone 
resorption, delayed dentition, facial disproportion, failure to 
thrive, and short stature. Features of aging that are absent in 
progeria include neurosensory decline such as Alzheimer’s 
disease, dementia, hearing loss, and presbyopia. 

Recently, the gene responsible for HGPS was identi?ed, 
and HGPS joined a group of syndromesithe laminopa 
thiesiall of which have an underlying defect in the lamin 
A/C gene (LMNA) (Eriksson et al., Nature 423:293-298, 
2003). LMNA codes for the lamin A and lamin C isoforms, 
which differ due to alternate splicing, as well as the A10 
isoform found in sperm. The lamins are a component of the 
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nuclear lamina, a ?brous matrix located at the interior of the 
nuclear membrane, responsible for nuclear integrity and 
organization. In addition, lamins are also present in the 
nucleoplasm and may be involved in more complex spatial 
organization of the nucleus. They play a role in a wide array 
of nuclear processes, including transcription, replication, 
chromatin organization, nuclear shape, cell division, and cell 
cycle functions (Gruenbaum et al., J Struct Biol 129:313-23, 
2000; Gruenbaum et al., Nat. Rev. Mol. Cell Biol. 6:21-31, 
2005). The LMNA gene is primarily expressed in differenti 
ated tissues in the fetus and adult and may be important in 
maintaining the differentiated state (Rober et al., Develop 
ment 105:365-378, 1989). In fact, lamin A expression is 
down-regulated in many tumors, perhaps as part of the loss of 
differentiation seen in those tumors (Muller et al., Leukemia 

8:940-945, 1994). 
The pre-lamin A protein contains a CAAX box (SEQ ID 

NO: 31) at the carboxy terminus, which is an invariant cys 
teine followed by two aliphatic amino acids with the X denot 
ing the terminal amino acid. The CAAX box signals for 
isoprenylation, the addition of a 15-carbon famesyl iso 
prenoid lipid group to the cysteine by the enzyme farnesyl 
transferase (FTase) or a 20-carbon geranylgeranyl isoprenoid 
lipid by geranylgeranyltransferaseI (GGTaseI) (Beck et al., J. 
Cell Biol. 110:1489-1499, 1990). The ?nal amino acid 
de?nes the speci?city for the addition of the isoprenyl group 
with methionine, serine, glutamine, or alanine signaling far 
nesylation and leucine signaling the addition of a 20-carbon 
geranylgeranyl isoprenoid group catalyzed by the structurally 
related enzyme GGTase I (Moores et al., J Biol Chem 266: 
14603-14610, 1991; Cox & Der, Curr. Opin. Pharmacol. 
2:388-393, 2002). The native lamin A CAAX box (SEQ ID 
NO: 31) consists of CSIM (cysteine, serine, isoleucine, 
methionine) (SEQ ID NO: 32). Famesylation, together with 
subsequent CAAX-signaled modi?cations, promote 
prelamin A association with the nuclear membrane (Hen 
nekes & Nigg, J. Cell Sci. 107:1019-1029, 1994). Famesyla 
tion is a permanent modi?cation; once a farnesyl group is 
added to a protein, it remains attached to that residue for the 
life of the protein. Following farnesylation, the terminal three 
AAX amino acids are removed, and the C-terminal isopreny 
lated cysteine undergoes methyl esteri?cation (Hennekes & 
Nigg, J. Cell Sci. 107:1019-1029, 1994). While both B-type 
lamins and lamin A are farnesylated and carboxymethylated, 
unique to lamin A is a second cleavage that occurs inside the 
nucleus causing the removal of an additional 15 C-terminal 
amino acids from the mature protein, including the famesy 
lated cysteine. Because farnesylation is a permanent post 
translational modi?cation, proteolytic cleavage of the fame 
sylated cysteine is necessary for full processing of the 
prelamin A protein to mature lamin A, and for its correct 
subcellular localization and function. Thus, this ?nal cleav 
age step and the resulting loss of the farnesyl anchor presum 
ably releases prelamin A from the nuclear membrane and 
allows it to be inserted into the nuclear lamina. In HGPS, 
although preprogerin can be farnesylated, its internal deletion 
of amino acids 606-656 removes the endoprotease recogni 
tion site necessary for executing the ?nal cleavage step. This 
?nal cleavage step appears to be important for normal func 
tion as mutations in ZMPSTE24 cause a severe form of man 

dibuloacral dysplasia (MADB), one of the laminopathies 
which is phenotypically similar to HGPS (Agarwal et al., 
Hum. Mol. Genet. 12:1995-2001, 2003). ZMPSTE24 is the 
human homolog of yeast STE 24 and is responsible for the 
?nal cleavage of laminA that removes the 15 terminal amino 
acids (Pendas et al., Nat. Genet. 31:94-99, 2002). 



US 8,828,356 B2 
3 

Nearly all HGPS patients have the same silent mutation 
(G608G) creating an abnormal splice donor site in exon 11 of 
the LMNA gene (Eriksson et al., Nature 423:293-298, 2003), 
which causes a 150 base pair mRNA deletion in the laminA 
transcript. The result of the mis-splicing is a protein missing 
50 amino acids near the C-terminus (henceforth called “pre 
progerin” prior to posttranslational processing and “prog 
erin” after post-translational processing). The deleted region 
includes the protein cleavage site that normally removes the 
C-terminal 15 amino acids, including the farnesylated cys 
teine. The deleted region also contains two potential cyclin 
dependent kinase target serines (652 and 657) that may be 
involved in dissociation and reassociation of the nuclear 
membrane at each cell division (Sinensky et al., J Cell Sci 
107(Pt 1):61-7, 1994; Kilic et al., JBiol Chem 272(8):5298 
304, 1997) and it may affect molecular solubility (Hennekes 
& Nigg, JCell Sci. 107:1019-29, 1994). 

SUMMARY OF THE DISCLOSURE 

Although it can be farnesylated, the progerin protein can 
not be defamesylated because the characteristic mutation 
causes deletion of the second cleavage site necessary for 
binding ZMPSTE24 and effecting defamesylation (Eriksson 
et al., Nature 423:293-298, 2003). The result is a shortened, 
aberrant (abnormally) farnesylated protein capable of alter 
ing normal laminA function as a dominant negative, as well 
as assuming its own aberrant function through its association 
with the nuclear membrane. Thus, the multisystem disease 
process and the variety of genes that are affected in HGPS 
(Csoka et al., Aging Cell 3:235-243, 2004) lie downstream of 
a protein defect that is central to basic cellular function. Other 
lamin defects also lead to disease processes (generally 
referred to as laminopathies) due to aberrant properties of the 
LMNA protein product. 

The retention of farnesylation, and potentially other abnor 
mal properties of progerin and other abnormal lamin gene 
protein products, produces disease. Famesyltransferase 
inhibitors (both direct effectors and indirect inhibitors of 
famesyltransferase) will prevent famesylation, inhibit the 
formation of progerin, cause a decrease in lamin A protein 
and an increase in prelamin A and preprogerin proteins. 
Decreasing the amount of aberrant protein will improve dis 
ease status in Progeria and other laminopathies (in that the 
status will be moved towards normal). In addition, altering 
lamin A using famesyltransferase inhibitors (both direct 
effectors and indirect inhibitors) will improve those elements 
of other diseases and conditions, such as atherosclerosis and 
aging, in normal individuals that involve lamin A. 

The foregoing and other features and advantages will 
become more apparent from the following detailed descrip 
tion of several embodiments, which proceeds with reference 
to the accompanying ?gures. 

BRIEF DESCRIPTION OF THE FIGURES 

FIG. 1 shows a schematic overview of normal lamin A 
processing. The C-terminal CAAX box (SEQ ID NO: 31) of 
prelamin A undergoes famesylation, which allows localiza 
tion of the partially processed protein to the nuclear mem 
brane. The AAX endopeptidase cleaves the last three amino 
acids from the farnesylated protein. Prelamin A then under 
goes methyl esteri?cation at the C-terminus. The endopro 
tease ZMPSTE24 then cleaves the c-terminal 15 amino acids, 
which cleavage releases a short peptide containing both the 
famesylation and the methyl ester. This last proteolytic cleav 
age is prevented in progerin, as the cleavage site is lost in the 
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50 amino acid deletion. In addition, neither proteolytic cleav 
age can occur without prior farnesylation of the precursor 
protein. 

FIG. 2 is a diagram showing the differential processing of 
lamin A exon 11 in wild-type and the HGPS mutant. The 
silent mutation G608G leads to activation of a cryptic splice 
site, which results in splicing-out of 150 nucleotides corre 
sponding to the 3'-end of Exon 11. 

FIG. 3 shows drawings of prelamin A, lamin A, and prog 
erin. The deletion in progerin removes amino acids 608-657 
of the wildtype lamin A protein; this region includes both a 
phosphorylation site (indicated in the ?gure by an asterisk) 
and a proteolytic cleavage site that is required for maturation 
from the pre-form to the mature lamin A. The nuclear local 
ization sequence (N LS) is unaffected by the mutation. 

FIG. 4 (panels A-C) illustrates nuclear morphology and 
protein localization in cells transfected with plasmid DNA 
encoding green ?uorescent protein (GFP)-tagged laminA or 
GFP-tagged wild type or mutant progerin proteins. GFP 
lamin A (panels A and B) or GFP-progerin (panel C) expres 
sion constructs were transiently transfected into the normal 
?broblast line, GM08398, using FUGENE® transfection 
reagent (Roche). Seventy-two hours later the cells were ?xed 
with 4% paraformaldehyde and visualized using a Zeiss 
AXIOPHOTTM ?uorescence microscope with a SENSYS® 
CCD camera and Applied Imaging digital imaging capture 
software. The actin cytoskeleton was stained with 
Rhodamine-phalloidin. Panel A shows the same cell as in 
Panel B but with the focal plane bisecting the nucleus. In B 
and C the periphery of the nucleus is in focus to show the 
altered localization of GFP-progerin in panel C. 

FIG. 5 (panels A-D) illustrates immunocytochemistry 
using a lamin A-speci?c antibody to detect localization of 
endogenous laminA. Normal (A and B) and HGPS(C and D) 
?broblasts were grown on coverslips, ?xed with formalde 
hyde and probed with anti-lamin A antibodies (USBiologi 
cal). LaminA aggregates were observed in HGPS ?broblasts. 
Images show two focal planes, a nuclear cross-section (A and 
C) and a focal plane bisecting the nucleus (B and D). 

FIG. 6 (panels A-B) shows images of confocal microscopy 
of transfected cells. Normal ?broblasts were plated on cov 
erslips, transfected, and ?xed as in FIG. 4. Localization of 
GFP-laminA (panel A) and progerin (panel B) was analyzed 
using a Zeiss LSM 510 confocal microscope mounted on a 
Zeiss AXIOVERT® 100M inverted microscope. Three focal 
planes are shownitop, middle and bottom (from left to 
right). These images show the location of the GFP-progerin 
aggregates as thicker regions at the nuclear periphery (B). 
Fibroblasts expressing normal GFP-laminA have GFP signal 
around the nuclear periphery (A). 

FIG. 7 (panels A-E) illustrates the effect of a 72 hour 
exposure to 100 nM FTI (PD169451) on GFP-lamin A (A) 
and GFP-progerin (B) localization, protein processing (C) 
and nuclear morphology (D and E). Confocal microscopy 
was used to examine the effects of FTIs on transiently-ex 
pressed GFP-lamin A (A) and GFP-progerin (B) in normal 
?broblasts. Three focal planes are shownitop, middle and 
bottom (from left to right). Exposure to 100 nM FTI for 72 
hours caused about half of the endogenous lamin A to be 
unprocessed pre-lamin A in normal and HGPS ?broblasts 
(C). Exposure to the FTI increased the percent of mock trans 
fected cells and GFP-laminA expressing cells with abnormal 
nuclear morphology (D). However, the percentage of cells 
expressing GFP-progerin with an abnormal nuclear morphol 
ogy decreased by 33% when exposed to the FTI for 72 hours. 
The nuclear morphology of HGPS ?broblasts showed a simi 


























































































