

US008030473B2

(12) United States Patent

Carrington et al.

(54) METHOD TO TRIGGER RNA INTERFERENCE

- (75) Inventors: James C. Carrington, Corvallis, OR
 (US); Edwards Allen, O'Fallon, MO
 (US)
- (73) Assignee: State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon State University, Corvallis, OR (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 764 days.
- (21) Appl. No.: 11/334,776
- (22) Filed: Jan. 6, 2006

(65) **Prior Publication Data**

US 2006/0174380 A1 Aug. 3, 2006

Related U.S. Application Data

- (60) Provisional application No. 60/642,126, filed on Jan. 7, 2005.
- (51) Int. Cl.

C12N 15/113	(2010.01)
C12N 15/63	(2010.01)
C12N 15/82	(2010.01)

- (58) **Field of Classification Search** None See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

6,459,019	B1	10/2002	Falco et al.
2003/0135888	A1*	7/2003	Zhu et al 800/288
2003/0221211	A1*	11/2003	Rottmann et al 800/278
2004/0009476	A9	1/2004	Harper et al.
2004/0053411	A1*	3/2004	Cullen et al 435/455
2004/0053876	A1*	3/2004	Turner et al 514/44
2004/0086884	A1	5/2004	Beach et al.
2004/0261149	A1	12/2004	Fauquet et al.
2007/0130653	A1	6/2007	Baulcombe et al.

FOREIGN PATENT DOCUMENTS

WO 2007/039454 4/2007

OTHER PUBLICATIONS

Allen et al 2005 Cell 121:207-221, provided in Applicant IDS.* Parizotto et al 2004 Genes and Development 18:2237-2242.* Montgomery et al., "Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in *TAS3 Trans*-Acting siRNA Formation," Cell, 122:128-141 (Apr. 4, 2008).

Gutierrez-Nava et al., "Artificial trans-acting siRNAs confer consistent and effective gene silencing," *Plant Physiology*, 10.1104/108. 118307 (Apr. 25, 2008).

Khvorova et al., "Functional siRNAs and miRNAs Exhibit Strand Bias," *Cell*, 115:209-216, 2003.

Montgomery et al., "AGO1-miR173 complex initiates phased siRNA formation in plants," *PNAS*, 105(51):20055-20062, 2008.

(10) Patent No.: US 8,030,473 B2

(45) **Date of Patent:** Oct. 4, 2011

Rajagopalan et al., "A diverse and evolutionarily fluid set of microRNAs in *Arabidopsis thaliana,*" *Genes & Development*, 20:3407-3425, 2006.

Rand et al., "Biochemical identification of Argonaute 2 s the sole protein required for RNA-induced silencing complex activity," *PNAS*, 101(40):14385-14389, 2004.

Schwartz et al., "Asymmetry in the Assembly of the RNAi Enzyme Complex," *Cell*, 115:199-208, 2003.

Song et al., "The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes," *Nature Structure Biology*, 10(12):1026-1032, 2003.

Song et al., "Crystal Structure of Argonaute and Its Implications for RISC Sliver Activity," *Science*, 305:1434-1437, 2004.

Allen et al., "Conserved trans-acting siRNAs regulate ARF genes," Abstract for talk given on Jan. 12, 2005, at Keystone Symposium "Diverse Roles of RNA in Gene Regulation".

Allen et al., "miRNA-directed phasing during *trans*-acting si RNA biogenesis in plants," Poster displayed on Jan. 9, 2005, at Keystone Symposium "Diverse Roles of RNA in Gene Regulation". Allen et al., "Evolution of microRNA genes by inverted duplication

Allen et al., "Evolution of microRNA genes by inverted duplication of target gene sequences in *Arabidopsis thaliana,*" *Nature Genetics*, 36:1282-1290 (Dec. 2004).

Allen et al., "microRNA-Directed Phasing during *Trans*-Acting siRNA Biogenesis in Plants," Cell, 121:207-221 (Apr. 2005). Ambros, "The functions of animal microRNAs," *Nature*, 431:350-

355 (Sep. 2004). Ambros et al., "A uniform system for microRNA annotation," RNA,

9:277-279 (2003).

Baulcombe, "RNA silencing in plants," *Nature*, 431:356-363 (Sep. 2004).

Benfey, "MicroRNA is here to stay," *Nature*, 425:244-245 (Sep. 2003).

Carrington, "Small RNAs and Arabidopsis. A Fast Forward Look," *Plant Physiology*, 138:565-566 (Jun. 2005). Carrington et al., "Role of MicroRNAs in Plant and Animal Development," *Science*, 301:336-338 (Jul. 2003).

Chan et al., "RNA Silencing Genes Control de Novo DNA Methylation," *Science*, 303:1336 (Feb. 2004).

Chapman et al., "Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step," *Genes & Development*, 18:1179-1186 (2004).

Dugas et al., "MicroRNA regulation of gene expression in plants," *Current Opinion in Plant Biology*, 7:512-520 (2004).

Grey et al., "Identification and Characterization of Human Cytomegalovirus-Encoded MicroRNAs," *J. of Virology*, 79:12095-12099 (Sep. 2005).

Gustafson et al., "ASRP: the Arabidopsis Small RNA Project Database," Nucleic Acids Research, 33:D637-D640 (2005).

(Continued)

Primary Examiner — Brent T Page

(74) Attorney, Agent, or Firm — Klarquist Sparkman, LLP.

(57) ABSTRACT

A method to generate siRNAs in vivo is described, as are constructs and compositions useful in the method. The method does not depend on the use of DNA or synthetic constructs that contain inverted duplications or dual promoters so as to form perfect or largely double-stranded RNA. Rather, the method depends on constructs that yield singlestranded RNA transcripts, and exploits endogenous or in vivo-produced miRNAs or siRNAs to initiate production of siRNAs. The miRNAs or siRNAs guide cleavage of the transcript and set the register for production of siRNAs (usually 21 nucleotides in length) encoded adjacent to the initiation cleavage site within the construct. The method results in specific formation of siRNAs of predictable size and register (phase) relative to the initiation cleavage site. The method can be used to produce specific siRNAs in vivo for inactivation or suppression of one or more target genes or other entities, such as pathogens.

36 Claims, 22 Drawing Sheets

OTHER PUBLICATIONS

Kato et al., "Expression of siRNA from a Single Transcript That Includes Multiple Ribozymes in Mammalian Cells," *Oligonucleotides*, 13:335-343 (2003).

Lippman et al., "Role of transposable elements in heterochromatin and epigenetic control," *Nature*, 430:471-476 (Jul. 2004).

Llave et al., "Cleavage of *Scarecrow-like* mRNA Targets Directed by a Class of *Arabidopsis* miRNA," *Science*, 297:2053-2056, 2002.

Mallory et al., "MicroRNAs: something important between the genes," *Current Opinion in Plant Biology*, 7:120-125 (2004).

Palatnik et al., "Control of Leaf Morphogenesis by microRNAs," *Nature*, 425:257-263 & Supplementary Material S1-S24 (Sep. 2003). Park et al., "Carpel Factory, a Dicer Homolog, and HEN1, a Novel Protein, Act in microRNA Metabolism in *Arabidopsis thaliana*," *Current Biology*, 12:1484-1495 (Sep. 2002).

Peragine et al., "SGS3 and SGS2/SDEI/RDR6 are required for juvenile development and the production of *trans*-acting siRNAs in *Arabidopsis*," *Genes & Development*, 18:2368-2379 (2004).

Jones-Rhoades et al., "Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced miRNA," *Molecular Cell*, 14:787-799 (Jun. 2004).

Rhoades et al., "Prediction of Plant MicroRNA Targets," *Cell*, 110:513-520 (Aug. 2002).

Schmid et al., "Combinatorial RNAi: a method for evaluating the functions of gene families in *Drosophila*," *TRENDS in Neurosciences*, 25:71-74 (Feb. 2002).

Vaucheret et al., "The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development," *Genes & Development*, 18:1187-1197 (2004).

Vazquez et al., "Endogenous *trans*-Acting siRNAs Regulate the Accumulation of *Arabidopsis* inRNAs," *Molecular Cell*, 16:69-79 (Oct. 2004).

Xie et al., "Dicer-Like 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in *Arabidopsis thaliana*," *PNAS*, 102:12984-12989 (Sep. 2005).

Xie et al., "Expression of Arabidopsis MIRNA Genes," Plant Physiology, 138:2145-2154 (Aug. 2005).

Xie et al., "Genetic and Functional Diversification of Small RNA Pathways in Plants," *PLoS Biology*, 2:0642-0652 (May 2004).

Xie et al., "Negative Feedback Regulation of *Dicer-Like1* in *Arabidopsis* by microRNA-Guided mRNA Degradation," *Current Biology*, 13:784-789 (Apr. 2003).

Zilberman et al., "Role of *Arabidopsis ARGONAUTE4* in RNA-Directed DNA Methylation Triggered by Inverted Repeats," *Current Biology*, 14:1214-1220 (Jul. 2004).

* cited by examiner

FIGURE 2A

FIGURE 2A
18/24
At1g53160 5' алессикисисисисисисисисисиана 3' (SBP4) 3' сакодоисасисисананасяет в' miR156
۱۶/۱۵ At4g30080 ۶٬ ۳۵۵۵ ۲۵۵۵ ۲۵۵۵ ۲۵۵۵ ۲۵۵۵ ۲۵۵۵ ۱۱. ۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱ (ARF16) ۲۰ مینونونونونونونونون ۱۹/۱۵ ۲۰ مرکز ۲۵۵۵ ۲۵۵ ۲۵۵ ۲۵۵ ۲۵۵ ۲۵۵
۱۵/۱۵ Attg56010 ه۰ دیمینیمومیدرمیتودورسودییویوی ۲۰ ۱۱۱۱۱ ۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱۱
عينا علي 2011 At5g61430 هن محمد محمد علي 2011 (NAC family) عن محمد محمد علي 11111111111111111111111111111111111
125, ¹³²⁵ 1/25 At1g52150 5', доос ставаларалосстоороссовлийсская, з' (AtHB15) з' ссесиласийсоваессься s' miR166
4/4 Attg30330 5', ссейбоваалесаассиостлонов 3' Hitti Hitti Hitti (ARF6) 3' досилотлосолосолого 5' miRt67
۱۱/۱4 ۱۱/۱4 At1g17590 5' ۲۰۰۰ (HAP2 family) 3' ۲۰۰۰
11/16 1/16 1/16 2/16 Att1g72830 5' сласла соборало и самости собора собор Собора собора
4/5 At1g54160 5' асацоа созда адотехи соороссиа соород 3' (HAP2 family) 3' иссосоо саболада сода 5' miR169h
18 6/8 1/3 At3g20910 5* съсъвоесталински синистричени с
(HAP2b) 3' CACCOURCEAUCAUCAUCAUCS, 3' miR169a
At5g06510 5'
1/9 3/9 1/9 2/9 At3g22890 5'

FIGURE 2B

At1g62860 (PPR family)	5'
At1g63330 (PPR family)	5 URAUUUAGUCAGUCAAUUCAUUCAUUCAUUCAUUCAUUCAU 111111 111111111 3. AUCAGUGAAAGUUAGGUAACU 6. miR161,2
At1g62590 (PPR family)	5'
At1g63630 (PPR family)	5'UGAUADUGUULCUUULADGCAUGGAUCARU
At1g62930 (PPR family)	5' AARDOUAGUGACOUUCAGGGGAUGAAU
At1g63130 (PPR family)	5'
At1g62910 (PPR family)	5' AAAUGUAGUGACUUUCAGGGGAUUGAUUUAU 3' 1111111111- 111111 3' AUGAGUGAAAGUUAGGUAAGU S' miR161.2
At1g63230 (PPR family)	51
At1g14020 (HAP2 family)	5' UARUCAAGGAAGUCAUCCUUGGCUAAUUUA 3' 1 1 1111111111 3' UUCCUUUCAGUAGAACCGAU 5' miR169h

FIGURE 3A 10 At2g33770 · (E2-UBC) 2 10 1 (2) 5' CGUAGGGCAUAUCUCCUUUGGCAAU 3' 3' GUCCCGUUUAGAGGAAACCGU 5' MiR399 9 (3) 5' CGUUGGGCAAAUCUCCUUUGGCAUU 3' (4) 5' GUUCGAGCAAAUCUCCUUUGGCAUU 3' 13 111 2 1 1 (5) 5' CGUAGAGCAAAUCUCCUUUGGCAUUAUC 3' 13/16 1/162/16 At1g31280 5' AAGGAGUUUGUGCGUGAAUCUAAUUGGGUU 3' (AGO2) 3' GCUCAAACACGCACUUAGAUUA 5' miR403 25/27 1/27 At5g10180 5' UCAAGUUCUCCCAAACACUUCAAAU 3' (AST68) 3' CUCAAGGGGGUUUGUGAAGUc 5' miR395 1/7 6/7 At5g60760 5' ACUGAC-AAACAUCUCGUCCCCAAGA 3' (2PGK) 3' GUUGUUUUGUAGAGCAGGGGUU 5' miR447

FIGURE 3B

17/17 At2g27400 5' UUGUGAUUUUUCUCUACAAGCGAAUG 3' (TAS1a) 3' CACUAAAGAGAGAGACGUUCGCUU 5' miR173 11/11 At1g50055 5' UUGUGAUUUUUUCUCAACAAGCGAAUG 3' (TAS1b) 23/23At2g39675 5' UUGUGAUUUUUCUCUACAAGCGAAUA 3' IIIIIIIIIIIIIIIIIIIIIIII 3' CACUAAAGAGAGACGUUCGCUU 5' miR173 (TAS1c) 24/24 At2g39681 5' UUGUGAUUUUUCUCUCCAAGCGAAUG 3' (TAS2) 3' CACUAAAGAGAGAGGGUUCGCUU 5' miR173 9/22 At3g17185 5' ACCUUGUCUAUCCCUCCUGAGCUAAU 3' (TAS3) 3' CCGC-GAUAGGGAGGACUCGAA 5' miR390

FIGURE 4A

FIGURE 4F

FIGURE 4G

FIGURE 5B

Composite EST transcript (antisense to At2g39680)

FIGURE 5C

4 Kb

FIGURE 5D

FIGURE 5E

FIGURE 6A

	A T STOLAR TOUR AND STATAND A T LEVAN A T LET N OF TO STATE SCHEME STOCOLOGI GH TOCONO CAUNING A T SC C A GOT OF TOT THE A C C C C A GOT OF TOT THE A C A C C C T OF TO THE TOT THE A C A C C C T OF TO THE TOT THE A C A C C C T OF TO THE TOT THE A C A C C C T OF TO THE TOT THE A C A C C C T OF TO THE TOT THE A C A C C C T OF TO THE TOT THE A C C C C T OF TO THE TOT THE TOT A C C C C T OF TO THE TOT THE TOT A C C C C T OF TO THE TOT THE TOT A C C C C C T OF TO THE TOT THE TOT A C C C C C T OF TO THE TOT THE TOT THE TOT TO A C C C C C T OF TO THE TOT THE TOT TO A C C C C C C C T OF TO THE TOT THE TOT TO A C C C C C C C C T OF TO THE TOT TO TO A C C C C C C C C C C T OF TO THE TOT TO TO A C C C C C C C C C C C C C C C T OT TO TO A C C C C C C C C C C C C C C C C C C C		CCASTATATCE WAT GRITTER A TT A CASTATATCE WAT GRITTER A TT A CASTACCASTAGTATA A TT A CASTACCASTAGTATA A TT A RIGGET ACCORTAGTATA A TT 27 000 CAACOARANA A TT 27 000 CAACOARANA CATCACATATATA CATCACATATATATA CATCACATATATAT
-siRNAs 5'D8(+)	TTCTT GACCTTGTAAGACCCC TTCTT GACCTTGTAAGACCCC TTCTTGACGTTGTAAGACCCC TTCTTGACGTTGTAAGACCCC TTCTTGACGTTGTAAGACCCC TTCTTGACGTTGTAAGACCCT TTCTTGACGTTGTAAGACCT TTCTTGACGTTGTAAGACCC TTCTTGACGTTGTAAGACCC TTCTTGACGTTGTAAGGCCC TTCTTGACGTTGTAAGGCCC		NA390 target Terarceencersaacratine Cerarceencersaacratine - статесенсетваастанте - статесенсетваастанте тетатесенсетваастанте тетатесенсетваастанте тетатесенсетваастанте тетатесенсетваастанте тетатесенсетваастанте тетатесенсетваастанте тетатесенсетваестанте тетатесенсетваестанте тетатесенсетваестанте тетатесенсетваестанте тетатесенсетваестанте тетатесенсетваестанте
TAS3 ta	GCATTORNATATTCTTTTTTTTTCTTGACCTTGTAGCCCT JTTTTTTTTTTTTTTTTTTTTGACCTTGTAGCCCT JTTTTTGGTTACTTTTTTTTGACCTTGTAGGCCT JTTTTTGGTTACTTTTTGACCTTGTAAGACCT JTTTTGCCTTCCCTTTTTGACCTTGTAAGACCT JTTTTCCCCTTCCCTTTTTGACCTTGTAAGACCT JTTTTCCCCTTCCCTTTTTCTGACCTTGTAAGACCT JTTTTCCCCTTCCCTTTTTCTGACCTTGTAAGACCT JTTTTCCCCTTCCCTTTTCTTGACCTTGTAAGACCT JTTTTCCCCTTCCCTTTTTCTTGACCTTGTAAGACCT JTTTTCCCCTTCCCTTTTTCTTGACCTTGTAAGACCT JTTTTCCCCTTCCCTTTTTCTTGACCTTGTAAGACCT JTTTTCCCCTTCCCTTTTTCTTGACCTTGTAAGACCT JTTTTCCCCTTCTTGACCTTGTAAGACCTT JTTTTCCCCTTCTTGACCTTGTAAGACCTT JTTTTTCCCTTTGACCTTGTAAGACCTT JTTTTTTTTTTTTGACCTTGACCTTGTAAGACCTT JTTTTTTTTTTTTGACCTTGTAAGACCTT JTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		mix
	Arabidopsis Populus Vitts Theobroma Glycine Lotus Sorghum Triticum Hordeum Picea	Consensus	Arabidopsis Populus Vitis Malus Glycine Conza Sorghum Hordeum Picea Consensus

U.S. Patent

Figure 6D

FIGURE 7

FIGURE 8A

FIGURE 8B

miR390b ^{5'} uch² Au - Wuhöld² Ausha^{AU} Accurate^{AU} Ascureate^{AU} eranvation ⁶ uch² Au - Wuhöld² August^{AU} Accurate^{AU} Accurate^{AU} August^{AU} Accurate^{AU} August^{AU} Accurate^{AU} August^{AU} Accurate^{AU} August^{AU} Accurate^{AU} August^{AU} Accurate^{AU} August^{AU} August^A

FIGURE 9A

FIGURE 9B

FIGURE 10A

FIGURE 10C

Figure 10B

MIRI56a	aaacgggttcctaatctt TATATATA ccttccatcatcaaaagaccattc A ttgttcact
MIR156a	ataaagaaaggtaagactctttgaaatagagagagataaggttttctcttAtcttcttct
MIR156C	tettetectetettattattatetateteteteecgaatatttetetGeetttagtt
MIR156C	ctcttctccttcqqt TATAAATA ttctctcccqqttttqcttqtttaacct A aaagcctca
MIR156e	tctatccccattfggcTATAAAAAgccccgacaggtcfcagtttcttcccAcatccaaag
MTR156f	tetetesattttggcTATAAAAagccacaagggtttcccatttcttcccGcagccaatg
MTP157C	
MTDIE7d	
MIRIS/U	
MIRIS9a	LGLLCCLLLCLLCLLCLLCLLCLLCLLCLLCLLCLLCLLC
MIRI59a	acgaatatctaaaccacTATAATTAcgactctctatctatcatttcttccAaaacatgac
MIRI59D	ggctacagatttttgtctttaaaaagccattcaagtttcaatggtttttcActtttgttc
MIR319a	gttctaaatttgaagct TATAAAAA cccatcactacttttgcatacttgt A tccgcagtg
MIR319b	tacctttgtttttgcTATAAAAAgccataactccttcattttctttagacAtctcttctt
MIR160a	tcttgtctacaTATACATATATTTATAtacacacatgtatctctctcatcAcacccttaa
MIR160a	atcccacccttaattqtttTATATAAAccatttctcctctctctccatcAccttcaatc
MIR160b	tttatcatttttctcctcTATATATAtgtgccaccattcctcttatactcAtaactctcc
MTR160c	tcttctctttccccttTATATATTtgtaccacatattcctctcaaccAaaactcttc
MTR161a	ctitetettettesttea TATTTATA tacaacetteteteaettatete ta ateateet
MTD1625	
MTD162a	
MTD1C2a	
MIRIOZA	
MIRI63a	calcaadgaadattagrafaafagcatagaggcgtccatggattatcAcagttctca
MIR164a	ctagcaacctagcact TATATATG tagagtttgtgaaatttagggcagac A agcccccac
MIR164a	atgcaatctttgggccTATATATACaaacctttccataaccaaagttctcAtactacaaa
MIR164D	atagatatttccgtttgc TATAAATG agaaagcacttacaacatacatacAttctctctt
M1R165a	tgtttctgttgtgtct TATTAAAA gcccatcttcgtctccgccactcatcAttccctcat
MIR166a	tetecactactcaatttetteataaaacccccetttttattteteteatt e tetetteea
MIR166a	aatttetteataaaaeeeeetttttattteteteatteteteteteeateAteaeeaete
MIR166b	tettgagtttttttetettettaaaaacetettetteaettateettete A teattetet
MIR166C	tggtcatttgtgcctc TATATATA caagacataggtttattttgtctcac A cataccttt
MIR166d	ttgctcctctctctatgTATAAATAttcgcctcacacatagacctatttAgcttcttct
MIR167a	teteeteettateeetteTATATAAAcaetegtettettetteaettgatGaacagaaaa
MIR167b	caaatcctctctcatcttttcTATAAGTAtctatagcgcctcttaaaccAcaaagcatc
<i>MIR169a</i>	tatetetgacceatetteTATATAAAcceagagegggtaagteetetagtAtteataage
MIR169c	aactggtagaaagatcTATAAGTAcgatacaccttatacttcaagagagcAagacaatgc
MIR169h	ttcgtacggtcatgcctatataacacacatagtagtcttgtgggatactcAtcaacaacc
MIR1691	ttccttctctcaagggt TATAAATA aaacgagagcacatgaatgtaaggcAtgagacata
MIR169n	
<i>MIR170a</i>	tgagagtagcágágt TATTAAAŤ gčtťcgcagáattgcagťťgcacaťťc A ctcccttct
MIR171a	taattetteeteaaatetttetetettttteaet TATATATATA ttteaat T tteatttat
MIR171b	
	cttcttcaaccatcttcgTATTTTATtcttcttcttcactatgcatactcAtaaacttrg
MTR171C	cttcttcaaccatcttcg TATTTATA tcttcttcactatgcatactc A taaactttg tcttcatcaccatcttcg TATTTATA tctccttcactatgcatactc A taaactttg
MIR171C MTR172a	cttcttcaaccatcttcg TATTTATA tctccttcatcatgcatactc A taaactttg tcttcatcaccctcttcg TATTTATA tctccttcactctgcaaacccaag A aaaaacatt ccaaataaatcaaca TATTATT Attacaccagtcacatctcttactgtgc ATATATAT
MIR171C MIR172a MIR172a	cttcttcaaccatcttcg TATTTATA tctccttcatcatgcatactc A taaactttg tcttcatcaccctcttcg TATTTATA tctccttcactctgcaaacccaag A aaaaacatt ccaaataaatcaaca TATATATT attacacagtcacatctcttactgtgc ATATATATT t acatctcttactgtgca TATATATT tagacaaacacatctctctctctct A tctctctca
MIR171C MIR172a MIR172a MIR172a	cttcttcaaccatcttcg TATTTATA tctccttcactatgcatactcAtaaactttg tcttcatcaccctcttcg TATTTATA tctccttcactctgcaaacccaagAaaaaacatt ccaaataaatcaaca TATATATT attacacagtcacatctcttactgtgc ATATATATT t acatctcttactgtgca TATATAT TtagacaaacacatctctctctctctAtctctctca gttttactatttagcag TATATATT TaagaagttcagatgttattcgatcAtctgtttt
MIR171C MIR172a MIR172a MIR172a MIR172b	cttcttcaaccatcttcgTATTTATAtcttcttcttcactatgcatactcAtaaactttg tcttcatcaccctcttcgTATTTATAtctccttcactctgcaaacccaagAaaaaacatt ccaaataaatcaacaTATATATTattacacagtcacatctcttactgtgcATATATATT acatctcttactgtgcaTATATATTtagacaaacaacatctcttctcttAtctctcta gttttactattttagcagTATATATTaagaagtcagatgttattcgatcAtctgtttt acagtcattgcgtgtctcTATAATT
MIR171C MIR172a MIR172a MIR172a MIR172b MIR172b	cttcttcaaccatcttcgTATTTATAtcttcttcttcactatgcatactcAtaaactttg tcttcatcaccctcttcgTATTTATAtcttcttcttcactatgcatactcAtaaactttg ccaaataaatcaacaTATATATTattacacagtcacatctcttactgtgcATATATATT acatctcttactgtgcaTATATATTatgacaaacacatctcttcttcttatctgtgcATATATATT agttatttagcagTATATATTagacagatgttattcgatcAtctgttttt aggtcattgcgtgttctTATAAATAccacacttcacttcttcttcacttgCaccttcat ttttctcgtttttttcttcttcttctccaagagatgttattcgatgttagatct
MIR171C MIR172a MIR172a MIR172a MIR172b MIR172b MIR172b	cttcttcaaccatcttcgTATTTATAtcttcttcttcttcactatgcatactcAtaaactttg tcttcatcaccctcttcgTATTTATAtcttccttcactatgcatactcAtaaactttg tcttcatcaccctcttcgTATTTATAtctccttcacttgcaaacccaagAaaaaacatt ccaaataaatcaacaTATATATTattacacagtcacatctcttactgtgcATATATATT acatctcttactgtgcaTATATATTtagacaaacacatctcttctctctttatctctcta gttttactatttagcagTATATATTaagaagttcagatgttattcgatcAtctgttttt aagtcattgcgtgtctcTATAAATAccacacttcaccttcttcttctacttGcacctcca ttttctcgtttttttcttcttcttctccacttgagaacagattagatgatca
MIR171C MIR172a MIR172a MIR172b MIR172b MIR172b MIR172c MIR172c	cttcttcaaccatcttcgTATTTATAtcttcttcttcactatgcatactcAtaaactttg tcttcatcaccctcttcgTATTTATAtcttccttcactatgcatactcAtaaactttg tcttcatcaccctcttcgTATTTATAtctccttcacttgcaaacccaagAaaaaacatt ccaaataaatcaacaTATATATTattacacagtcacatctcttactgtgcATATATATT acatctcttactgtgcaTATATATTtagacaaacacatctcttctcttcttAtctctcta gttttactattttagcagTATATATTaagaagttcagatgttattcgatcAtctgttttt aagtcattgcgtgtctcTATAAATAccacacttcaccttcttcttcttcacttGcacctcta ttttctcgtttttttcttcttcttctccaggagaaaagAttagatcta tttaattgttaatTATATATATttagcacatcattggagaaaacaccAaataggctc
MIR171C MIR172a MIR172a MIR172b MIR172b MIR172c MIR172c MIR172c	cttcttcaaccatcttcgTATTTATAtcttcttcttcactatgcatactcAtaaactttg tcttcatcaccctcttcgTATTTATAtcttccttcactatgcatactcAtaaactttg tcttcatcaccctcttcgTATTTATAtctccttcactctgcaaacccaagAaaaaacatt ccaaataaatcaacaTATATATTattacacagtcacatctcttactgtgcATATATATT acatctcttactgtgcaTATATATTtagacaaacacatctcttcttctttatctcttcta gttttactattttagcagTATATATTaagaagttcagatgttattcgatcAtctgtttt aagtcattgcgtgtctcTATAAATAccacacttcaccttcttcttcttcacttGcacctcca tttttctcgtttttttcttcttcttctccaagaaaatagagatcgaaaagAttagatcta tttaattgttaatTATATATATATAtttatgcacatcattggdgaaaacaccAaataggctc tcttatcgcttcaTATATATATAAagtctacatctactttttctgtcActaggtcaga
MIR171C MIR172a MIR172a MIR172b MIR172b MIR172c MIR172c MIR172c MIR172c	cttcttcaaccatcttcgTATTTATAtcttcttcttcttcactatgcatactcAtaaactttg tcttcatcaccctcttcgTATTTATAtcttcttcttcactatgcatactcAtaaactttg tcttcatcaccctcttcgTATTTATAtctccttcacttgcaaacccaagAaaaaacatt ccaaataaatcaacaTATATATTattacacagtcacatctcttactgtgcATATATATT acatctcttactgtgcaTATATATTtagacaaacaacatctcttctcttAtctctctca gttttactattttagcagTATATATTagacagatgttattcgatcAtctgttttt aagtcattgcgtgtctcTATAAATAccacacttcacttcttcttcttcacttGcaccttca ttttactgtttttttcttcttcttctcaagaaaatagagatcgaaaagAttagatcta tttaatttgttaatTATATATATATtagcacatcattggagaaaacaccAaataggtc tctttatcgcttcaTATATATATAttttatgcacatctattctttctaggtcActagctaga aaaaggttttacggttggTATAAAAGacttgcaatcttgagatatgtcAtattgagaa
MIR171C MIR172a MIR172a MIR172b MIR172b MIR172c MIR172c MIR172c MIR172c MIR172c	cttetteaaccatetegTATTTATAtettettettetteactatgeataeteAtaaacttg tetteateaccatettegTATTTATAtettettetteactatgeataeteAtaaacttg tetteateaccacatetegTATTTATAtetteetteacttgeaaaccaagAaaaaacatt ccaaataaateaacaTATATATTTattacacagteacatetettaetgtgeATATATATT acatetettaetgtgeaTATATATTtagacaaacacatetettettettettettea gttttaetatttageagTATATATTaagaagtteacgatgttattegateAtetgtttt aagteattgegtgteteTATAAATAccacacetteacettettetteaettGeacettea ttttaettgttaatTATATATATCtecaagaaaatagagategaaaagAttagateta tttaatttgttaatTATATATATAttttatgeacateattggagaaaacacaAaataggete tetttategetteaTATATATATAAAAGaettgeaatettettetteaggteActagetaga aaaaggttttaeggttgtgTATAAAAGaettggeatetggagatagteAtattgagaa atagteatattgagaactettageetttggettetgtteetgaeaettAtatagtgaa
MIR171C MIR172a MIR172a MIR172b MIR172b MIR172c MIR172c MIR172c MIR172e MIR172e MIR172e	cttetteaaccatettegTATTTATAtettettettettetteaatatetgatettegatetteg tetteateaccatettegTATTTATAtettettettetteactatgeataeteAtaaaetttg tetteateaccatettegTATTTATAtetteetteacttegeaaaccaagAaaaaaaatt ccaaataaatcaacaTATATATTTattacacagteacatetettettettettettette actetettaetgtgcaTATATATTtagacaaacacatetettettettettettette agteattgegtgteteTATATATTaagaagtteagatgttattegateAtetgttttt aagteattgegtgteteTATAAAATAccacacetteacettettetteacttgCacetetea ttttetegtttttttettettettetecaagaaaatagggategaaaagAttagateta tttaatttgttaatTATATATATATAtttatgcacatetatettettetaggteActagetg aaaaggttttaeggttgtgTATAAAAGaettgcaatettggteActagetagaa atatgteatattgagaactetttageetttggettetgtteetgacaettAtattgagaa ttteatatgagtgTATATATTCatgtaectatetettetteagteAcaaatagtgaa ttteatatggtgTATATATTCatgtaectatetettettetteAcaaateca
MIR171c MIR172a MIR172a MIR172b MIR172b MIR172c MIR172c MIR172c MIR172e MIR172e MIR172e MIR172e	cttcttcaaccatcttcgTATTTATAtcttcttcttcttcactatgcatactcAtaaactttg tcttcatcaccctcttcgTATTTATAtcttcttcttcactatgcatactcAtaaactttg tcttcatcaccctcttcgTATTTATAtctccttcacttgcaaacccaagAaaaaacatt ccaaataaatcaacaTATATATTattacacagtcacatctcttattgtgcATATATATT acatctcttactgtgcaTATATATTtagacaaacacatctcttcttcttAtctctcta gttttactatttagcagTATATATTaagaagttcagatgttattcgatcAtctgttttt aagtcattgcgtgttctTATAAATAccacacttcaccttcttcttcacttGcaccttca tttttctcgtttttttcttcttcttctcaagaaaatagagatcgaaaagAttagatcta tttaatttgttaatTATATATATAAAAGacttgcaattgcgatagtcAtatggcaaa aaaaggttttacggttgtgTATATATAAAGacttgcaatcttgttcttatatgagaa atatgtcatattgagaactctttagcctttggcttctgttcctgacacttAtatggaaa ttcatatgagagtcTATATATTcatgtacctatcttctcaattgctctctctcAccaaaatca tgttagatctgaggtcTATTAAAACcacatctatctcttctcaattgctcAtatgagaa
MIR171C MIR172a MIR172a MIR172b MIR172b MIR172c MIR172c MIR172c MIR172e MIR172e MIR172e MIR172e	cttetteaacatettegTATTTATAtettettettetteattatatettg tetteateacetettegTATTTATAtettettettetteattatageataeteAtaaaetttg tetteateacetettegTATTTATAtetteetteattettettettettettette caaataaateaacaTATATATTTattaeacaagteacatetettettettettettette agtettaettttageagTATATATTtagacaaacaatetettettettettettettette agteattgegtgteteTATAAATAccacaetteacettettettettettettette ttttettettettette
MIR171C MIR172a MIR172a MIR172b MIR172b MIR172c MIR172c MIR172c MIR172c MIR172e MIR172e MIR394a MIR394a	cttetteaaccatettegTATTTATAtettettettetteateaacttetg tetteateacetettegTATTTATAtettettettetteaetatgeataeteAtaaaetttg tetteateacetettegTATTTATAteteetteaettegeaaacceaagAaaaaaeatt ccaaataaateaacaTATATATTTATAteteetteaettetettaetgtgeATATATATT acatetettaetgtgeaTATATATTtagacaaacaatetettettettettatetettea gttttaetatttageagTATATATTaagaagteagatgttattegateAtetgtttt aagteattgegtgteteTATAAATAccacaetteaeettettettetteaettGeaeettea ttttaettgttaatTATATATATAtetteagaaaatagagategaaaagAttagateta tttaatttgttaatTATATATATAttttagcacateatetettettetteaggteActagetga aaaaggttttaeggttggTATATATAAAGaettgeaatettgagatagteAtatggaa atagteatatggagaaetettageetttggettetgttettetetetaaaagaa tteatatgagggTATATATATATAtegaatetteeatetettettetetetaaaaagaa atagteatatggagaaetettageetttggettetgtetetgteettaatatggaa tteatatgagtgTATATATTeatgtaeetatetetteeaatetettettettatecateaaaatea tgttagatetgaggteTATATATAAAAGaettgeaatetteaateteettettettetetettateeaaaatea tgttagatetgaggteTATATATATATATATATATECAACCAAAACGAACTAAAAGaettetteaatettettettettettettettettettet
MIR171C MIR172a MIR172a MIR172b MIR172b MIR172b MIR172c MIR172c MIR172c MIR172e MIR172e MIR172e MIR394a MIR394a MIR394a MIR395c	cttetteaacatettegTATTTATAtettettettetteaatatgeataeteAtaaacttg tetteateaceetettegTATTTATAtettettetteateatgeataeteAtaaacttg tetteateaceetettegTATTTATAtetteetteatetteaaceagAaaaaacatt ccaaataaateaacaTATATATTattaeacagteacatetettettettettaetgtgeATATATATT acatetettaetgtgeaTATATATTagacaaacacatetettettettettettea gttttaetatttageagTATATATTaagacagteagatgttattegateAtetgtttt aagteattgegtgtet TATAAATA ccacaetteacettettettetteattgagateta tttaettgttaatTATATATATAtttagcacateatetggagaaaacaeagattaggtet atttaettgttaatTATATATATATAtttagcacateattggagaaaacaeacaataggete tetttategetteaTATATATATAttttatgcacateattggagaaaacaeAaataggete tetttateggtttgtgTATAAAAGaettgcaatettgagatagteAtattgagaa aaaaggttttaeggtttgtgTATAAAAGaettgcaatettgagatatgteAtattgagaa tteatatgagtgTATATATTeatgtacetatetettecaattgetteteAtataggaa tteatatgagtgTATATATATAttgtacegatetteaatetettettettettettettettettette agtagatetgaggteTATAAAACegaatettecaattgettetettettettettettettettettettette ggatettaageeagettaatatgeegtetaaaggaacteatetgeCtetetetea agtagatetgaggteTATAAAAtecgaateettetettettettettettettettettettette
MIR171C MIR172a MIR172a MIR172b MIR172b MIR172b MIR172c MIR172c MIR172c MIR172e MIR172e MIR172e MIR172e MIR394a MIR394a MIR394a MIR395c MIR395e	cttetteaacactettegTATTTATAtettettettettetteaacactetutug tetteateaceactettegTATTTATAtettettetteaacactageataatetaaactt ccaaataaateaacaTATATATTTATAteteetteaettegeaaaceaagAaaaaacatt ccaaataaateaacaTATATATTTattacacagteacatetettaetgtgeATATATATT acatetettaetgtgeaTATATATTatgacaaacacatetetettettettettette agteattgegtgteteTATATATTagacaaacacatetetettettetettette agteattgegtgteteTATAAATAccacactteacettettetteaettgeacateta tttaettgttaatTATATATAtetteteeaagaaaatagagategaaaagAttagateta tttaattgttaatTATATATATAttttatgeacateatetgeggaaaacacAaataggete tetttategetteaTATATATATAttttatgeacatetatetettettetaggteActagetaga aaaaggttttaeggttgtgTATAAAAGaettgeaatettgagatatgteAtattgagaa ttteatatgagaaetetttageetttggettetgtteetgaeaettAtatagtgaa ttteatatgagtgTATATATTeagaacetetteaetetettetettettettetetetteteaa gggttttaaggetTATTAAAAtgeettegatetteaatetettettettettettetetete
MIR171c MIR172a MIR172a MIR172b MIR172b MIR172c MIR172c MIR172c MIR172e MIR172e MIR172e MIR394a MIR394a MIR395c MIR395c MIR395a	cttetteaacactetegTATTTATAtettettettettetteaacatgeataetegatettg tetteateaceetettegTATTTATAtettettetteaetatgeataeteAtaaaetttg tetteateaceetettegTATTTATAtetteetteaetatgeataeteAtaaaetttg ccaaataaateaacaTATATATTTattaecaegteaeatetettettettettettette agteattgegtgeteTATATATTTagacaaacaeatetetettettettettettette agteattgegtgteteTATATATTaagaagteagaagtgtattegateAtetgttttt aagteattgegtgteteTATAAATAceacaetteaetteettettetteaettgeaeataggtet tttaettgttaatTATATATATAtttageaeaatagggategaaaagAttagateta tttaettgttaatTATATATATATAtttageaeateatetettetteagtegteaaataggete tetttaegttegtgttgtgTATAAAAGaettgeaatettgggaaaacaecAaataggete tetttateggttgggTATATATATAtageaetteggettetgteetggaaaatgteatatggaa aaaaggtttaeggttgtgTATAAAAGaettgeaatettgagaaatgteAtattgagaa atatgteatattgagaaetetttageetttggettetgtteetgaeaettAtatagtgaa ttteatatgagggtTATATATTeatgtaectatetetteaattgetteteAceaaaatea tgttagatetgaggteTATTAAAAteegaateettteaatetettteatettettetteteaeaaatea cetteaataecAATAAATAteaecaecgteetteeteteetaeatetettettetaateaaaaaa atatgteaatattgagaatatageeggaacaecaeaaatea tgttagatetgaggteTATATAAAAteegaateetteeteteetaeaateteeteteeteetee gaetetttgeaataatTATAAATAggeatgeagtgtagtgttgttgtAteatgacag acaatgetteeaattgTATATATATAAaaacgeeagteetteeteeteeteeteeteeteeteeteeteeteete
MIR171c MIR172a MIR172a MIR172b MIR172b MIR172c MIR172c MIR172c MIR172c MIR172c MIR172e MIR172e MIR394a MIR394a MIR394a MIR395c MIR395c MIR395a MIR395b	cttetteaacatettegTATTTATAtettettettetteatatgeataetegaactteg tetteateacetettegTATTTATAtettettetteateatgeataetegaacatetg tetteateacetettegTATTTATATateteetteaettegeaaaceagAaaaaacatt ccaaataaateaacaTATATATTTataacaagteacatetettaetgtgeATATATATTt acatetettaetgtgeaTATATATTtagacaaacaatetettettettettatettettea gttttaetatttageagTATATATTaagaagteagatgttattegateAtetgtttt aagteattgegtgteteTATAAATAccacaetteaeettettettetteaettGeaeettea ttttetegtttttttettettetteteaagaaaatagagategaaagAttagateta tttaatttgttaatTATATATATAttttagcacatetatettettettetaggteActagetaga aaaaggtttaeggttggTATATATATAAAAGaettgeaatettgagatatgteAtattggaa attgteatatggagaetettaggeetteggettetgtteetgaeaettAtatagagaa attgteatatggagaetettaggeetteggettetgteetgaeaettAtataggaa attgteatatggaggteTATATATTeatgtaeetatetettetetetetetetetettetetete
MIR171c MIR172a MIR172a MIR172b MIR172b MIR172c MIR172c MIR172c MIR172c MIR172c MIR172c MIR394a MIR394a MIR394a MIR395c MIR395b MIR395b MIR397b	cttetteaacacatteg TATTTATA tettettettetteateaacacatetegataetegataeteg tetteateaceetetteg TATTTATA tettettetteateacaaacacaacateteg ccaaataaateaaca TATATATT attacacagteacatetettaetgtge ATATATATT t acatetettaaetgtgea TATATATT atgaacaaacaateteettetetettatetettea gttttaetatttageag TATATATT aagaagteagatgttattegate A tetgtttt aagteattgegtgtete TATAAATA ccacaetteaeetteettetteteattagatea tttaettgttaat TATATAT Attttageacaateteetteteteteagtegateaga tttaetgettetttttettetteteeaagaaaatagagategaaaag A ttagatea tttaatttgttaat TATATAT Attttageacateatetettetetgget A ctagetaga aaaaggttttaeggttgg TATATATA AAGaettgeaatettgagatagte A tatgagaa atatgteatattgagaaetettageetteggettetgetettetetete
MIR171C MIR172a MIR172a MIR172b MIR172b MIR172c MIR172c MIR172c MIR172c MIR172c MIR172c MIR394a MIR394a MIR394a MIR395c MIR395c MIR395c MIR395b MIR397b MIR398c MIR399b	cttetteaacacatetegTATTTATAtettettettetteaatatgeataetegatettg tetteateaceetettegTATTTATAtettettetteateatgeataeteGAtaaaetttg tetteateaceetettegTATTTATAtetteetteaettegeaaaceagAaaaaaeatt ccaaataaateaacaTATATATTattaeaeagteaeatetettetettettatetgtgeATATATATT acatetettaetgtgeaTATATATTaagaagateagatgtatteggatAtetgtttt aagteattgegtgteteTATAAATAceaeaetteaettettettetteaettGeaeettea tttaetttttettettettetteteaagaaaatagagateggaaaagAttaggatea attaatttgttaatTATATATATAttttatgeaeatettettettettetggteActaggtaga aaaaggtttaeggtttgtgTATATATAAAGaettgeaatettgagaaaagAttaggatea attagteatattgagaaetettageetttggettetteteetaaaaaca tteatatgagtgTATATATTeaggaeatettgggataagteAtaatggaa attagteatattgagaaetettageetttggettetteteetaaaaca tgttagatetgaggteTATTAAAAGaettgeaatetteettettetettategetteaaat agggtttaaggagtTATATTeaggaecateatetetettettettetteteeteaaaaca agggtttaageeaggteTATTAAAAteegaateetteetettettettettetteteete agggtttaageeaggttaatatageegteataagagaaeteatetegeCteetetea attegteatattgaggteTATTAAAAteegaategteataetettettettettettettettetteteete agggttteaatatgTATAAAATAteettettettettettettettettettettettette
MIR171C MIR172a MIR172a MIR172b MIR172b MIR172b MIR172c MIR172c MIR172c MIR172c MIR172e MIR172e MIR172e MIR172e MIR394a MIR394a MIR394a MIR395c MIR395c MIR395b MIR399b MIR399c	cttetteaacactettegTATTTATAtettettettetteaactatgeataeteAtaaacttg tetteateaceetettegTATTTATAtettettetteateatgeataeteAtaaacttg tetteateaceetettegTATTTATAtetteetteaettegeaaaceagAaaaaacatt ccaaataaateaacaTATATATTTattaeacagteacatetettaetgtgeATATATATT acatetettaetgtgeaTATATATTatgaeaaacacatetettetettettettea gttttaetatttageagTATATATTaagaagteagatgtattegateAtetgttttt aagteattgegtgteteTATAAATAccaeactteaettettetteteaettGeacettea ttttetegttttttettettetteteagagaaatagggategaaaagAttagateta tttaattgttaatTATATATATAttttageacateatetettettetaggteActaggtaga aaaaggtttaeggttggTATATATATAAAAGaettgeaatettgggataagteAtaatggaga atatgteatattgagaaetettageetttggettetgtteetgaeaettAtatagggaa tteatatgagtgTATATATTeagtaectatetetteetettettetetetteteaa gtgtagatetgaggteTATTAAAAtegaatetetetetteetettettettetetetetete aggetttegaaaataTATAAAAAGaettgeaatetteatetetttettettettetetetetet

FIGURE 13

35S:GUS

35S:TAS1cPDSd3d4

35S:TAS1cPDSd3d4

METHOD TO TRIGGER RNA **INTERFERENCE**

REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. provisional application No. 60/642,126, filed Jan. 7, 2005, the content of which is incorporated herein by reference in its entirety.

STATEMENT OF GOVERNMENT SUPPORT

This invention was made with United States government support pursuant to grant MCB-0209836 from the National Science Foundation, grant A 143288 from the National Institutes of Health, and grant 2005-35319-15280 from the 15 USDA; the United States government has certain rights in the invention.

FIELD

This disclosure relates to methods of regulating gene expression in vivo in plant, fungi, and invertebrate cells, as well as constructs and compositions useful in such methods. Further, it relates to RNAi-inducing nucleic acid constructs having a microRNA or siRNA target sequence (initiator 25 sequence) and one or more siRNA-generating sequences directed to one or more target genes or RNAs, whereby the siRNA-generating sequences are in 21-nucleotide register with the cleavage site guided by the microRNA or siRNA initiator.

BACKGROUND

Mechanisms that suppress the expression of specific cellular genes, viruses or mobile genetic elements (such as trans- 35 posons and retroelements) are critical for normal cellular function in a variety of eukaryotes. A number of related processes, discovered independently in plants (Matzke et al., Curr. Opin. Genet. Dev. 11:221-227, 2001), animals (Fire et al., Nature, 391:806-811, 1998) and fungi (Cogoni, Annu. 40 Rev. Microbiol. 55:381-406, 2001), result in the RNA-directed inhibition of gene expression (also known as RNA silencing). Each of these processes is triggered by molecules containing double-stranded RNA (dsRNA) structure, such as transcripts containing inverted repeats or double-stranded 45 RNA intermediates formed during RNA virus replication. Non-dsRNAs, also referred to as aberrant RNAs, may also function as initiators of RNA silencing. Such aberrant RNAs may be converted into dsRNAs by silencing-associated RNAdependent RNA polymerases (RDRs), which have been iden- 50 tified in plants, fungi and C. elegans (Tuschl, ChemBiochem, 2:239-245, 2001).

Two major classes of small RNAs have been characterized: short interfering RNAs (siRNAs) and microRNAs (miR-NAs). The primary transcripts that eventually form miRNAs 55 are transcribed from non-protein-coding miRNA genes. These transcripts form hairpin structures that are then processed by Dicer (or by Dicer-like activities in plants) to yield small RNA duplexes containing 2-base overhangs at each 3' end. The mature single-stranded miRNA approximately 60 20-22 nucleotides in length forms by dissociation of the two strands in the duplex, and is selectively incorporated into the RNA-Induced Silencing Complex, or RISC (Zamore, Science, 296:1265-1269, 2002; Tang et al., Genes Dev., 17:49-63, 2003; Xie et al., Curr. Biol. 13:784-789, 2003).

siRNAs are similar in chemical structure to miRNAs, however siRNAs are generated by the cleavage of relatively long

65

double-stranded RNA molecules by Dicer or DCL enzymes (Zamore, Science, 296:1265-1269, 2002; Bernstein et al., Nature, 409:363-366, 2001). In animals and plants, siRNAs are assembled into RISC and guide the sequence specific ribonucleolytic activity of RISC, thereby resulting in the cleavage of mRNAs, viral RNAs or other RNA target molecules in the cytoplasm. In the nucleus, siRNAs also guide heterochromatin-associated histone and DNA methylation, resulting in transcriptional silencing of individual genes or 10 large chromatin domains.

MicroRNAs in plants and animals function as posttranscriptional regulators of genes involved in a wide range of cellular processes (Bartel, Cell 116:281-297, 2004; He & Hannon, Nat Rev Genet. 5:522-531, 2004). In the plant Arabidopsis thaliana, miRNAs regulate mRNAs encoding at least twelve families of transcription factors, several miRNA metabolic factors, and proteins involved in stress responses, metabolism, and hormone signaling (Jones-Rhoades & Bartel, Mol Cell 14:787-799, 2004; Kasschau et al., Dev Cell 20 4:205-217, 2003; Llave et al., Science 297:2053-2056, 2002b; Vazquez et al., Curr Biol 14:346-351, 2004a; Xie et al., Curr Biol 13:784-789, 2003). Plant miRNAs target a disproportionately high number of genes with functions in developmental processes, including developmental timing, control of cell proliferation, meristem cell function, and patterning. Global disruption of miRNA biogenesis or function, or specific disruption of miRNA-target interactions, can result in severe developmental abnormalities (Achard et al., Development 131:3357-3365, 2004; Chen, Science 303: 2022-2025, 2004; Emery et al., Curr Biol 13:1768-1774, 2003; Juarez et al., Nature 428:84-88, 2004; Kidner & Martienssen, Nature 428:81-84, 2004; Laufs et al., Development 131:4311-4322, 2004; Mallory et al., Curr Biol 14:1035-1046, 2004; Palatnik et al., Nature 425:257-263, 2003; Tang et al., Genes & Dev 17:49-63 2003; Vaucheret et al., Genes Dev 18:1187-1197, 2004), indicating that miRNA-based regulation is crucial for normal growth and development. This idea is reinforced by the conservation of most miRNAs and their corresponding targets through significant evolutionary time (Bartel, Cell 116:281-297, 2004). MicroRNAs have been identified by direct cloning methods and computational prediction strategies (Jones-Rhoades & Bartel, Mol Cell 14:787-799, 2004; Llave et al., Plant Cell 14:1605-1619, 2000a; Park et al., Curr Biol 12:1484-1495, 2002; Reinhart et al., Genes Dev 16:1616-1626, 2002; Sunkar & Zhu, Plant Cell 16:2001-2019, 2004).

Plant miRNAs usually contain near-perfect complementarity with target sites, which are found most commonly in protein-coding regions of the genome. As a result, most (but not all) plant miRNAs function to guide cleavage of targets through a mechanism similar to the siRNA-guided mechanism associated with RNAi (Jones-Rhoades & Bartel, Mol Cell 14:787-799, 2004; Kasschau et al., Dev Cell 4:205-217, 2003; Llave et al., Science 297:2053-2056, 2002; Tang et al., Genes & Dev 17:49-63 2003). In contrast, animal miRNAs contain relatively low levels of complementarity to their target sites, which are most commonly found in multiple copies within 3' untranslated regions of the target transcript (Lewis et al., Cell 115:787-798, 2003; Rajewsky & Socci, Dev Biol 267:529-535, 2004; Stark et al., PLoS Biol 1:E60, 2003). Most animal miRNAs do not guide cleavage, but rather function to repress expression at the translational or co-translational level (Ambros, Cell 113:673-676, 2003; He & Hannon, Nat Rev Genet. 5:522-531, 2004). At least some plant miR-NAs may also function as translational repressors (Aukerman & Sakai, Plant Cell 15:2730-2741, 2003; Chen, Science 303:2022-2025, 2004). Translation repression is not

an inherent activity of animal miRNAs, as miRNAs will guide cleavage if presented with a target containing high levels of complementarity (Doench et al., *Genes Dev* 17:438-442, 2003; Hutvagner & Zamore, *Science* 297:2056-2060, 2002; Yekta et al., *Science* 304:594-596, 2004; Zeng et al., *Proc* 5 *Natl Acad Sci USA* 100:9779-9784, 2003).

MicroRNAs form through nucleolytic maturation of genetically defined RNA precursors that adopt imperfect, self-complementary foldback structures. Processing yields a duplex intermediate (miRNA/miRNA*) that ultimately pro- 10 vides the miRNA strand to the effector complex, termed RISC (Khvorova et al., Cell 115:209-216, 2003; Schwarz et al., Cell 115:199-208, 2003). Plants contain four DICER-LIKE (DCL) proteins, one of which (DCL1) is necessary for maturation of most or all miRNA precursors (Kurihara & 15 Watanabe, Proc Natl Acad Sci USA 101:12753-12758, 2004; Park et al., Curr Biol 12:1484-1495, 2002; Reinhart et al., Genes Dev 16:1616-1626, 2002; Schauer et al., Trends Plant Sci 7:487-491, 2002). The DCL1 protein contains an RNA helicase and two RNaseIII-like domains, a central PAZ 20 domain and C-terminal dsRNA binding motifs. Animal miRNA precursor processing requires Drosha, another RNaseIII domain protein, and Dicer in sequential nucleolytic steps (Lee et al., Nature 425:415-419, 2003). HEN1 participates in miRNA biogenesis or stability in plants via a 3' 25 methylase activity (Boutet et al., Curr Biol 13:843-848, 2003; Park et al., Curr Biol 12:1484-1495, 2002). The dsRNAbinding HYL1 protein is necessary for miRNA biogenesis in cooperation with DCL1 and HEN1 in the nucleus. Based on sequence similarity, HYL1 has been suggested to function 30 like animal R2D2, which is required post-processing during RISC assembly (Han et al., Proc Natl Acad Sci USA 101: 1093-1098, 2004; Liu et al., Science 301:1921-1925, 2003; Pham et al., Cell 117:83-94, 2004; Tomari et al., Science 306:1377-1380, 2004; Vazquez et al., Curr Biol 14:346-351, 35 2004a). In animals, Exportin-5 (Exp5) regulates the transport of pre-miRNAs from the nucleus to the cytoplasm by a Ran-GTP-dependent mechanism (Bohnsack et al., RNA 10:185-191, 2004; Lund et al., Science 303:95-98, 2003; Yi et al., Genes Dev 17:3011-3016, 2003). In Arabidopsis, HST may 40 provide a related function to transport miRNA intermediates to the cytoplasm (Bollman et al., Development 130:1493-1504, 2003). Active miRNA-containing RISC complexes in plants almost certainly contain one or more ARGONAUTE proteins, such as AGO1 (Fagard et al., Proc Natl Acad Sci 45 USA 97:11650-11654, 2000; Vaucheret et al., Genes Dev 18:1187-1197, 2004). Argonaute proteins in animals were shown recently to provide the catalytic activity for target cleavage (Liu et al., Science 305:1437-1441, 2004; Meister et al., Mol Cell 15:185-197, 2004).

In addition to miRNAs, plants also produce diverse sets of endogenous 21-25 nucleotide small RNAs. Most of these differ from miRNAs in that they arise from double-stranded RNA (rather than imperfect foldback structures), in some cases generated by the activity of RNA-DEPENDENT RNA 55 POLYMERASEs (RDRs). Arabidopsis DCL2, DCL3, DCL4, RDR1, RDR2 and RDR6 have known roles in siRNA biogenesis (Dalmay et al., Cell 101:543-553, 2000; Mourrain et al., Cell 101:533-542, 2000; Peragine et al., Genes & Dev 18:2369-2379, 2004; Vazquez et al., Mol Cell 16:69-79, 60 2004b; Xie et al., PLoS Biol 2:642-652, 2004; Yu et al., Mol Plant Microbe Interact 16:206-216, 2003). For example, DCL3 and RDR2 cooperate in the heterochromatin-associated RNAi pathway, resulting in ~24-nucleotide siRNAs from various retroelements and transposons, 5S rDNA loci, 65 endogenous direct and inverted repeats, and transgenes containing direct repeats (Xie et al., PLoS Biol 2:642-652, 2004;

Zilberman et al., *Science* 299:716-719, 2003). RDR6 functions in posttranscriptional RNAi of sense transgenes, some viruses, and specific endogenous mRNAs that are targeted by trans-acting siRNAs (ta-siRNAs) (Dalmay et al., *Cell* 101: 543-553, 2000; Mourrain et al., *Cell* 101:533-542, 2000; Peragine et al., *Genes & Dev* 18:2369-2379, 2004; Vazquez et al., *Mol Cell* 16:69-79, 2004b; Yu et al., *Mol Plant Microbe Interact* 16:206-216, 2003). Ta-siRNAs arise from transcripts that are recognized by RDR6, in cooperation with SGS3, as a substrate to form dsRNA. The dsRNA is processed accurately in 21-nucleotide steps by DCL1 to yield a set of "phased" ta-siRNAs. These ta-siRNAs interact with target mRNAs to guide cleavage by the same mechanism as do plant miRNAs (Peragine et al., *Genes & Dev* 18:2369-2379, 2004; Vazquez et al., *Mol Cell* 16:69-79, 2004).

There is a need to develop methods and constructs that can be used to induce targeted RNAi in vivo. It is to such methods and constructs, and related compositions, that this disclosure is drawn.

SUMMARY OF THE DISCLOSURE

Provided herein are methods of generating one or more siRNAs in vivo; also provided are constructs and compositions useful in the methods. The methods do not depend on DNA or other synthetic nucleic acid molecules that contain inverted duplications (repeats) or dual promoters to form perfect or largely double-stranded RNA. Rather, the methods employ constructs that yield single-stranded RNA transcripts, and take advantage of endogenous (native or heterologous) or in vivo-produced miRNAs or siRNAs to initiate production of siRNAs from an engineered RNAi-triggering cassette. The miRNAs or siRNAs guide cleavage of the transcript and set the register (phase) for production of siRNAs (usually 21 nucleotides in length) encoded adjacent to the initiation cleavage site within the construct. The methods result in specific formation of siRNAs of predictable size and register (phase) relative to the initiation cleavage site. The method can be used to produce specific siRNAs in vivo for inactivation or suppression of one or more target genes or other entities, such as pathogens or pests (e.g., viruses, bacteria, nematodes). No exogenous hairpin or foldback structure is required in the provided constructs in order to generate siRNAs or to carry out RNAi-like inhibition of target gene(s).

Also provided are methods, and constructs for use in such methods, where the siRNAs are produced in a tissue-specific, cell-specific, or other regulated manner.

Further, transformed cells and organisms that contain a transgene including at least one RNAi-triggering cassette are also provided by this disclosure. For instance, transgenic fungi, invertebrate animals, and plants are provided that contain at least one RNAi-triggering cassette, which, when transcribed, produces at least one siRNA molecule complementary to a target sequence to be inhibited in that organism.

The foregoing and other features and advantages will become more apparent from the following detailed description of several embodiments, which proceeds with reference to the accompanying figures.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1. Refined prediction and validation of miRNA target genes in *Arabidopsis*. (A) Flowchart for miRNA target identification. The number of small RNAs (or targets) passing a filter is shown in parentheses. Predicted targets are classified into 5 bins based on validation data. The false negative rate in Bins 1 and 2 are based on 66 and 28 targets in the 'Rule development set', respectively (see Table 3). (B) Percent of mismatched and G:U base-pairs at each position of the Rule development set targets. Position 1 corresponds to the 5' end of the miRNA. (C) Minimum Free Energy (MFE) ratio of the Rule development set target duplexes. Black circles indicate Rule development set validated targets, open circles indicate rule development set targets only predicted computationally. (D) Number of predicted targets genes for a given miRNA-target duplex score, filtered by duplexes with an MFE ratio \geq 0.73. Total predicted targets (open triangles) and captured targets in the Rule development set (94) is indicated by the dashed line.

FIG. **2**. miRNA-target duplexes. (A) Target duplexes from ¹⁵ Bin 1 validated in this study. (B) Duplexes for predicted miRNA targets in Bin 3.

FIG. **3**. Validation of miRNA targets by 5'RACE. (A) Protein-coding miRNA targets. The miRNA-target duplex is highlighted, with the fraction of cloned PCR products terminating at a given position in the target validation assay (Llave et al., *Science* 297:2053-2056, 2002) indicated above the duplex. The distribution of cleavage products across all five predicted miR399 target sites is displayed above the schematic representation of At2g33770. (B) Non-coding miRNA 25 targets predicted by the EST database search. Each of these targets corresponds to a ta-siRNA-generating primary transcript.

FIG. 4. Characterization and expression profiling of Arabidopsis small RNA biogenesis mutants. (A) Phenotype of 30 hst-15 and rdr6-15 mutants. Rosettes (Col-0, rdr6-15, hst-15), first true leaf (Col-0, rdr6-15), bolt and flower (Col-0, hst-15) are shown. For array data in (b-e), normalized intensity is plotted as log₂ of the fold change relative to the control sample for each mutant, thus zero represents no change in 35 transcript abundance. (B) Profile of 81 of 94 miRNA target transcripts predicted previously and in this study (Bins 1 and 2, FIG. 1). (C) Profile of 12 of 18 miRNA targets genes predicted in this study. The solid lines indicate new targets from existing target families (Bin 3, FIG. 1), and the dashed 40 lines indicate novel miRNA targets (Bin 4, FIG. 1). Nonvalidated targets in Bin 5 are not shown. (D) Profile of transcripts significantly co-affected (P>0.01) in dcl1-7, hen1-1, and rdr6-15. (E) Profile of 93 predicted miRNA target transcripts (light lines), and PCA component 1 (dark line). (F) 45 Cladogram of the small RNA biogenesis mutant series. The correlation among groups $(r \times 100)$ is shown at each node. (G) Scatterplots of all genes showing normalized intensity values representing fold change (hyl1-2 vs. hst-15, dcl1-7 vs. hen1-1, hyl1-2 vs. dcl3-1).

FIG. 5. In-phase processing of trans-acting siRNAs directed by miR173 as the initiator. (A-C) Diagrammatic representation of the three TAS1 and on TAS2 loci. The naming convention used is TAS (for Trans-Acting SiRNA). Ta-siRNAs with functional evidence are shown by the sys- 55 tematic nomenclature (see text for details). The 21 nucleotide phase is indicated by brackets, with the first position starting from the miR173-guided cleavage site. The relative positions from the cleavage site are designated 3'D1, 3'D2, etc. Positions for which small RNAs are represented in the ASRP 60 sequence database are listed with the ASRP ID number. Relative positions of the At2g39675 and At3g39680 loci in Ara*bidopsis* chromosome 2 are shown in (C). (D) Detection and validation of ta-siRNAs by small RNA blot analysis. Small RNAs were detected using specific oligo probes, except At3g39680 antisense small RNAs which were detected with a 469 nucleotide radiolabeled RNA transcript. (E) Validation

of siR255 target genes by 5' RACE, and predicted Ag3g39681 (TAS2).3'D6(-) targeted PPR genes.

FIG. 6. In-phase processing of TAS3-derived trans-acting siRNAs guided by miR390. (A) Diagrammatic representation of the miR390 target locus, TAS3 (At3g17185). Labeling is as in FIG. 5, but with the 21-nucleotide phased positions designated 5'D1, 5'D2, etc., starting at the miR390-guided cleavage site. The two siRNAs that are predicted to guide cleavage of ARF3 and ARF4 are indicated. (B) Detection and validation of ta-siRNAs from the TAS3 locus. (C) T-Coffee program alignment of TAS3 orthologs in plants showing conservation of predicted TAS3 ta-siRNAs and miR390 target site. High levels of conservation are designated by light shading. (D) PLOTCON program similarity score (21 nt window) derived from alignment of 18 ARF3 and ARF4 genes from 16 species, over a 600 nt region. Two highly conserved regions are indicated by A and B, which are TAS3 ta-siRNA target sites. Below, validation of small RNA directed cleavage of ARF3 and ARF4 by 5' RACE. The predicted TAS3-derived ta-siR-NAs are shown below complementary regions of ARF3 and ARF4 sequences. (E) Consensus phylogenetic tree of the ARF family, showing miRNA and ta-siRNA regulated branches. Bayesian posterior probability was 100 except for labeled nodes.

FIG. 7. Model for miRNA-directed formation of ta-siR-NAs

FIG. 8. Validation of miRNAs in *A. thaliana*. (A) Prediction flowchart for miRNA validation. The number of small RNAs passing a filter is shown in parentheses. (B) Predicted secondary structure of miRNA precursors validated in this study. (C,D) Small RNA blot analysis of miRNAs. miR159 and miR167 are shown as traditional miRNA controls, AtSN1 is shown as an siRNA control. Ethidium bromide-stained gel (tRNA and 5S RNA zone) is shown at the bottom. Wildtype controls (Col-0 and La-er) are shown next to respective miRNA metabolism mutants (C) and ta-siRNA biogenesis mutants (rdr6-11 and sgs3-11) or transgenic plants expressing viral silencing (D).

FIG. 9. Strategy to map *Arabidopsis* MIRNA gene transcription start sites. (A) Schematic representation of a generic MIRNA transcript (top), and control SCL6-IV mRNA (middle) and miR171-guided cleavage product (bottom). The relative positions of oligonucleotides used in 5'RACE reactions are shown. (B) RLM-5'RACE reactions using poly(A)⁺selected RNA that was pretreated with calf intestinal phosphatase (CIP) plus tobacco acid pyrophosphatase (TAP, evennumbered lanes) or with buffer (odd-numbered lanes) prior to adaptor ligation. The 5'RACE products for SCL6-IV-specific RNAs (lanes1-4) and three MIRNA loci (lanes 5-10) were resolved on a 2% agarose gel. Gene-specific primers used for 5'RACE are indicated above each lane.

FIG. 10. MIRNA gene transcript start sites and core promoter elements. (A) Base frequency at MIRNA transcription initiation sites (n=63). (B) Genomic sequences (-50 to +10 relative to start sites) around 63 start sites (red letters) from 47 *Arabidopsis* MIRNA loci. Putative TATA motifs (bold) are indicated. These sequences correspond to SEQ ID NOs: 286-348. (C) Occurrence of high-scoring TATA motifs within a 250-nucleotide (-200 to +50) genomic context for 63 MIRNA transcripts.

FIG. **11**. Graphic representation of an artificial ta-siRNA construct made in the TAS1c context. The construct contains two 21-nt siRNA modules. The represented construct contains siRNAs designed to target mRNAs for *Arabidopsis* phytoene desaturase (PDS).

FIG. 12. Demonstration of artificial ta-siRNA biogenesis and activity in *Nicotiana benthamiana*. Introduction of each construct into *N. benthamiana* in a transient assay resulted in miR173-dependent formation of ta-siRNAs. In the case of 35S:TAS1cGFPd3d4 (A,B), the artificial ta-siRNA construct was co-expressed with a functional GFP gene. Expression of at least one artificial ta-siRNA was detected in a miR173dependent manner, by blot assay using each construct (GFP: A; PDS: C; PID: D). The GFP gene was silenced by the artificial GFP ta-siRNAs in a miR173-dependent manner (B). The same miR173 and ta-siRNA255 controls were used for PDS, PID, and GFP siRNA assays)

FIG. **13**. Artificial ta-siRNA biogenesis and activity in transgenic *Arabidopsis*. The PDS artificial ta-siRNA-generating construct was introduced into wild-type (Col-0) *Arabidopsis* and rdr6-15 mutant plants. Both strong and weak loss-of-function PDS phenotypes were detected, but only in ¹⁵ wt plants. The rdr6-15 mutant plants lack a critical factor for ta-siRNA biogenesis.

FIG. 14. Reconstruction of TAS1a, TAS1b, TAS1c, and TAS2 ta-siRNA Biogenesis in a Transient Expression Assay using *N. benthamiana*. (A and B) Constructs with wild-type ²⁰ miR173 target sites. Constructs were expressed or coexpressed as indicated above the blot panels. The small RNAs detected in blot assays are shown to the right of each panel. Duplicate biological samples were analyzed for most treatments. (C) Constructs with mutagenized target site or ²⁵ miR173 sequences. Target site and miRNA combinations tested are illustrated schematically above the blot panels. Mutagenized positions are in bold. The miR173res1 probe hybridized to both the miR173 and miR173res1 sequences.

BRIEF DESCRIPTION OF THE SEQUENCE LISTING

The nucleic acid sequences listed below are shown using standard letter abbreviations for nucleotide bases, as defined 35 in 37 C.F.R. §1.822. Only one strand of each nucleic acid sequence is shown, but the complementary strand is understood as included in embodiments where it would be appropriate. In the accompanying sequence listing:

SEQ ID NOs: 1-142 and 281-285 are representative target 40 (initiator) sequences. The initiator sequences are shown as RNA; it is understood that the corresponding DNA sequence would comprise a T in place of any U. The sequences are broken out based on the miRNA complementary to the provided initiator (target) sequences. The corresponding miRNA 45 sequence can be deduced for each target sequence; it is the reverse complement formed of RNA.

SEQ ID NOs: 143-154 are predicted miRNA candidates (shown as RNA) that were tested experimentally, and which are discussed in Example 5.

SEQ ID NOs: 155-206 are miRNA sequences (shown as RNA), which are discussed in Example 5.

SEQ ID NOs: 207-276 are validated miRNA sequences cloned from *Arabidopsis* small RNA libraries (shown as RNA), and which are discussed in Example 5.

SEQ ID NO: 277 is the nucleic acid sequence of an artificial ta-siRNA locus targeting *Arabidopsis* gene encoding GFP.

SEQ ID NO: 278 is the nucleic acid sequence of an artificial ta-siRNA locus targeting *Arabidopsis* gene encoding 60 phytoene desaturase (PDS).

SEQ ID NO: 279 is the nucleic acid sequence of an artificial ta-siRNA locus targeting *Arabidopsis* gene encoding PINOID (PID).

SEQ ID NO: 280 is an example of a sequence that would be 65 contained in DNA construct containing SEQ ID NO: 1 as an initiator sequence.

SEQ ID NOs: 286-348 are genomic sequences (-50 to +10 relative to start sites) of 63 start sites in 47 *Arabidopsis* miRNA loci. These are shown graphically in FIG. **10**B.

SEQ ID NOs: 349 to 614 are primers used in 3'RACE confirmation sequencing.

DETAILED DESCRIPTION

I. Abbreviations

AGO asRNA cDNA DCL dsRNA GFP LKR miRNA nt PID PDS PTGS RDR RISC RNAi siRNA ssRNA	Argonaute antisense RNA complementary DNA dicer-like double-stranded RNA green fluorescent protein lysine ketoglutarate reductase microRNA nucleotide PINOID phytoene desaturase post-transcriptional gene silencing RNA-dependent RNA polymerase RNA-induced silencing complex RNA-interference small interference small interfering RNA single stranded RNA
ssRNA	single stranded RNA
to-siRNA	trans-acting siRNA
103	transcriptional gene silencing

30 II. Terms

50

Unless otherwise noted, technical terms are used according to conventional usage. Definitions of common terms in molecular biology may be found in Benjamin Lewin, *Genes V*, published by Oxford University Press, 1994 (ISBN 0-19-854287-9); Kendrew et al. (eds.), *The Encyclopedia of Molecular Biology*, published by Blackwell Science Ltd., 1994 (ISBN 0-632-02182-9); and Robert A. Meyers (ed.), *Molecular Biology and Biotechnology: a Comprehensive Desk Reference*, published by VCH Publishers, Inc., 1995 (ISBN 1-56081-569-8).

In order to facilitate review of the various embodiments of the invention, the following non-limiting explanations of specific terms are provided:

21-Nucleotide Phasing: An incremental 21-nucleotide register, starting at an initiator cleavage site, in which cleavage is mediated by a RISC guided by either a miRNA or siRNA. Phasing defines a set of 21 nucleotide segments in linear, end-to-end orientation, either to the 5' or 3' side of the initiator cleavage site, or both. Formation of the 21-nucleotide siRNAs in phase with the cleavage site depends on the activity of a DICER or DICER-LIKE enzyme.

Agent: Any substance, including, but not limited to, an antibody, chemical compound, small molecule, therapeutic, nucleic acid, peptide mimetic, peptide, or protein. An agent 55 can increase or decrease the level of miRNA or siRNA expression or production.

Agronomic trait: Characteristic of a plant, which characteristics include, but are not limited to, plant morphology, physiology, growth and development, yield, nutritional enhancement, disease or pest resistance, or environmental or chemical tolerance are agronomic traits. In the plants of this disclosure, the expression of identified recombinant DNA, e.g. for gene suppression, confers an agronomically important trait, e.g. increased yield. An "enhanced agronomic trait" refers to a measurable improvement in an agronomic trait including, but not limited to, yield increase, including increased yield under non-stress conditions and increased yield under environmental stress conditions. Stress conditions may include, for example, drought, shade, fungal disease, viral disease, bacterial disease, insect infestation, nematode infestation, cold temperature exposure, heat exposure, osmotic stress, reduced nitrogen nutrient availability, reduced 5 phosphorus nutrient availability and high plant density. 'Yield" can be affected by many properties including without limitation, plant height, pod number, pod position on the plant, number of internodes, incidence of pod shatter, grain size, efficiency of nodulation and nitrogen fixation, efficiency 10 of nutrient assimilation, resistance to biotic and abiotic stress, carbon assimilation, plant architecture, resistance to lodging, percent seed germination, seedling vigor, and juvenile traits. Yield can also affected by efficiency of germination (including germination in stressed conditions), growth rate (includ-15 ing growth rate in stressed conditions), ear number, seed number per ear, seed size, composition of seed (starch, oil, protein) and characteristics of seed fill. Increased yield may result from improved utilization of key biochemical compounds, such as nitrogen, phosphorous and carbohydrate, or 20 from improved responses to environmental stresses, such as cold, heat, drought, salt, and attack by pests or pathogens. Recombinant DNA used in this disclosure can also be used to provide plants having improved growth and development, and ultimately increased yield, as the result of modified 25 expression of plant growth regulators or modification of cell cycle or photosynthesis pathways.

Altering level of production or expression: Changing, either by increasing or decreasing, the level of production or expression of a nucleic acid sequence or an amino acid 30 sequence (for example a polypeptide, an siRNA, a miRNA, an mRNA, a gene), as compared to a control level of production or expression.

Antisense, Sense, and Antigene: DNA has two antiparallel strands, a $5' \rightarrow 3'$ strand, referred to as the plus strand, and a $35' \rightarrow 5'$ strand, referred to as the minus strand. Because RNA polymerase adds nucleic acids in a $5' \rightarrow 3'$ direction, the minus strand of the DNA serves as the template for the RNA during transcription. Thus, an RNA transcript will have a sequence complementary to the minus strand, and identical to the plus 40 strand (except that U is substituted for T).

Antisense molecules are molecules that are specifically hybridizable or specifically complementary to either RNA or the plus strand of DNA. Sense molecules are molecules that are specifically hybridizable or specifically complementary 45 to the minus strand of DNA. Antigene molecules are either antisense or sense molecules directed to a DNA target. An antisense RNA (asRNA) is a molecule of RNA complementary to a sense (encoding) nucleic acid molecule.

Amplification: When used in reference to a nucleic acid, 50 this refers to techniques that increase the number of copies of a nucleic acid molecule in a sample or specimen. An example of amplification is the polymerase chain reaction, in which a biological sample collected from a subject is contacted with a pair of oligonucleotide primers, under conditions that allow 55 for the hybridization of the primers to nucleic acid template in the sample. The primers are extended under suitable conditions, dissociated from the template, and then re-annealed, extended, and dissociated to amplify the number of copies of the nucleic acid. The product of in vitro amplification can be 60 characterized by electrophoresis, restriction endonuclease cleavage patterns, oligonucleotide hybridization or ligation, and/or nucleic acid sequencing, using standard techniques. Other examples of in vitro amplification techniques include strand displacement amplification (see U.S. Pat. No. 5,744, 65 311); transcription-free isothermal amplification (see U.S. Pat. No. 6,033,881); repair chain reaction amplification (see

WO 90/01069); ligase chain reaction amplification (see EP-A-320 308); gap filling ligase chain reaction amplification (see U.S. Pat. No. 5,427,930); coupled ligase detection and PCR (see U.S. Pat. No. 6,027,889); and NASBA[™] RNA transcription-free amplification (see U.S. Pat. No. 6,025,134).

Binding or stable binding: An oligonucleotide binds or stably binds to a target nucleic acid if a sufficient amount of the oligonucleotide forms base pairs or is hybridized to its target nucleic acid, to permit detection of that binding. Binding can be detected by either physical or functional properties of the target:oligonucleotide complex. Binding between a target and an oligonucleotide can be detected by any procedure known to one skilled in the art, including both functional and physical binding assays. For instance, binding can be detected functionally by determining whether binding has an observable effect upon a biosynthetic process such as expression of a gene, DNA replication, transcription, translation and the like.

Physical methods of detecting the binding of complementary strands of DNA or RNA are well known in the art, and include such methods as DNase I or chemical footprinting, gel shift and affinity cleavage assays, Northern blotting, dot blotting and light absorption detection procedures. For example, one method that is widely used, because it is simple and reliable, involves observing a change in light absorption of a solution containing an oligonucleotide (or an analog) and a target nucleic acid at 220 to 300 nm as the temperature is slowly increased. If the oligonucleotide or analog has bound to its target, there is a sudden increase in absorption at a characteristic temperature as the oligonucleotide (or analog) and the target disassociate from each other, or melt.

The binding between an oligomer and its target nucleic acid is frequently characterized by the temperature (T_m) at which 50% of the oligomer is melted from its target. A higher (T_m) means a stronger or more stable complex relative to a complex with a lower (T_m) . cDNA (complementary DNA): A piece of DNA lacking internal, non-coding segments (introns) and transcriptional regulatory sequences. cDNA may also contain untranslated regions (UTRs) that are responsible for translational control in the corresponding RNA molecule. cDNA is usually synthesized in the laboratory by reverse transcription from messenger RNA extracted from cells or other samples.

Complementarity and percentage complementarity: Molecules with complementary nucleic acids form a stable duplex or triplex when the strands bind, or hybridize, to each other by forming Watson-Crick, Hoogsteen or reverse Hoogsteen base pairs. Stable binding occurs when an oligonucleotide remains detectably bound to a target nucleic acid sequence under the required conditions.

Complementarity is the degree to which bases in one nucleic acid strand base pair with (are complementary to) the bases in a second nucleic acid strand. Complementarity is conveniently described by the percentage, i.e., the proportion of nucleotides that form base pairs between two strands or within a specific region or domain of two strands. For example, if 10 nucleotides of a 15-nucleotide oligonucleotide form base pairs with a targeted region of a DNA molecule, that oligonucleotide is said to have 66.67% complementarity to the region of DNA targeted.

Sufficient complementarity means that a sufficient number of base pairs exist between the oligonucleotide and the target sequence to achieve detectable binding, and disrupt or reduce expression of the gene product(s) encoded by that target sequence. When expressed or measured by percentage of base pairs formed, the percentage complementarity that fulfills this goal can range from as little as about 50% complementarity to full, (100%) complementary. In some embodiments, sufficient complementarity is at least about 50%, about 75% complementarity, or at least about 90% or 95% complementarity. In particular embodiments, sufficient 5 complementarity is 98% or 100% complementarity.

A thorough treatment of the qualitative and quantitative considerations involved in establishing binding conditions that allow one skilled in the art to design appropriate oligonucleotides for use under the desired conditions is provided by Beltz et al., Methods Enzymol 100:266-285, 1983, and by Sambrook et al. (ed.), Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

Complementary: The base pairing that occurs between two distinct nucleic acid sequences or two distinct regions of the same nucleic acid sequence.

Control level: The level of a molecule, such as a polypeptide or nucleic acid, normally found in nature under a certain 20 condition and/or in a specific genetic background. In certain embodiments, a control level of a molecule can be measured in a cell or specimen that has not been subjected, either directly or indirectly, to a treatment. A control level is also referred to as a wildtype or a basal level. These terms are 25 molecules, which are chemical compounds which do not understood by those of ordinary skill in the art.

Control plant: A control plant, i.e. a plant that does not contain a recombinant DNA that confers (for instance) an enhanced agronomic trait in a transgenic plant, is used as a baseline for comparison to identify an enhanced agronomic trait in the transgenic plant. A suitable control plant may be a non-transgenic plant of the parental line used to generate a transgenic plant. A control plant may in some cases be a transgenic plant line that comprises an empty vector or 35 marker gene, but does not contain the recombinant DNA, or does not contain all of the recombinant DNAs in the test plant.

DICER-LIKE (DCL): Plant homologs of the animal protein DICER. Both DICER and DCL enzymes catalyze formation of small RNA duplexes from larger precursor RNA 40 molecules. By way of example, Arabidopsis thaliana contains four DCL genes (DCL1-DCL4). DCL1 for instance catalyzes processing of fold-back precursors for miRNAs (GenBank Accession No. NM_099986; locus position At1g01040).

DNA (deoxyribonucleic acid): DNA is a long chain polymer which comprises the genetic material of most living organisms (some viruses have genes comprising ribonucleic acid (RNA)). The repeating units in DNA polymers are four different nucleotides, each of which comprises one of the four 50 bases, adenine, guanine, cytosine and thymine bound to a deoxyribose sugar to which a phosphate group is attached. Triplets of nucleotides (referred to as codons) code for each amino acid in a polypeptide, or for a stop signal. The term codon is also used for the corresponding (and complemen- 55 tary) sequences of three nucleotides in the mRNA into which the DNA sequence is transcribed.

Unless otherwise specified, any reference to a DNA molecule is intended to include the reverse complement of that DNA molecule. Except where single-strandedness is required 60by the text herein, DNA molecules, though written to depict only a single strand, encompass both strands of a doublestranded DNA molecule.

Encode: A polynucleotide is said to encode a polypeptide if, in its native state or when manipulated by methods well known to those skilled in the art, it can be transcribed and/or translated to produce the mRNA for and/or the polypeptide or

a fragment thereof. The anti-sense strand is the complement of such a nucleic acid, and the encoding sequence can be deduced therefrom.

Expression: The process by which a gene's coded information is converted into the structures present and operating in the cell. Expressed genes include those that are transcribed into mRNA and then translated into protein and those that are transcribed into RNA but not translated into protein (for example, siRNA, transfer RNA and ribosomal RNA). Thus, expression of a target sequence, such as a gene or a promoter region of a gene, can result in the expression of an mRNA, a protein, or both. The expression of the target sequence can be inhibited or enhanced (decreased or increased).

Fluorophore: A chemical compound, which when excited 15 by exposure to a particular wavelength of light, emits light (i.e., fluoresces), for example at a different wavelength than that to which it was exposed. Fluorophores can be described in terms of their emission profile, or "color." Green fluorophores, for example Cy3, FITC, and Oregon Green, are characterized by their emission at wavelengths generally in the range of 515-540\lambda. Red fluorophores, for example Texas Red, Cy5 and tetramethylrhodamine, are characterized by their emission at wavelengths generally in the range of $590-690\lambda$.

Encompassed by the term "fluorophore" are luminescent require exposure to a particular wavelength of light to fluoresce; luminescent compounds naturally fluoresce. Therefore, the use of luminescent signals eliminates the need for an external source of electromagnetic radiation, such as a laser. An example of a luminescent molecule includes, but is not limited to, aequorin (Tsien, Ann. Rev. Biochem. 67:509, 1998).

Examples of fluorophores are provided in U.S. Pat. No. 5,866,366. These include: 4-acetamido-4'-isothiocyanatostilbene-2,2'disulfonic acid, acridine and derivatives such as acridine and acridine isothiocyanate, 5-(2'-aminoethyl)aminonaphthalene-1-sulfonic acid (EDANS), 4-amino-N-[3-vinylsulfonyl)phenyl]naphthalimide-3,5 disulfonate (Lucifer Yellow VS), N-(4-anilino-1-naphthyl)maleimide, anthranilamide, Brilliant Yellow, coumarin and derivatives such as coumarin, 7-amino-4-methylcoumarin (AMC, Coumarin 120), 7-amino-4-trifluoromethylcouluarin (Coumaran 151); cyanosine; 4',6-diaminidino-2-phenylindole (DAPI); 5',5"dibromopyrogallol-sulfonephthalein (Bromopyrogallol Red); 7-diethylamino-3-(4'-isothiocyanatophenyl)-4-methylcoumarin; diethylenetriamine pentaacetate; 4,4'-diisothiocvanatodihvdro-stilbene-2,2'-disulfonic acid; 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid; 5-[dimethylamino] naphthalene-1-sulfonyl chloride (DNS, dansyl chloride); 4-(4'-dimethylaminophenylazo)benzoic acid (DABCYL); 4-dimethylaminophenyl-azophenyl-4'-isothiocyanate (DABITC); eosin and derivatives such as eosin and eosin isothiocyanate; erythrosin and derivatives such as erythrosin B and erythrosin isothiocyanate; ethidium; fluorescein and derivatives such as 5-carboxyfluorescein (FAM), dichlorotriazin-2-yl)aminofluorescein (DTAF), 2'7'-dimethoxy-4'5'-

dichloro-6-carboxyfluorescein (JOE), fluorescein, fluoresisothiocyanate (FITC), and QFITC(XRITC); cein fluorescamine; IR144; IR1446; Malachite Green isothiocyanate; 4-methylumbelliferone; ortho cresolphthalein; nitrotyrosine; pararosaniline; Phenol Red; B-phycoerythrin; o-phthaldialdehyde; pyrene and derivatives such as pyrene, pyrene butyrate and succinimidyl 1-pyrene butyrate; Reactive Red 4 (CibacronTM Brilliant Red 3B-A); rhodamine and derivatives such as 6-carboxy-X-rhodamine (ROX), 6-carboxyrhodamine (R6G), lissamine rhodamine B sulfonyl chloride, rhodamine (Rhod), rhodamine B, rhodamine 123, rhodamine

45

X isothiocyanate, sulforhodamine B, sulforhodamine 101 and sulfonyl chloride derivative of sulforhodamine 101 (Texas Red); N,N,N',N'-tetramethyl-6-carboxyrhodamine (TAMRA); tetramethyl rhodamine; tetramethyl rhodamine isothiocyanate (TRITC); riboflavin; rosolic acid and terbium ⁵ chelate derivatives.

Other fluorophores include thiol-reactive europium chelates that emit at approximately 617 nm (Heyduk and Heyduk, *Analyt. Biochem.* 248:216-227, 1997; *J. Biol. Chem.* 274:3315-3322, 1999).

Still other fluorophores include cyanine, merocyanine, styryl, and oxonyl compounds, such as those disclosed in U.S. Pat. Nos. 5,268,486; 5,486,616; 5,627,027; 5,569,587; and 5,569,766, and in published PCT patent application no. US98/00475, each of which is incorporated herein by reference. Specific examples of fluorophores disclosed in one or more of these patent documents include Cy3 and Cy5, for instance.

Other fluorophores include GFP, Lissamine[™], diethylami-²⁰ nocoumarin, fluorescein chlorotriazinyl, naphthofluorescein, 4,7-dichlororhodamine and xanthene (as described in U.S. Pat. No. 5,800,996 to Lee et al., herein incorporated by reference) and derivatives thereof. Other fluorophores are known to those skilled in the art, for example those available 25 from Molecular Probes (Eugene, Oreg.).

Gene Silencing: Gene silencing refers to lack of (or reduction of) gene expression as a result of, though not limited to, effects at a genomic (DNA) level such as chromatin re-structuring, or at the post-transcriptional level through effects on 30 transcript stability or translation. Current evidence suggests that RNA interference (RNAi) is a major process involved in transcriptional and posttranscriptional gene silencing.

Because RNAi exerts its effects at the transcriptional and/ or post-transcriptional level, it is believed that RNAi can be 35 used to specifically inhibit alternative transcripts from the same gene.

Heterologous: A type of sequence that is not normally (i.e. in the wild-type sequence) found adjacent to a second sequence. In one embodiment, the sequence is from a differ-40 ent genetic source, such as a virus or organism, than the second sequence.

Hybridization: Oligonucleotides and their analogs hybridize by hydrogen bonding, which includes Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, 45 between complementary bases. Generally, nucleic acid consists of nitrogenous bases that are either pyrimidines (cytosine (C), uracil (U), and thymine (T)) or purines (adenine (A) and guanine (G)). These nitrogenous bases form hydrogen bonds between a pyrimidine and a purine, and the bond-50 ing of the pyrimidine to the purine is referred to as base pairing. More specifically, A will hydrogen bond to T or U, and G will bond to C. In RNA molecules, G also will bond to U. Complementary refers to the base pairing that occurs between two distinct nucleic acid sequences or two distinct 55 regions of the same nucleic acid sequence.

Hybridization conditions resulting in particular degrees of stringency will vary depending upon the nature of the hybridization method of choice and the composition and length of the hybridizing nucleic acid sequences. Generally, the temperature of hybridization and the ionic strength (especially the Na⁺ concentration) of the hybridization buffer will determine the stringency. Calculations regarding hybridization conditions required for attaining particular degrees of stringency are discussed by Sambrook et al. (ed.), *Molecular Cloning: A Laboratory Manual*, 2nd ed., vol. 1-3, Cold

Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989, chapters 9 and 11, herein incorporated by reference.

The following is an exemplary set of hybridization conditions and is not meant to be limiting.

Very High Stringency (Detects Sequences that Share 90% Sequence Identity)

Wash twice:2x SSC at room temperature (RT) for 15 minutes eachWash twice:0.5x SSC at 65° C. for 20 minutes each	Hybridization: Wash twice: Wash twice:	5x SSC at 65° C. for 16 hours 2x SSC at room temperature (RT) for 15 minutes each 0.5x SSC at 65° C. for 20 minutes each
---	--	--

High Stringency (Detects Sequences that Share 80% Sequence Identity or Greater)

Hybridization:	5x-6x SSC at 65° C70° C. for 16-20 hours
Wash twice:	2x SSC at RT for 5-20 minutes each
Wash twice:	1x SSC at 55° C70° C. for 30 minutes each

Low Stringency (Detects Sequences that Share Greater than 50% Sequence Identity)

Hybridization:	6x SSC at RT to 55° C. for 16-20 hours
Wash at least twice:	$2x\mathchar`-3x$ SSC at RT to 55° C. for 20-30 minutes each.

Initiator sequence: A nucleotide sequence of about 21 nucleotides in length that, when present in an RNA molecule, serves as a cleavage site that is recognized by a RISC guided by a miRNA or siRNA. Cleavage at an initiator sequence (usually between the tenth and eleventh nucleotide counted from the 3' end of the initiator sequence) sets the 21-nucleotide phasing within one or both RNA molecules that result after cleavage. These cleavage products, after conversion to double-stranded RNA, are subject to processing by Dicer or DCL enzymes usually in 21-nucleotide intervals upstream and/or downstream of the initiator sequence. In an engineered nucleic acid cassette as described herein, such in-phase cleavages release siRNAs from the cassette. Representative initiator sequences, also referred to as miRNA target sequences, are shown herein, including SEQ ID NOs: 1-142 and 281-285. Additional initiator sequences will be known to those of ordinary skill in the art. See, for instance, sequences listed in the public database miRBase::Sequences (available on-line through the Sanger Institute website, microrna.sanger.ac.uk/ sequences/index.shtml); sequences in that database through Release 7.1 (October 2005) are included herein by reference.

In the following table of target (initiator) sequences (Table 1), the initiator cleavage site is indicated by a "~" symbol. The sequences are broken out based on the miRNA families. The corresponding miRNA sequence(s) or miRNA family sequences are largely complementary to the target sequences. The gene name indicates a representative plant species for each sequence: At=Arabidopsis thaliana; Gh=Gossypium *hirsutum*; Gm=Glycine max; Hv=Hordeum vulgare; Le=Lycopersicum esculentum; Lj=Lotus japonicus; Mc=Mesembryanthemum crystallinum; Mt=Medicago truncatula; Os=Oryza sativa; Pg=Pennisetum glaucum; Pt=Populus tremula; Pv=Plumbago zeylanica; Sb=Sorghum bicolor; So=Saccharum officinarum; Tc=Theobroma cacao; Ta=Triticum aesitivum; Vv=Vitis vinifera; Zm=Zea mays. Additional plants containing these sequences are discussed below. Validated miRNA target sequences have been confirmed experimentally using a cleavage site assay (Llave et al., *Science* 297:2053-2056, 2002); predicted sequences have yet to be examined experimentally and identified in vivo, but were predicted computationally. Sequences that are known only in *Arabidopsis* are indicated.

TABLE 1

			SEQ		At1g63630	UUGU
Gene	Target Sequence	Status	ID #	10	At1g64580	CCCU
miR156 fami At1q27370	ly target sequences - all GUGCUCUCUC~UCUUCUGUCA	plants Validated	1	10	At2g41720	UUGU
At1q53160	CUGCUCUCUC~UCUUCUGUCA	Validated	2		At1g63070	UAGU
	UUGCUUACUC~UCUUCUGUCA	Predicted	3	15	miR162 fam: At1g01040	ily ta CUGG
At3g15270	CCGCUCUCUC~UCUUCUGUCA	Predicted	4	15	PtDCL1	CUGG
miR159 fami	ly target sequences - all	plants			OsDCL1	CUGG
At5g06100	UGGAGCUCCCU~UCAUUCCAAU	Validated	5	20	miR163 fam:	ily ta
At2g26960	UCGAGUUCCCU~UCAUUCCAAU	Predicted	6	20	At1g66700	AUCG
At4g26930	AUGAGCUCUCU~UCAAACCAAA	Predicted	7		At1g66720	AUCG
At2g26950	UGGAGCUCCCU~UCAUUCCAAG	Predicted	8		At3g44860	AUCG
At2g32460	UAGAGCUUCCU~UCAAACCAAA	Predicted	9	25	miR164 fam: At1q56010	ily ta AGCA
At3g60460	UGGAGCUCCAU~UCGAUCCAAA	Predicted	10		At5q07680	UUUA
At5g55020	AGCAGCUCCCU~UCAAACCAAA	Predicted	11		At5q53950	AGCA
PvMYB	CAGAGCUCCCU~UCACUCCAAU	Predicted	12	30	At5q61430	UCUA
VvMYB	UGGAGCUCCCU~UCACUCCAAU	Predicted	13		At5q39610	CUCA
HvMYB33	UGGAGCUCCCU~UCACUCCAAG	Predicted	14		OsNAC1	CGCA
OsMYB33	UGGAGCUCCCU~UUAAUCCAAU	Predicted	15	35	MTNAC	CUUA
miR160 fami At1g77850	ly target sequences - all UGGCAUGCAGG~GAGCCAGGCA	plants Validated	16		GmNAC	CUUA
At2g28350	AGGAAUACAGG~GAGCCAGGCA	Validated	17		LeNAC	GCCA
At4g30080	GGGUUUACAGG~GAGCCAGGCA	Validated	18	40	miR165/166 At1q30490	fami] UUGG
OsARF	AGGCAUACAGG~GAGCCAGGCA	Predicted	19		At5q60690	CUGG
LjARF	AAGCAUACAGG~GAGCCAGGCA	Predicted	20		At1q52150	CUGG
miR161 fami At5g41170	ly target sequences - Ara ACCUGAUGUAA~UCACUUUCAA	bi <i>dopsis</i> Validated	21	45	PtHDZIPIII	CCGG
At1g06580	CCCGGAUGUAA~UCACUUUCAG	Validated	22		miR167 fam:	ily ta
At1g63150	UUGUUACUUUC~AAUGCAUUGA	Validated	23	50	At 1930330	UAGA
At5g16640	CCCUGAUGUAU~UUACUUUCAA	Predicted	24	50	ACS937020	DAGA
At1g62590	UAGUCACGUUC~AAUGCAUUGA	Predicted	25		miD1(0 form	AAGA
At1g62670	CCCUGAUGUAU~UCACUUUCAG	Predicted	26		At1g48410	UUCC
At1g62860	CCCUGAUGUUG~UUACUUUCAG	Predicted	27	55	miR169 fam:	ily ta
At1g62910	UAGUCACUUUC~AGCGCAUUGA	Predicted	28		At 1g1 /590	AAGG
At1g62930	UCCAAAUGUAG~UCACUUUCAG	Predicted	29		AL1954160	ACGG
At1g63080	UCCAAAUGUAG~UCACUUUCAA	Predicted	30	60	AL19/2830	AGGG
At1g63130	UCCAAAUGUAG~UCACUUUCAG	Predicted	31		AL3905690	AGGC
At1g63400	UCCAAAUGUAG~UCACUUUCAA	Predicted	32		ML3020910	GCGG
At1g63230	UUGUAACUUUC~AGUGCAUUGA	Predicted	33	65	ALOY12840	
					ALJGI4UZU	AAG

TABLE 1-continued

E	Gene	Target Sequence	Status	SEQ ID #
3	At1g63330	UAGUCACGUUC~AAUGCAUUGA	Predicted	34
	At1g63630	UUGUUACUUUC~AGUGCAUUGA	Predicted	35
	At1g64580	CCCUGAUGUUG~UCACUUUCAC	Predicted	36
10	At2g41720	UUGUUACUUAC~AAUGCAUUGA	Predicted	37
	At1g63070	UAGUCUUUUUC~AACGCAUUGA	Predicted	38
15	miR162 fami At1g01040	ly target sequences - all CUGGAUGCAGA~GGUAUUAUCGA	plants Validated	39
	PtDCL1	CUGGAUGCAGA~GGUCUUAUCGA	Predicted	40
	OsDCL1	CUGGAUGCAGA~GGUUUUAUCGA	Predicted	41
20	miR163 fami At1g66700	ly target sequences - Ara AUCGAGUUCCAAG~UCCUCUUCAA	<i>bidopsis</i> Validated	42
	At1g66720	AUCGAGUUCCAGG~UCCUCUUCAA	Validated	43
	At3g44860	AUCGAGUUCCAAG~UUUUCUUCAA	Validated	44
25	miR164 fami At1g56010	ly target sequences - all AGCACGUACCC~UGCUUCUCCA	plants Validated	45
	At5g07680	UUUACGUGCCC~UGCUUCUCCA	Validated	46
•	At5g53950	AGCACGUGUCC~UGUUUCUCCA	Validated	47
30	At5g61430	UCUACGUGCCC~UGCUUCUCCA	Validated	48
	At5g39610	CUCACGUGACC~UGCUUCUCCG	Predicted	49
	OsNAC1	CGCACGUGACC~UGCUUCUCCA	Predicted	50
35	MtNAC	CUUACGUGUCC~UGCUUCUCCA	Predicted	51
	GmNAC	CUUACGUGCCC~UGCUUCUCCA	Predicted	52
	LeNAC	GCCACGUGCAC~UGCUUCUCCA	Predicted	53
40	miR165/166 At1g30490	family target sequences - UUGGGAUGAAG~CCUGGUCCGG	all plants Validated	54
	At5g60690	CUGGGAUGAAG~CCUGGUCCGG	Validated	55
45	At1g52150	CUGGAAUGAAG~CCUGGUCCGG	Validated	56
10	PtHDZIPIII	CCGGGAUGAAG~CCUGGUCCGG	Predicted	57
	miR167 fami At1g30330	ly target sequences - all GAGAUCAGGCU~GGCAGCUUGU	plants Validated	58
50	At5g37020	UAGAUCAGGCU~GGCAGCUUGU	Validated	59
	OsARF6	AAGAUCAGGCU~GGCAGCUUGU	Predicted	60
	miR168 fami At1g48410	ly target sequences - all UUCCCGAGCUG~CAUCAAGCUA	plants Validated	61
55	miR169 fami At1g17590	ly target sequences - all AAGGGAAGUCA~UCCUUGGCUG	plants Validated	62
	At1g54160	ACGGGAAGUCA~UCCUUGGCUA	Validated	63
60	At1g72830	AGGGGAAGUCA~UCCUUGGCUA	Validated	64
	At3g05690	AGGCAAAUCAU~CUUUGGCUCA	Validated	65
	At3g20910	GCGGCAAUUCA~UUCUUGGCUU	Validated	66
65	At5g12840	CCGGCAAAUCA~UUCUUGGCUU	Predicted	67
65	At3g14020	AAGGGAAGUCA~UCCUUGGCUA	Predicted	68

TABLE 1-continued

18

TABLE 1-continued

	TIME I CONCINCE	<i>х</i>				TIMES I CONCINCC	A	
Gene	Target Sequence	Status	SEQ ID #	5	Gene	Target Sequence	Status	SEQ ID #
ZmHAP2	GUGGCAACUCA~UCCUUGGCUC	Predicted	69	5	At2g60020	AAUCAAUGCUG~CACUUAAUGA	Validated	103
VvHAP2	UGGGCAAUUCA~UCCUUGGCUU	Predicted	70		miR398 fami	ly target sequences - all	plants	104
OsHAP2	AUGGCAAAUCA~UCCUUGGCUU	Predicted	71	10	ALIG08830		Validated	104
GmHAP2	UAGGGAAGUCA~UCCUUGGCUC	Predicted	72		At2g28190	UGCGGGUGACC~UGGGAAACAUA	Valldated	105
GhHAP2	CUGGGAAGUCA~UCCUUGGCUC	Predicted	73		At3g15640	AAGGUGUGACC~UGAGAAUCACA	Validated	106
miR170/171 At2g45160	family target sequences - GAUAUUGGCGC~GGCUCAAUCA	all plants Validated	74	15	miR173 fami At1g50055	ly target sequences - Ara GUGAUUUUUUCUC~AACAAGCGAA	<i>bidopsis</i> Validated	107
miR172 fami	ly target sequences - all.	plants			At2g39675	GUGAUUUUUCUC~UACAAGCGAA	Validated	108
At4g36920	CUGCAGCAUCA~UCAGGAUUCU	Validated	75		At3g39680	GUGAUUUUUCUC~UCCAAGCGAA	Validated	109
At2g28550	CAGCAGCAUCA~UCAGGAUUCU	Validated	76	20	miR399 fami At2g33770	ly target sequences - all UAGGGCAUAUC~UCCUUUGGCA	plants Validated	110
At5g60120	AUGCAGCAUCA~UCAGGAUUCU	Validated	77		At2g33770	UUGGGCAAAUC~UCCUUUGGCA	Validated	111
At5g67180	UGGCAGCAUCA~UCAGGAUUCU	Validated	78		At2g33770	UCGAGCAAAUC~UCCUUUGGCA	Validated	112
At2g39250	UUGUAGCAUCA~UCAGGAUUCC	Predicted	79	25	- At2q33770	UAGAGCAAAUC~UCCUUUGGCA	Validated	113
At3g54990	UUGCAGCAUCA~UCAGGAUUCC	Predicted	80		At 2033770	UAGGGCAAAUC~UUCUUUGGCA	Predicted	114
miR319 fami At4g18390	ly target sequences - all CAGGGGGGACCC~UUCAGUCCAA	plants Validated	81		OsE2UBC	UAGGGCAAAUC~UCCUUUGGCA	Predicted	115
At1g53230	GAGGGGUCCCC~UUCAGUCCAU	Validated	82	30	OsE2UBC	CUGGGCAAAUC~UCCUUUGGCA	Predicted	116
At3g15030	GAGGGGUCCCC~UUCAGUCCAG	Validated	83		OsE2UBC	UCGGGCAAAUC~UCCUUUGGCA	Predicted	117
At2g31070	AAGGGGUACCC~UUCAGUCCAG	Validated	84		OsE2UBC	CCGGGCAAAUC~UCCUUUGGCA	Predicted	118
At1g30210	UAGGGGGACCC~UUCAGUCCAA	Validated	85	35	PtE2UBC	GCGGGCAAAUC~UUCUUUGGCA	Predicted	119
OsPCF5	GAGGGGACCCC~UUCAGUCCAG	Predicted	86	55	MtE2UBC	AAGGGCAAAUC~UCCUUUGGCA	Predicted	120
OsPCF8	UCGGGGCACAC~UUCAGUCCAA	Predicted	87		TaE2UBC	UAGGGCAAAUC~UCCUUUGGCG	Predicted	121
miR393 fami	ly target sequences - all	plants			TaE2UBC	CUGGGCAAAUC~UCCUUUGGCG	Predicted	122
At1g12820	AAACAAUGCGA~UCCCUUUGGA	Validated	88	40	TaE2UBC	UUCGGCAAAUC~UCCUUUGGCA	Predicted	123
At4g03190	AGACCAUGCGA~UCCCUUUGGA	Validated	89		miR403 fami	ly target sequences - dic	ots	
At3g23690	GGUCAGAGCGA~UCCCUUUGGC	Validated	90		At1g31280 GGAGUUUGUGC~GUGAAUCUAAU Validate		Validated	124
At3g62980	AGACAAUGCGA~UCCCUUUGGA	Validated	91	45	miR390 fami At3g17185	ly target sequences - all CUUGUCUAUCCC~UCCUGAGCUA	plants Validated	125
miR394 fami At1g27340	ly target sequences - all GGAGGUUGACA~GAAUGCCAAA	plants Validated	92		SbTAS3	UAUGUCUAUCCC~UUCUGAGCUG	Predicted	126
miR395 fami	ly target sequences - all	plants			SoTAS3	UAUGUCUAUCCC~UUCUGAGCUA	Predicted	127
At5g43780	GAGUUCCUCCA~AACACUUCAU	Validated	93	50	ZmTAS3a	UAUGUCUAUCCC~UUCUGAGCUG	Predicted	128
At3g22890	GAGUUCCUCCA~AACUCUUCAU	Predicted	94		OsTAS3	UCGGUCUAUCCC~UCCUGAGCUG	Predicted	129
At5g10180	AAGUUCUCCCA~AACACUUCAA	Predicted	95		PqTAS3	UUAGUCUAUCCC~UCCUGAGCUA	Predicted	130
miR396 fami At2g22840	ly target sequences - all UCGUUCAAGAA~AGCCUGUGGAA	plants Validated	96	55	VvTAS3	AUUGCCUAUCCC~UCCUGAGCUG	Predicted	131
At2g36400	CCGUUCAAGAA~AGCCUGUGGAA	Validated	97		TcTAS3	CCUUGCUAUCCC~UCCUGAGCUG	Predicted	132
At4g24150	UCGUUCAAGAA~AGCAUGUGGAA	Validated	98		LeTAS3	CUUGUCUAUCCC~UCCUGAGCUG	Predicted	133
At2g45480	ACGUUCAAGAA~AGCUUGUGGAA	Validated	99	60	Zwuycab		Drodictod	124
At3g52910	CCGUUCAAGAA~AGCCUGUGGAA	Predicted	100		DH TAS3		Predicted	125
miR397 family target sequences - all plants								100
AL2929130	AAUCAAUGCUG~CACUCAAUGA	varraated	TOT	65	OSCALEU		FIEGICCEG	136
At2g38080	AGUCAACGCUG~CACUUAAUGA	Validated	102		TaTAS3	CCCUUCUAUCCC~UCCUGAGCUA	Predicted	137

TABLE 1-continued

Gene	Target Sequence	Status	SEQ ID #	5
				5
HvTAS3	CCUUUCUAUCCC~UCCUGAGCUA	Predicted	138	
PtTAS3b	CCUGUCUAUCCC~UCCUGAGCUA	Predicted	139	
McTAS3	UGUGUCUAUCCC~UCCUGAGCUA	Predicted	140	10
wiD447 fami	7			
At5g60760	UGACAAACAUC~UCGUCCCCAA	Validated	141	
At3g45090	UGACAAACAUC~UCGUUCCUAA	Predicted	142	
10400 5 1				15
miR408 fami At2g02850	ly target sequences - all CCAAGGGAAGA~GGCAGUGCAU	. plants Predicted	281	
At2g30210	ACCAGUGAAGA~GGCUGUGCAG	Validated	282	
At2g47020	GCCAGGGAAGA~GGCAGUGCAU	Predicted	283	20
At5g05390	GCCGGUGAAGA~GGCUGUGCAA	Predicted	284	20
At5g07130	GCCGGUGAAGA~GGCUGUGCAG	Predicted	285	

Between Jan. 7, 2005 and Jan. 7, 2006, the following ²⁵ changes were made to nomenclature related to nuclei acid molecules described herein:

Systematic Names Assigned to TAS Loci by the *Arabidopsis* Information Resource (TAIR)

At2g39680 antisense (TAS1511) has become At2g39681³⁰ (TAS2)

AU235820 (TAS255a) has become At1g50055 (TAS1b) CD534192 (TAS255b) has become At2g27400 (TAS1a) TAS255c has become At2g39675 (TAS1c)

At3g17185 (ASR) has become At3g17185 (TAS3) Official miRNA Name Assigned by the miRNA Registry (miRBase)

ASRP 1890 has become miR447

These nomenclature changes are reflected in this document. 40 Interfering with or inhibiting (expression of a target sequence): This phrase refers to the ability of a small RNA, such as an siRNA or a miRNA, or other molecule, to measurably reduce the expression and/or stability of molecules carrying the target sequence. A target sequence can include a 45 DNA sequence, such as a gene or the promoter region of a gene, or an RNA sequence, such as an mRNA. "Interfering with or inhibiting" expression contemplates reduction of the end-product of the gene or sequence, e.g., the expression or function of the encoded protein or a protein, nucleic acid, 50 other biomolecule, or biological function influenced by the target sequence, and thus includes reduction in the amount or longevity of the mRNA transcript or other target sequence. In some embodiments, the small RNA or other molecule guides chromatin modifications which inhibit the expression of a 55 target sequence. It is understood that the phrase is relative, and does not require absolute inhibition (suppression) of the sequence. Thus, in certain embodiments, interfering with or inhibiting expression of a target sequence requires that, following application of the small RNA or other molecule (such 60 as a vector or other construct encoding one or more small RNAs), the sequence is expressed at least 5% less than prior to application, at least 10% less, at least 15% less, at least 20% less, at least 25% less, or even more reduced. Thus, in some particular embodiments, application of a small RNA or other 65 molecule reduces expression of the target sequence by about 30%, about 40%, about 50%, about 60%, or more. In specific

examples, where the small RNA or other molecule is particularly effective, expression is reduced by 70%, 80%, 85%, 90%, 95%, or even more.

Isolated: A biological component (such as a nucleic acid molecule, protein or organelle) that has been substantially separated or purified away from other biological components in the cell of the organism in which the component naturally occurs, i.e., other chromosomal and extra-chromosomal DNA and RNA, proteins and organelles. Nucleic acids and proteins that have been isolated include nucleic acids and proteins purified by standard purification methods. The term also embraces nucleic acids and proteins prepared by recombinant expression in a host cell as well as chemically synthesized nucleic acids.

MicroRNA (miRNA): Small, non-coding RNA gene products of approximately 21 nucleotides long and found in diverse organisms, including animals and plants. miRNAs structurally resemble siRNAs except that they arise from structured, foldback-forming precursor transcripts derived from miRNA genes. Primary transcripts of miRNA genes form hairpin structures that are processed by the multidomain RNaseIII-like nuclease DICER and DROSHA (in animals) or DICER-LIKE1 (DCL1; in plants) to yield miRNA duplexes. The mature miRNA is incorporated into RISC complexes after duplex unwinding. Plant miRNAs interact with their RNA targets with perfect or near perfect complementarity.

Mutation: A heritable change in DNA sequence. Mutations include a frame-shift, a point mutation, a missense mutation, a silent mutation, a polymorphism, a nonsense mutation, a deletion, a null mutation, a truncation, an elongation, an amino acid substitution, or an insertion. A mutant is an organism or cell carrying a mutation. The mutant can be genetically engineered or produced naturally.

Nucleotide: "Nucleotide" includes, but is not limited to, a 35 monomer that includes a base linked to a sugar, such as a pyrimidine, purine or synthetic analogs thereof, or a base linked to an amino acid, as in a peptide nucleic acid (PNA). A nucleotide is one monomer in an oligonucleotide/polynucleotide. A nucleotide sequence refers to the sequence of bases in 40 an oligonucleotide/polynucleotide.

The major nucleotides of DNA are deoxyadenosine 5'-triphosphate (dATP or A), deoxyguanosine 5'-triphosphate (dGTP or G), deoxycytidine 5'-triphosphate (dCTP or C) and deoxythymidine 5'-triphosphate (dTTP or T). The major nucleotides of RNA are adenosine 5'-triphosphate (ATP or A), guanosine 5'-triphosphate (GTP or G), cytidine 5'-triphosphate (CTP or C) and uridine 5'-triphosphate (UTP or U). Inosine is also a base that can be integrated into DNA or RNA in a nucleotide (dITP or ITP, respectively).

Oligonucleotide: An oligonucleotide is a plurality of nucleotides joined by phosphodiester bonds, between about 6 and about 300 nucleotides in length. An oligonucleotide analog refers to compounds that function similarly to oligonucleotides but have non-naturally occurring portions. For example, oligonucleotide analogs can contain non-naturally occurring portions, such as altered sugar moieties or intersugar linkages, such as a phosphorothioate oligodeoxynucleotide. Functional analogs of naturally occurring polynucleotides can bind to RNA or DNA

Operably linked: A first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein-coding regions, in the same reading frame. In specific embodiments, operably linked nucleic acids as discussed herein are aligned in a linear concatamer capable of being cut into 21-mer fragments, at least one of which is a siRNA.

Ornamental plant: A plant that is grown for visual display. ⁵ Numerous plants are commonly recognized as ornamental. These include, for example, indoor or outdoor nursery plants, house and garden plants, and florist crops, each of which may include without limitation trees, shrubs, perennials, bulbs, annuals, groundcovers, turf grasses, herbs, or native plants.

Ortholog: Two nucleic acid or amino acid sequences are orthologs of each other if they share a common ancestral sequence and diverged when a species carrying that ancestral sequence split into two species. Orthologous sequences are also homologous sequences.

Polymerization: Synthesis of a nucleic acid chain (oligonucleotide or polynucleotide) by adding nucleotides to the hydroxyl group at the 3'-end of a pre-existing RNA or DNA primer using a pre-existing DNA strand as the template. Poly-²⁰ merization usually is mediated by an enzyme such as a DNA or RNA polymerase. Specific examples of polymerases include the large proteolytic fragment of the DNA polymerase I of the bacterium *E. coli* (usually referred to as Kleenex polymerase), *E. coli DNA polymerase I, and bacte-25 riophage T7* DNA polymerase. Polymerization of a DNA strand complementary to an RNA template (e.g., a cDNA complementary to a mRNA) can be carried out using reverse transcriptase (in a reverse transcription reaction).

For in vitro polymerization reactions, it is necessary to 30 provide to the assay mixture an amount of required cofactors such as M⁺⁺, and dATP, dCTP, dGTP, dTTP, ATP, CTP, GTP, UTP, or other nucleoside triphosphates, in sufficient quantity to support the degree of polymerization desired. The amounts of deoxyribonucleotide triphosphates substrates required for 35 polymerizing reactions are well known to those of ordinary skill in the art. Nucleoside triphosphate analogues or modified nucleoside triphosphates can be substituted or added to those specified above.

Polypeptide: A polymer in which the monomers are amino 40 acid residues which are joined together through amide bonds. When the amino acids are alpha-amino acids, either the L-optical isomer or the D-optical isomer can be used, the L-isomers being preferred. The term polypeptide or protein as used herein encompasses any amino acid sequence and includes 45 modified sequences such as glycoproteins. The term polypeptide is specifically intended to cover naturally occurring proteins, as well as those that are recombinantly or synthetically produced.

Post-Transcriptional Gene Silencing (PTGS): A form of 50 gene silencing in which the inhibitory mechanism occurs after transcription. This can result in either decreased steady-state level of a specific RNA target or inhibition of translation (Tuschl, *ChemBiochem*, 2:239-245, 2001). In the literature, the terms RNA interference (RNAi) and posttranscriptional 55 cosuppression are often used to indicate posttranscriptional gene silencing.

Primer: Primers are relatively short nucleic acid molecules, usually DNA oligonucleotides six nucleotides or more in length. Primers can be annealed to a complementary target 60 DNA strand ("priming") by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, and then the primer extended along the target DNA strand by a nucleic acid polymerase enzyme. Pairs of primers can be used for amplification of a nucleic acid sequence, e.g., by 65 nucleic-acid amplification methods known in to those of ordinary skill in the art.

A primer is usually single stranded, which may increase the efficiency of its annealing to a template and subsequent polymerization. However, primers also may be double stranded. A double stranded primer can be treated to separate the two strands, for instance before being used to prime a polymerization reaction (see for example, *Nucleic Acid Hybridization. A Practical Approach*, Hames and Higgins, eds., IRL Press, Washington, 1985). By way of example, a double stranded primer can be heated to about 90° 100° C. for about 1 to 10 minutes.

Promoter: An array of nucleic acid control sequences which direct transcription of a nucleic acid. A promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of an RNA polymerase II type promoter, a TATA element. Optionally, a promoter may include an enhancer and/or a repressor element. Enhancer and repressor elements can be located adjacent to, or distal to the promoter, and can be located as much as several thousand base pairs from the start site of transcription. Representative examples of promoters that can be used in the present disclosure are described herein.

Protein: A biological molecule, for example a polypeptide, expressed by a gene and comprised of amino acids.

Purified: The term purified does not require absolute purity; rather, it is intended as a relative term. Thus, for example, a purified protein preparation is one in which the protein referred to is more pure (has fewer impurities) than the protein in its natural environment within a cell.

Recombinant: A recombinant nucleic acid is one that has a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two otherwise separated segments of sequence. This artificial combination can be accomplished by chemical synthesis or by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques.

Regulatable promoter: A promoter whose activity is regulated by an agent, such as a transcription factor, a chemical compound, or a nucleic acid molecule.

Regulating gene expression: The process of controlling the expression of a gene by increasing or decreasing the expression, production, or activity of an agent that affects gene expression. The agent can be a protein, such as a transcription factor, or a nucleic acid molecule, such as a miRNA or an siRNA molecule, which when in contact with the gene or its upstream regulatory sequences, or a mRNA encoded by the gene, either increases or decreases gene expression.

RNA: A typically linear polymer of ribonucleic acid monomers, linked by phosphodiester bonds. Naturally occurring RNA molecules fall into three general classes, messenger (mRNA, which encodes proteins), ribosomal (rRNA, components of ribosomes), and transfer (tRNA, molecules responsible for transferring amino acid monomers to the ribosome during protein synthesis). Messenger RNA includes heteronuclear (hnRNA) and membrane-associated polysomal RNA (attached to the rough endoplasmic reticulum). Total RNA refers to a heterogeneous mixture of all types of RNA molecules.

RNA-dependent RNA polymerase (RDR): Enzyme that polymerizes formation of RNA using a single-stranded RNA template. This frequently results in formation of a doublestranded RNA molecule. Examples of *Arabidopsis* RDRs include RDR1, RDR2 and RDR6 (Xie et al., *PLoS Biol* 2:642-652, 2004). RDRs required for viral replication are also encoded by many viruses (Kao et al., *Virology* 287:251-260, 2001).

RNA interference (RNAi): Gene silencing mechanisms that involve small RNAs (including miRNA and siRNA) are

frequently referred to under the broad term RNAi. Natural functions of RNAi include protection of the genome against invasion by mobile genetic elements such as transposons and viruses, and regulation of gene expression.

RNA interference results in the inactivation or suppression 5 of expression of a gene within an organism. RNAi can be triggered by one of two general routes. First, it can be triggered by direct cellular delivery of short-interfering RNAs (siRNAs, usually ~21 nucleotides in length and delivered in a dsRNA duplex form with two unpaired nucleotides at each 3' 10 end), which have sequence complementarity to a RNA that is the target for suppression. Second, RNAi can be triggered by one of several methods in which siRNAs are formed in vivo from various types of designed, expressed genes. These genes typically express RNA molecules that form intra- or intermolecular duplexes (dsRNA) which are processed by natural enzymes (DICER or DCL) to form siRNAs. In some cases, these genes express "hairpin"-forming RNA transcripts with perfect or near-perfect base-pairing; some of the imperfect hairpin-forming transcripts yield a special type of small RNA, termed microRNA (miRNA). In either general method, 20 it is the siRNAs (or miRNAs) that function as "guide sequences" to direct an RNA-degrading enzyme (termed RISC) to cleave or silence the target RNA. In some cases, it is beneficial to integrate an RNAi-inducing gene into the genome of a transgenic organism. An example would be a 25 plant that is modified to suppress a specific gene by an RNAiinducing transgene. In most methods that are currently in practice, RNAi is triggered in transgenic plants by transgenes that express a dsRNA (either intramolecular or hairpin, or intermolecular in which two transcripts anneal to form 30 dsRNA).

RNA silencing: A general term that is used to indicate RNA-based gene silencing or RNAi.

Sequence identity: The similarity between two (or more) nucleic acid sequences, or two (or more) amino acid 35 sequences, is expressed in terms of the similarity between the sequences, otherwise referred to as sequence identity or homology. Sequence identity is frequently measured in terms of percentage identity (or similarity or homology); the higher the percentage, the more similar the two sequences are. 40 Homologs or orthologs of a specified protein, and the corresponding cDNA sequence, will possess a relatively high degree of sequence identity when aligned using standard methods. This homology will be more significant when the orthologous proteins or cDNAs are derived from species 45 which are more closely related (e.g., different plant sequences), compared to species more distantly related (e.g., human and *Arabidopsis* sequences).

Typically, orthologs are at least 50%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at 50 least 93%, at least 95%, or at least 98% identical at the nucleotide level and at least 50%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 93%, at least 95%, or at least 98% identical at the amino acid level when comparing a protein to an orthologous protein. 55

Methods of alignment of sequences for comparison are well known in the art. Various programs and alignment algorithms are described in: Smith & Waterman Adv. Appl. Math. 2: 482, 1981; Needleman & Wunsch J. Mol. Biol. 48: 443, 1970; Pearson & Lipman Proc. Natl. Acad. Sci. USA 85: 60 2444, 1988; Higgins & Sharp Gene, 73: 237-244, 1988; Higgins & Sharp CABIOS 5: 151-153, 1989; Corpet et al. Nuc. Acids Res. 16:10881-10890, 1988; Huang et al. Computer Appls. Biosciences 8:155-165, 1992; and Pearson et al. Meth. Mol. Bio. 24:307-331, 1994. Altschul et al. (J. Mol. Biol. 65 215:403-410, 1990) present a detailed consideration of sequence alignment methods and homology calculations.

Multiple sequences can be aligned, for instance, using programs such as CLUSTAL-W or TCoffee.

The NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al. *J. Mol. Biol.* 215:403-410, 1990) is available from several sources, including the National Center for Biotechnology Information (NCBI, Bethesda, Md.) and on the Internet, for use in connection with the sequence analysis programs blastp, blastn, blastx, tblastn and tblastx. It can be accessed at the NCBI website, together with a description of how to determine sequence identity using this program.

For comparisons of amino acid sequences of greater than about 30 amino acids, the Blast 2 sequences function is employed using the default BLOSUM62 matrix set to default parameters, (gap existence cost of 11, and a per residue gap cost of 1). When aligning short peptides (fewer than around 30 amino acids), the alignment should be performed using the Blast 2 sequences function, employing the PAM30 matrix set to default parameters (open gap 9, extension gap 1 penalties). Proteins with even greater similarity to the reference sequence will show increasing percentage identities when assessed by this method, such as at least 70%, at least 75%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94% or at least 95% sequence identity. When less than the entire sequence is being compared for sequence identity, homologs will typically possess at least 75% sequence identity over short windows of 10-20 amino acids, and may possess sequence identities of at least 85% or at least 90% or 95% or more depending on their similarity to the reference sequence. Methods for determining sequence identity over such short windows are described at the NCBI website, frequently asked questions (FAQ) page. One of ordinary skill in the art will appreciate that these sequence identity ranges are provided for guidance only; it is entirely possible that strongly significant homologs could be obtained that fall outside of the ranges provided.

An alternative indication that two nucleic acid molecules are closely related is that the two molecules hybridize to each other under stringent conditions. Stringent conditions are sequence-dependent and are different under different environmental parameters. Generally, stringent conditions are selected to be about 5° C. to 20° C. lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence remains hybridized to a perfectly matched probe or complementary strand. Conditions for nucleic acid hybridization and calculation of stringencies can be found in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, CSHL, New York and Tijssen (1993) Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes Part I, Chapter 2, Elsevier, New York. Nucleic acid molecules that hybridize under stringent conditions to a human p281NG5 gene sequence will typically 55 hybridize to a probe based on either an entire human p281NG5 gene or selected portions of the gene under wash conditions of 2×SSC at 50° C.

Nucleic acid sequences that do not show a high degree of identity can nevertheless encode similar amino acid sequences, due to the degeneracy of the genetic code. It is understood that changes in nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid molecules that all encode substantially the same protein.

Silencing agent or molecule: A specific molecule, which can exert an influence on a cell in a sequence-specific manner to reduce or silence the expression or function of a target, such as a target gene or protein. Examples of silence agents include
60

nucleic acid molecules such as naturally occurring or synthetically generated small interfering RNAs (siRNAs), naturally occurring or synthetically generated microRNAs (miR-NAs), naturally occurring or synthetically generated dsRNAs, and antisense sequences (including antisense oligonucleotides, hairpin structures, and antisense expression vectors), as well as constructs that code for any one of such molecules.

Specific binding agent: An agent that binds substantially only to a defined target. Thus a protein-specific binding agent binds substantially only the specified protein.

Small interfering RNA (siRNA): RNA of approximately 21-25 nucleotides that is processed from a dsRNA by a DICER enzyme (in animals) or a DCL enzyme (in plants). 15 The initial DICER or DCL products are double-stranded, in which the two strands are typically 21-25 nucleotides in length and contain two unpaired bases at each 3' end. The individual strands within the double stranded siRNA structure are separated, and typically one of the siRNAs then are 20 associated with a multi-subunit complex, the RNAi-induced silencing complex (RISC). A typical function of the siRNA is to guide RISC to the target based on base-pair complementarity.

Target nucleic acid (to be inhibited): Any nucleic acid 25 containing a sequence that interacts with a miRNA or siRNA, or that has the potential to yield a sequence that interacts with a miRNA or siRNA (for example, through transcription of a locus). The target can be a cellular nucleic acid, such as a mRNA that encodes an essential or non-essential protein, or a 30 foreign nucleic acid, such as a virus-derived or transgenederived RNA molecule. The target can be a DNA sequence corresponding to a promoter, or a sequence corresponding to any expressed region of a genome, for instance.

Trans-acting siRNAs: A subclass of siRNAs that function 35 like miRNAs to repress expression of target genes, yet have unique biogenesis requirements. Trans-acting siRNAs form by transcription of ta-siRNA-generating genes, cleavage of the transcript through a guided RISC mechanism, conversion of one of the cleavage products to dsRNA, and processing of 40 the dsRNA by DCL enzymes. ta-siRNAs are unlikely to be predicted by computational methods used to identify miRNA because they fail to form a stable foldback structure. Data provided herein demonstrate that ta-siRNAs are not an Arabidopsis oddity, but are conserved among distantly related 45 plant species and have been maintained over a long evolutionary period.

A ta-siRNA precursor is any nucleic acid molecule, including single-stranded or double-stranded DNA or RNA, that can be transcribed and/or processed to release a ta-siRNA. 50

Transcriptional gene silencing (TGS): A phenomenon that is triggered by the formation of dsRNA that is homologous with gene promoter regions and sometimes coding regions. TGS results in DNA and histone methylation and chromatin remodeling, thereby causing transcriptional inhibition rather 55 than RNA degradation. Both TGS and PTGS depend on dsRNA, which is cleaved into small (21-25 nucleotides) interfering RNAs (Eckhardt, Plant Cell, 14:1433-1436, 2002; Aufsatz et al., Proc. Natl. Acad. Sci. U.S.A., 99:16499-16506, 2002).

Transgenic (plant/fungus/cell/other entity): This term refers to a plant/fungus/cell/other entity that contains recombinant genetic material not normally found in entities of this type and which has been introduced into the entity in question (or into progenitors of the entity) by human manipulation. 65 Thus, a plant that is grown from a plant cell into which recombinant DNA is introduced by transformation is a trans-

genic plant, as are all offspring of that plant that contain the introduced transgene (whether produced sexually or asexually).

Triggering RNA: RNA transcript of an siRNA generating locus which is converted into a dsRNA molecule by an RNAdependent RNA polymerase (RDR) in vivo.

Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The singular terms "a," "an," and "the" include plural referents unless context clearly indicates otherwise. Similarly, the word "or" is intended to include "and" unless the context clearly indicates otherwise. Hence "comprising A or B" means including A, or B, or A and B. It is further to be understood that all base sizes or amino acid sizes, and all molecular weight or molecular mass values, given for nucleic acids or polypeptides are approximate, and are provided for description. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including explanations of terms, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting. III. Overview of Several Embodiments

An siRNA-triggering or RNAi-triggering nucleic acid cassette is provided, which cassette comprises an initiator sequence consisting of about 20 to 25 nucleotides, the initiator sequence having an initiation cleavage site between the tenth and eleventh nucleotide counted from the 3' end of the initiator sequence; and at least one gene suppressing segment in about 21-nucleotide register (or phase) counted either upstream or downstream from the initiation cleavage site, wherein the gene suppressing segment or its complement is substantially complementary to an RNA transcribed from a target gene selected for siRNA inhibition. Also provided are expression vectors which include at least one such nucleic acid cassette operably linked to a promoter.

Specific example initiator sequences are provided herein, for instance, in SEQ ID NOs: 1-142 and 281-285.

Also provided are siRNA- or RNAi-triggering nucleic acids (both cassettes and vectors) that comprise two or more gene suppressing segments. In embodiments having two or more gene suppressing segments, these segments optionally can be directed to (complementary with) two or more different genes or other target sequences selected for siRNA inhibition.

Cells and organisms into which have been introduced a vector or cassette of this disclosure are also provided, as are parts of multicellular organisms that contain such transgenic nucleic acids. Thus, another specific embodiment is a seed for a transgenic plant that expresses RNA for suppressing a target gene, wherein said seed and plant comprise recombinant DNA from which there is transcribed a first RNA comprising an initiator segment consisting of 20-25 nucleotides wherein an initiation cleavage site is located between the tenth and eleventh nucleotide counted from the 3' end of the initiator segment and wherein said initiator segment is linked to or overlaps with at least one gene suppressing segment of 21-nucleotides in precise 21-nucleotide register counted either upstream or downstream from the initiation cleavage site, wherein said gene suppressing segment or it complement is complementary to mRNA transcribed from said target gene. Yet other embodiments are seed for a transgenic plant further comprising DNA from which there is transcribed a

second RNA that hybridizes to said first RNA at said initiation cleavage site. By way of example, the second RNA in some instances is an exogenous miRNA, or a miRNA transcribed from a native plant gene or a heterologous gene or any gene not native to the plant. Seed are also provided for a transgenic 5 plant wherein the first RNA comprises two or more gene suppressing segments.

Optionally, the target gene in any provided organism can be endogenous to that organism. For instance, the target gene may be an endogenous plant gene, an endogenous fungal gene, or an endogenous invertebrate gene, in plant, fungal, or invertebrate embodiments, respectively. There is also therefore provided a seed for a transgenic plant of the disclosure, wherein the plant is corn and the endogenous plant gene encodes lysine ketoglutarate reductase.

Alternatively, the target gene could be exogenous to the transgenic organism, for instance it could be a gene of a pathogen or a pest, such as a plant pathogen or plant pest. In specific examples, such plant pest is a nematode or insect or such pant pathogen is a virus or fungus. In one particular 20 embodiment, a seed for a transgenic plant is provided wherein said plant is soybean and said plant pest is soybean cyst nematode.

In yet another provided seed for a transgenic plant of the disclosure, the recombinant DNA comprises a promoter func- 25 tional in said plant and operably linked to DNA coding for the first RNA. Such a promoter in some cases is characterized as being a constitutive promoter, an inducible promoter, a tissue specific promoter, a ubiquitous promoter or a combination thereof. 30

Also provided are seed for a transgenic plant as described, wherein the plant is a corn, soybean, cotton, canola, wheat or rice plant.

Optionally, in any of the provided embodiments of seed for a transgenic plant, the recombinant DNA further comprises 35 nucleotides for expressing at least one protein.

Also provided herein are methods of inhibiting expression of a target gene in a cell, the method comprising exposing the cell to an effective amount of a RNAi-triggering or siRNAtriggering nucleic acid cassette or a vector as described. The 40 cell can be, for instance, a plant cell, a fungal cell, or an invertebrate cell. It is particularly contemplated that the cell could be in vitro or in vivo, for instance, contained in a multicellular organism.

Yet another method is provided, which is a method of 45 inducing production of at least one siRNA in a cell. This method involves transforming the cell with a recombinant nucleic acid molecule comprising a nucleic acid cassette as described herein, wherein the recombinant nucleic acid molecule directs expression of a mRNA from the nucleic acid 50 cassette, which mRNA is processed in the cell to produce at least one siRNA, thereby inducing the production of at least one siRNA in the cell.

Another method is provided, which is a method of inhibiting activity of a target gene in a plant cell. This method 55 involves transforming the plant cell with a recombinant nucleic acid molecule comprising a nucleic acid cassette as described herein, wherein at least one gene suppressing segment of the nucleic acid cassette is specific for the target gene; and expressing the nucleic acid molecule, thereby producing 60 in the plant cell at least one siRNA specific for the target gene which inhibits activity of the target gene in the plant cell.

Another method is a method of inhibiting activity of a target gene in a plant seed, comprising providing in cells of said plant a recombinant nucleic acid molecule comprising a 65 nucleic acid cassette of the disclosure, wherein at least one gene suppressing segment of the nucleic acid cassette is spe-

cific for the target gene and wherein said cassette comprises a seed-specific promoter operably linked to said initiator sequence and said at least one gene suppressing segment; a recombinant DNA with a seed specific promoter operably linked to DNA transcribing an miRNA that hybridizes to said initiator sequence at said initiation cleavage site; both. IV. Methods of Triggering RNA Interference (RNAi)

Plants and animals use small RNAs [microRNAs (miR-NAs) and siRNAs] as guides for posttranscriptional and epigenetic regulation of target genes. In plants, miRNAs and trans-acting (ta) siRNAs form through distinct biogenesis pathways, although they both interact with target transcripts and guide cleavage. An integrated approach to identify targets of Arabidopsis thaliana miRNAs and ta-siRNAs revealed several new classes of small RNA-regulated genes. These included conventional genes, such as the RNAi factor Argonaute2 (miR403), an E2-ubiquitin conjugating enzyme (miR399), and two Auxin Response Factors (TAS3 ta-siR-NAs). Five ta-siRNA-generating transcripts were identified as targets of miR173 or miR390. Rather than functioning to negatively regulate these transcripts, miR173- and miR390guided cleavage was shown to set the 21-nucleotide phasing for ta-siRNA precursor processing. These data support a model in which miRNA-guided formation of a 5' or 3' terminus within pre-ta-siRNA transcripts, followed by RDR6-dependent formation of dsRNA and DCL1-mediated processing, yields phased ta-siRNAs that negatively regulate other genes.

In Example 1, new *Arabidopsis* miRNA and ta-siRNA targets are identified through an integrated strategy that included computational, genome-wide expression profiling and experimental validation components. Through identification of genes significantly upregulated in miRNA or ta-siRNA biogenesis mutants (hyl1-2, hst-15, dcl1-7, hen1-1, and rdr6-2) using microarrays, data is presented herein that demonstrates identification of genes potentially regulated by miRNAs and ta-siRNAs. Two genes, ARF3 and ARF4, were found to contain a duplicated conserved 21 sequence. Analysis of an *Arabidopsis* sequence, conserved across angiosperms, identified small RNAs typical of ta-siRNAs that could target ARF3 and ARF4 mRNAs.

As taught herein, RNAi can be induced using transgenes or other delivered genes or constructs that encode non-dsRNAforming transcripts. This method exploits the occurrence of natural siRNAs and miRNAs that can: 1) interact with the delivered transcript through base-pairing, 2) engage a natural dsRNA-forming enzyme termed an RNA-dependent RNA polymerase (RDR), and 3) engage natural DICER-LIKE (e.g., DCL1) enzymes to form siRNAs in precise and predictable register. The siRNAs that form under this mechanism can function to suppress target mRNA expression if the target contains a high degree of sequence complementarity to the siRNAs. One advantage of this method is that it circumvents the need to deliver a dsRNA-forming entity or transgene to initiate the RNAi process of gene suppression.

The methods described herein also enable RNAi to target multiple mRNAs or other target RNAs, depending on the specific siRNA units designed into the construct. The method also permits highly specific siRNA formation rather than non-specific siRNA formation (which results in an increased chance of off-target effects) using conventional dsRNAforming constructs. The method also may take advantage of naturally occurring miRNAs and siRNAs with tissue- or cellspecific expression characteristics to drive tissue—and cellspecificity of RNAi. Alternatively, a heterologous miRNA or siRNA can be added to the cell (for instance by providing an expression cassette encoding such molecule) in order to pro-

vide the receptive element necessary to mediate cleavage and release of siRNAs from a RNAi-triggering nucleic acid cassette.

Also provided herein are nucleic acid constructs that generate, in vivo, siRNAs useful for triggering RNAi-like 5 responses. Representative methods for producing such constructs, as well as guidelines for selecting elements included therein, are provided.

V. Initiator Sequences and Identification Thereof

When present in an RNA molecule, an initiator sequence 10 serves as a site that interacts with a miRNA or siRNA, which guides cleavage through the activity of RISC. Cleavage at an initiator sequence cleavage site (usually between the tenth and eleventh nucleotide counting from the 3' end of the initiator sequence) sets the 21-nucleotide register within the 15 RNA molecule, resulting in additional cleavages of the RNA molecule by the Dicer or DCL protein at usually 21-nucleotide intervals upstream and/or downstream of the initiator sequence. In an engineered RNAi-triggering nucleic acid cassette as described herein, such additional, in-phase cleavages 20 release siRNAs from RNA molecules that are transcribed from the cassette. Representative initiator sequences in RNA form, also referred to as miRNA target sequences, are shown in SEQ ID NOs: 1-142 and 281-285.

Any sequence in an RNA molecule to which a siRNA or 25 miRNA can bind by complementarity, or any sequence in a DNA molecule that encodes for such a sequence in an RNA molecule, can serve as an initiator sequence. In addition to representative initiator sequences provided herein, methods are provided for identifying additional sequences from other 30 genes, other plant species, or any other organisms. An integrated system is provided herein for identifying new miRNA and ta-siRNA targets. This system involves computational, genome-wide expression profiling and experimental validation components. As demonstrated in Example 1, the system 35 reliably identifies prospective initiator sequences, which are target sites for miRNAs. Representative initiator sequences, including many identified and validated using the computational system provided, are shown in SEQ ID NO: 1-142 and 281-285. 40

In general, an initial pool of predicted target sites for validated miRNAs was created by FASTA searches using a +15/-10 scoring matrix of the TAIR AGI transcript database, limited to 4 mispairs, 4 G:U pairs, to a total of seven, with 100,000 results obtained for the reverse complement of each 45 small RNA. A single, one nucleotide gap was allowed. In the embodiment described in Example 1, the miRNA target prediction algorithm used to score these sites was developed based on 94 experimentally validated and predicted family members of miRNA-target site duplexes, including 66 targets 50 validated in previous studies plus 28 family members with conserved miRNA target sites (Target Rule Set).

Three filters based on the Target Rule Set were applied sequentially. In each case, base one was considered to be the first nucleotide from the 5' end of the miRNA. First, targets 55 with a mismatch score greater than four were excluded. The Minimum Free Energy (ΔG_{MFE}) of a perfect miRNA-target duplex was determined by computationally attaching a perfectly complementary target sequence to a small RNA using a four base "gap" linker sequence (---). The free energy each 60 miRNA-predicted target site (ΔG_{target}) was determined by computationally linking the target sequence to the small RNA, from which the MFE ratio was calculated ($\Delta G_{target}/\Delta G_{MFE}$). All thermodynamic values were calculated using RNAFold in the Vienna RNA package. Remaining targets 65 with an MFE ratio less than 0.73 were excluded. Conservation of the target sequence was determined by using the

region containing the target sequence in a BLAST search against target transcripts, for instance, the *Arabidopsis* transcript and EST databases, NCBI EST database, and *O. sativa* Unigene database in Example 1, and removing any targets with no matches with less than three base changes in the target sequence. Duplicate target sites (identical genes) for related miRNA family members were combined in the final target gene set.

VI. Selection of Initiation Sequence for RNAi-Triggering Constructs

Any nucleic acid sequence that will serve to mediate cleavage by a miRNA- or siRNA-guidedRISC mechanism may be used as the initiator sequence in constructs provided herein. Examples of such sequences are provided herein, for instance in SEQ ID NOs: 1-142 and 281-285. It is noted that the presented sequences are RNA sequences. It will be apparent to one of ordinary skill in the art that DNA constructs, such as DNA constructs used in transformation of target cells, will contain the DNA equivalent of the listed RNA sequences.

By way of example, SEQ ID NO: 1 is GUGCUCUCUCUCUCUCUCUCUCUCUCUCA (shown 5' to 3'). The corresponding miRNA sequence (also shown 5' to 3') is UGACAGAA-GAGAGUGAGCAC (SEQ ID NO: 155); this is the reverse complement of the target/initiation sequence shown in SEQ ID NO: 1. A DNA construct containing an initiator sequence corresponding to SEQ ID NO: 1 would include the following sequence: 5'-GTGCTCTCTCTCTCTCTGTCA-3' (SEQ ID NO: 280), which may be generated in double-stranded format depending on the embodiment. In such a DNA construct, the transcription site and strandedness would be designed so the initiator sequence is produced as shown in SEQ ID NO: 1. This enables the native or provided, corresponding miRNA to bind by complementarity to the initiator sequence.

It is noted that, in many embodiments, the initiator sequence and a first gene suppressing element may overlap. This arises because the register that is set by the initiator cleavage site begins at that site. Thus, the nucleotides of the 5' or 3' portion of the initiator sequence will be incorporated into the first 21-mer gene suppressing element (e.g., siRNA) produced. This is illustrated, for instance, in FIGS. 5A-C, FIG. 6A, and FIG. 7.

Many miRNAs and their corresponding target sequences (also referred to herein as initiator sequences) are highly conserved among distantly related species. In plants in particular, target sequences that are recognized by related miR-NAs in different species differ only by one to three bases, making computational prediction of target sites by similarity searches relatively straightforward (Jones-Rhoades & Bartel, Mol Cell 14:787-799, 2004). Owing to the high level of conservation of miRNAs, a functional miRNA target site from one plant species is likely to be functional in a species which expresses the targeting miRNA. For example, miRNA target genes from Arabidopsis expressed in Nicotiana are cleaved by endogenous miRNAs (Llave et al., Science 297: 2053-2056, 2002). In Oryza and Populus, for which nearcomplete genomic sequence information exists, homologous miRNA and/or target genes have been identified for 20 of 25 validated miRNA families in Arabidopsis. For these 20 conserved miRNA families, conserved homologous miRNA and/ or target genes have also been found in several other plant species with less complete sequence information.

By way of example, in Table 2, miRNAs are grouped by related families (one to three nucleotide differences), or by targets of the miRNA family. Presence of the miRNA or target in a listed plant genus is indicated by an "X". In generating this table, miRNA genes were considered to be conserved if the homologous sequence was within 1-3 nucleotides of the *Arabidopsis* sequence, formed a stable foldback structure, and did not encode an identifiable protein. Target sites were considered to be conserved if the target gene in the specified genus encodes a protein similar to the *Arabidopsis* target gene.

Х

				IA	BLE 2					
		Con	servation c	of miRNA	is and targe	t genes i	ı plants.			
	miR15	56/157	miR	.158	miR	.159	miR	.160	miR	.161
Genus	miRNA	Target	miRNA	Target	miRNA	Target	miKNA	Target	miRNA	Target
Acorus Accrilona		х								
Alium		х								
Amborella										
Antirrhinum	Х	Х				Х				
Apium	v	v	V		V	V	v	v	V	v
Arabidopsis Arachis	Х	Х	Х		Х	Х	Х	Х	Х	Х
Beta										
Betula										
Brassica	Х					Х				
Brugeria		37				37				
Capsicum	v	Х				Х	v			
Citrus	А	х					л			
Cryptomeria										
Cycas										
Descurainia										
Eschscholzia		Х						х		
Glvcine	х	х			х	х	х	х		
Gossypium		X				x		x		
Hedyotis										
Helianthus	Х	X			v	v		v		
Horaeum		X			Х	X		Х		
Lactuca		X				X				
Linum										
Liriodendron	Х				Х		Х			
Lotus	Х							Х		
Lupinus		v				v		v		
Malus		Λ				А		А		
Manihot										
Mesembryan-										
themum	37				37	37	37	37		
Medicago Nicotiana	X Y	v			X Y	X Y	X V	Х		
Nunhar	л	X			л	л	л			
Oryza	Х	X			Х	х	Х	Х		
Pennisetum						Х				
Persea		37				37				
Phaseolus Phycomitrella	v	Х				X				
Picea	л					А				
Pinus		Х						Х		
Poncirus										
Populus	Х	X			Х	X	Х	X		
Prunus Gossprium		X X				X		X Y		
Hedvotis		Λ				А		л		
Helianthus	Х	Х								
Hordeum		Х			Х	Х		Х		
Ipomoea Lasta		X				X				
Lactuca Linum		Х				х				
Liriodendron	х				х		х			
Lotus	X							Х		
Lupinus										
Lycopersicon		х				х		х		
Malus Manihot										
Mesembrvan-										
themum										
Medicago	Х				Х	х	Х	х		
Nicotiana	х	X			х	х	Х			
Nuphar Ourse a	v	X			v	v	v	v		
Oryza Pennisetum	А	л			л	л Х	А	л		
Persea						л				
Phaseolus		х				х				
Phycomitrella	х					х				
Picea								_		
Pinus		Х						Х		

Х

TADLES

31

		Con	servation o	f miRNA	s and targe	et genes i	ı plants.			
Poncirus Populus	X	X			X	X	X	x		
Prunus		x				x		x		
	miR	162	miR	.163	miR	.164	miR165/166		miR167	
Genus	miRNA	Target	miRNA	Target	miRNA	Target	miRNA	Target	miRNA	Target
Acorus								х		
Aegilops										Х
Allum Amhorella										
Antirrhinum						х		х		
Apium										
Arabidopsis Arachis	Х	Х	Х	х	х	х	х	х	х	х
Beta								х		
Betula										
Brassica						Х				х
Brugeria								v		
Ceratopteris							х	Δ		
Citrus	Х									Х
Cryptomeria										Х
Cycas Descurairia										
Eschscholzia										
Eucalyptus										
Glycine	Х					X	Х	Х	Х	Х
Gossypium						Х	v			
Helianthus							л			х
Hordeum							х			X
Ipomoea							Х			Х
Lactuca						Х		Х		Х
Liriodendron					х		х		х	
Lotus		х								Х
Lupinus	Х									Х
Lycopersicon Malus						Х		Х		Х
Manihot										
Mesembryan-										
themum										
Medicago Nicetiana	Х				v	х	X		v	X
Nuconana Nuchar					л		л		л	л
Oryza	Х	х			х		х	х	х	Х
Pennisetum										
Persea Phagoolug									v	
Phycomitrella									л	
Picea										
Pinus								Х		Х
Poncirus Ponulus	v	v			v	v	v	X	v	X v
r opuius Prunus	Λ	Λ			л	л	л	л	л	X
Gossypium						х				
Hedyotis							Х			
Helianthus Hordeum							v			X v
Іротоеа							X			X
Lactuca						х	-	х		X
Linum					T -		- -			
Liriodendron		v			Х		Х		Х	v
Lupinus	х	л								X
Lycopersicon						х		х		X
Malus										
Manihot Masamhunan										
themum										
Medicago	Х					х	Х			Х
Nicotiana					Х		Х		Х	Х
Nuphar Omra	v	v			v		\mathbf{v}	v	v	\mathbf{v}
⊖ry∠a	л	л			л		л	А	л	л

Pennisetum Persea

TABLE 2-continued

			T	ABLE	2-contin	ued				
		Con	servation c	f miRNA	s and targe	t genes ir	n plants.			
Phaseolus Phycomitrella Picea Pinus								X	х	x
Poncirus Populus Prunus	х	Х			Х	Х	Х	X X	Х	X X X
	miR	168	miR	169	miR17	0/171	miR	.172	miR	.173
Genus	miRNA	Target	miRNA	Target	miRNA	Target	miRNA	Target	miRNA	Target
Acorus										
Aegilops				37		37				
Attum Amhorella				х		Х				
Antirrhinum								Х		
Apium										
Arabidopsis	Х	х	Х	Х	Х	Х	Х	х	Х	Х
Beta										
Betula	Х									
Brassica				Х				х		
Brugeria Cansicum										
Ceratopteris	Х		х		х	х	х			
Citrus							Х			
Cryptomeria Cycas										
Descurainia				х				х		
Eschscholzia										
Eucalyptus	37		37	37	37	37	37	37		
Glycine Gossvnium	Х		Х	X	Х	Х	Х	X		
Hedyotis	Х	х		21	х			21		
Helianthus				••	••					
Hordeum Inomoea				Х	Х	Х		Х		
Lactuca								х		
Linum										
Liriodendron	Х		Х		х	v	Х			
Lotus Luvinus						л				
Lycopersicon	Х						х	х		
Malus										
Maninot Mesemhrvan-										
themum										
Medicago			Х	Х	Х	Х		Х		
Nicotiana Nunhar	Х		Х		Х		Х	v		
Oryza	х		х		х	х	х	X		
Pennisetum										
Persea Diana dian										
Phaseotus Phycomitrella										
Picea										
Pinus										
Poncirus Ponulus	x		x	x	x		x			
Prunus			21		21		21			
Gossypium				Х				х		
Hedyotis Holianthua	Х	х			Х					
Hordeum				х	х	х		х		
Ipomoea										
Lactuca								Х		
Linum Liriodendron	x		x		x		x			
Lotus	Δ		Δ		Δ	Х	Δ			
Lupinus										
Lycopersicon Malur	Х						Х	Х		
Manihot										
Mesembryan-										
themum										
Medicago Nicotiana	v		X	Х	X	X	v	X		
iviconana	л		л		л		л			

TABLE 2-continued

		Con	servation o	f miRNA	s and targe	t genes i	n plants.			
Nuphar Oryza Pennisetum Parsaa	х		х		х	х	х	X X		
Phaseolus Phycomitrella Picea Pinus Poncirus										
Populus Prunus	Х		Х	Х	Х		Х			
	miR	319	miR39	0/391	miR	393	miR	394	miR	395
Genus	miRNA	Target	miRNA	Target	miRNA	Target	miRNA	Target	miRNA	Target
Acorus						Х				Х
Alium										х
Amborella										
Antirrhinum		Х	Х	Х						
Aptum Arahidonsis	x	x	x	x	x	x	x	x	x	x
Arachis	24	24	24	21	24	21	24	21	24	А
Beta										Х
Betula		v								v
Brussica Bruseria		А	х	x						Λ
Capsicum						х				Х
Ceratopteris			Х							
Citrus Commton avia				Х		х				X
Crypiomeria Cvcas										л
Descurainia										
Eschscholzia				Х				Х		
Eucalyptus	v	v	v	v		X	v	v	v	v
Gossvnium	л	X	X	X		X	л	X	л	л
Hedyotis										Х
Helianthus						Х		Х		
Hordeum Inomoea	Х	X	Х	Х		Х		v		X Y
Lactuca		X						X		X
Linum								Х		
Liriodendron	Х		Х				Х			••
Lotus			Х	Х		Х				X X
Lycopersicon		х	Х	х						X
Malus				Х						
Manihot			X	X						
Mesembryan- themum			Х	Х						
Medicago	Х	Х			Х	х			Х	Х
Nicotiana		Х	Х				Х			Х
Nuphar	37	v	37	37	37	37		37	37	
Oryza Pennisetum	А	А	А	А	А	А		X X	А	
Persea			Х	Х		х		24		
Phaseolus		Х								
Phycomitrella	Х		X	v						
Piced Pinus			Λ	X		x				
Poncirus				21		21				Х
Populus		Х	Х	Х	Х	х	Х	Х	Х	Х
Prunus		v	v	v		X		v		
Gossypium Hedvotis		А	А	А		А		А		х
Helianthus						Х		Х		
Hordeum	Х	X	Х	Х		Х				X
Ipomoea Lastusa		X						X		X
Linum		л						л Х		Λ
Liriodendron	Х		Х				Х	**		
Lotus			Х	Х		Х				Х
Lupinus Lucoparsicor		v	v	v						X
Malus		л	Λ	л Х						л
Manihot			Х	Х						

			Τ.	ABLE	2-contin	ued				
		Con	servation c	of miRNA	s and targe	t genes i	n plants.			
Mesembryan-			Х	х						
themum Medicago Nicotiana	Х	X X	х		Х	Х	х		Х	X X
Nupnar Oryza Pennisetum	х	х	Х	х	Х	х		X X	Х	
Persea Phaseolus		х	Х	Х		Х		л		
Phycomitrella Picea	Х		X X	х						
Pinus Poncirus Populus		х	х	x x	х	X X	х	х	х	X X
Prunus						Х				
	miR	396	miR	.397	miR	.398	miR	.399	miR	.403
Genus	miRNA	Target	miRNA	Target	miRNA	Target	miRNA	Target	miRNA	Target
Acorus		X				Х				
Aegilops Alium		X X				х				
Amborella Antirrhinum		Х				Х				
Apium						х				
Arabidopsis Arachis	Х	Х	х	Х	х	X X	х	Х	х	Х
Beta				Х		Х				
Betula Brassica	Х	х				х				
Brugeria		v				V				
Capsicum Ceratopteris		Х				Х				
Citrus [®]		Х			Х	X				
Cycas		х				л				
Descurainia Eschecholzia		v				v				
Eucalyptus		Λ				А				
Glycine Gossvnium	Х	X X		X X	Х	X X				
Hedyotis		Λ		Λ		X				
Helianthus Hordeum		x	x		Х	X X		x		
Іротоеа			**							
Lactuca Linum		Х			Х	Х				
Liriodendron Lotus	Х	X X		х	х	X X		х		
Lupinus		37		37		37			37	
Lycopersicon Malus		Х		Х		Х			Х	
Manihot Mesembryan-	х									
Medicago		х		Х	х	х	х	Х		
Nicotiana Numbar	Х	v	Х	Х	Х	Х				
Oryza Pennisetum	Х	X	Х		Х	Х		Х		
Persea Phaseolus Phycomitrella		Х				Х				
Picea						Х				
Pinus Poncirus		Х		Х		Х				
Populus	X	Х	х	Х	Х	X	х	Х		
Prunus Gossypium	Х	х		х		X X				
Hedyotis Heliant					v	X				
Hordeum		х	х		Х	X X		х		
1pomoea Lactuca		х			х	х				
Linum Liriodendron	х	х				х				
Lotus		Х		Х	х	X		Х		

			Т	ABLE 2	2-contin	ued			
		Con	servation o	of miRNA	s and targe	et genes ir	ı plants.		
Lupinus									
Lycopersicon		Х		Х		Х			Х
Maius Marihot									
Mesembryan-	Х								
inemum Medicago		x		x	x	x	x	x	
Nicotiana	х	24	х	x	X	x	л	~	
Nuphar		х							
Oryza	Х	Х	Х		Х	Х		Х	
Pennisetum Parsaa									
Phaseolus		x				х			
Phycomitrella									
Picea						Х			
Pinus		Х		Х		Х			
Poncirus									
Populus	Х	Х	Х	Х	Х	Х	Х	Х	
Prunus	Х					Х			

VII. Selection of Gene Suppressing Elements and Targets for RNA i-Triggering Constructs

41

A gene suppressing element is any nucleotide sequence which leads to the downregulation of the final functional ²⁵ product of a gene, either RNA or protein. For RNAi, this sequence is a 20 to 25 nucleotide RNA with complementarity to the gene to be suppressed.

Beneficial characteristics of a gene suppressing element useful for inclusion "in register" in an RNAi-triggering cassette are those known to produce a functional (measurably effective for reducing expression of a target gene/sequence) siRNA sequence. Empirical studies such as described herein can be used to identify gene suppressing elements. There are also art-recognized guidelines that provide predictive RISC incorporation rules (Khvorova et al., *Cell* 115:209-216, 2003; Schwarz et al., *Cell* 115:199-208, 2003)

Specific gene suppressive elements can be designed depending on the target sequences (e.g., gene(s), regulatory 40 sequence or invasive or pathogenic entities) to be suppressed. Gene suppressive elements (usually about 21-nucleotides in length), complementary to a target (e.g., gene transcript) to be suppressed, are included the RNAi-triggering cassette, in register, in either sense or antisense orientation starting from the 45 initiation cleavage site. At least eight, possibly more, unique (or duplicated) sequences can be included either upstream or downstream of the initiation cleavage site. Beyond the eighth register, processing by DICER or DCL enzymes may become less precise, and the 21 nucleotide register is more likely to be ⁵⁰ compromised. Even so, gene suppressive elements beyond eight can be optionally included in constructs, including elements that are not in precise 21-nucleotide register.

Gene suppressive elements contained in the RNAi-inducing cassette can be designed to target one or more genes, with one or more unique target sequences. Potential targets might include, but are not limited to, pathogens, toxins, genes that lead to production of undesirable flavors and/or odors, reproductive genes which could facilitate pollination or increase crop yield, color or pigment genes, transcription factors, pathogen response genes, and genes involved in cold/water/ drought and other environmental stresses. Related gene families, pathway-related genes, or quantitative trait loci also may be targeted, for instance in a single RNAi-inducing cassette or a set of such cassettes. Such family-directed cassettes are useful in the down-regulation of all (or select) members of a

gene family, all (or select) members in a biosynthetic pathway, and so forth, thereby yielding coordinated downregulation of sets of genes.

Additional gene suppressive elements that are contemplated are directed to the genes of pathogens or pests associated with the resultant target organism; endogenous genes of the target organism that are involved in response to such pathogens or pests; and exogenous (heterologous) transgenes provided to the target organism (separately or in a single construct containing the RNAi-triggering cassette) to influence infection or infestation or association of such pathogens or pests.

Gene suppressive elements also can be from any endog-35 enous gene that it is desired to downregulate. Genes that negatively influence a characteristic (that cause an unpleasant flavor, aroma, etc.) of the target organism; genes that lead to production of a toxin, allergen, or other detrimental component (e.g., erucic acid in an oil seed; hazardous allergens in peanuts; toxic compounds in potatoes, apricots); genes involved in reproduction (where inhibition will result in increased vegetative production in a plant, for instance); genes involved in male fertility in plants (in order to produce male-sterile, non-selfing plants); genes that enhance vegetative growth (where reproductive growth is desired over seed production, such as in leaf crops like lettuce and spinach); genes that govern or influence color (for instance, the color of leaves or bracts, flowers, stems, fruit, and so forth, where it is desired to change the color); genes that govern or influence susceptibility to stress (such as cold stress, water or drought stress, shear stress, and so forth); and transcription factors (where it is desired to influence a downstream gene or set of genes the expression of which is influenced by the transcription factor) are all examples of conceived of targets for suppression using the methods and constructs described herein.

It is further contemplated that transgenic plants produced using methods and cassettes described herein can be further enhanced with stacked traits, e.g. a crop having an enhanced agronomic trait resulting from gene suppression from an siRNA-triggering nucleic acid cassette in combination with DNA expressing a protein supplementing the agronomic trait, or conferring another trait such as herbicide and/or pest resistance traits. For example, a trait can be enhanced by simultaneous suppression of one gene and over expression of another gene to provide transgenic corn with an enhance level of the amino acid lysine. Transgenic corn with recombinant DNA for expression of the gene encoding dihydrodipicolinate synthase in the lysine synthetic pathway and suppression of the gene encoding lysine ketoglutarate reductase (LKR) in the lysine catabolic pathway has enhanced lysine as compared to control plants. Following the methods of this disclosure, the suppression of LKR can be effected by identifying a 5 21-nucleotide segment of the gene encoding LKR for insertion into an siRNA-triggering nucleic acid cassette. To effect the enhance lysine trait preferentially in seed tissue, seed specific promoters are used to express the siRNA-triggering nucleic acid cassette and/or to express the RNA that hybrid-10 izes to the initiation cleavage site in the initiator segment.

The siRNA-triggering nucleic acid cassettes can also be stacked with DNA imparting other traits of agronomic interest including DNA providing herbicide resistance or insect resistance such as using a gene from Bacillus thuringensis to 15 provide resistance against lepidopteran, coliopteran, homopteran, hemiopteran, and other insects. Herbicides for which resistance is useful in a plant include glyphosate herbicides, phosphinothricin herbicides, oxynil herbicides, imidazolinone herbicides, dinitroaniline herbicides, pyridine 20 herbicides, sulfonylurea herbicides, bialaphos herbicides, sulfonamide herbicides and glufosinate herbicides. Persons of ordinary skill in the art are enabled in providing stacked traits by reference to U.S. patent application publications 2003/0106096A1 and 2002/0112260A1 and U.S. Pat. Nos. 25 5,034,322; 5,776,760; 6,107,549 and 6,376,754 and to insect/ nematode/virus resistance by reference to U.S. Pat. Nos. 5,250,515; 5,880,275; 6,506,599; 5,986,175 and U.S. Patent Application Publication 2003/0150017 A1, all of which are incorporated herein by reference.

VIII. Constructs for Triggering RNAi

RNAi-inducing constructs contain an initiator (target) sequence and one or more gene-suppressing elements inphase or near-phase to the initiation cleavage site in the in initiator (target) sequence. These are operably linked to a 35 promoter or other regulatory sequence which governs transcription from the RNAi-triggering cassette (comprising the initiator sequence with an initiator cleavage site and at least one gene suppressing element upstream or downstream of the initiator sequence and that may optionally overlap a portion 40 of the initiator sequence) in order to generate a singlestranded RNA comprising one or more elements that, when cleaved in register or nearly in register from the in initiator cleavage site, yield one of more siRNA.

DNA constructs for plant transformation are assembled 45 using methods well known to persons of ordinary skill in the art, and typically comprise a promoter operably linked to DNA, the expression of which provides an enhanced trait, e.g. by gene suppression using an siRNA-triggering (or RNAitriggering) nucleic acid cassette alone or in combination with 50 a DNA for expressing a protein or another RNA molecule. Other construct components may include additional regulatory elements, such as 5' introns for enhancing transcription, 3' untranslated regions (such as polyadenylation signals and sites), DNA for transit or signal peptides. 55

Vectors suitable for stable transformation of culturable cells are well known. Typically, such vectors include a multiple-cloning site suitable for inserting a cloned nucleic acid molecule, such that it will be under the transcriptional control of 5' and 3' regulatory sequences. In addition, transformation 60 vectors include one or more selectable markers; for bacterial transformation this is often an antibiotic resistance gene. A number of vectors suitable for stable transformation of plant cells or for the establishment of transgenic plants have been described in, e.g., Pouwels et al. (*Cloning Vectors: A Labo-* 65 *ratory Manual,* 1985, Suppl., 1987), Weissbach and Weissbach (*Meth. Plant Mol. Bio.*, Academic Press, 1989) and

Gelvin et al. (*Plant Molecular Biology Manual*, Kluwer Academic Publishers, 1990). In addition, on of ordinary skill in the art is aware of the components useful in a transformation vector, and will be able to select and assemble such components in order to tailor make a vector for their specific use.

Typically, transformation and expression vectors include, for example, one or more cloned plant genes under the transcriptional control of 5' and 3' regulatory sequences and a dominant selectable marker. Such plant expression vectors also can contain a promoter regulatory region (e.g., a regulatory region controlling inducible or constitutive, environmentally- or developmentally-regulated, or cell- or tissue-specific expression), a transcription initiation start site, a ribosome binding site, an RNA processing signal, a transcription termination site, and/or a polyadenylation signal.

Also included in most expression vectors will be a promoter, which is an array of nucleic acid control sequences which direct transcription of a nucleic acid. A promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of an RNA polymerase II type promoter, a TATA element. Optionally, a promoter may include an enhancer and/or a repressor element. Enhancer and repressor elements can be located adjacent to, or distal to the promoter, and can be located as much as several thousand base pairs from the start site of transcription. Examples of promoters that can be used in the present disclosure include, but are not limited to the Cauliflower mosaic virus 35S promoter, SV40 promoter, the CMV enhancer-promoter, the CMV enhancer/β-actin promoter, and the tissue-specific promoter probasin. Other promoter sequences that can be used to construct nucleic acids and practice methods disclosed herein include, but are not limited to: the lac system, the trp system, the tac system, the trc system, major operator and promoter regions of phage lambda, the control region of fd coat protein, the early and late promoters of SV40, promoters derived from polyoma, adenovirus, retrovirus, baculovirus and simian virus, the promoter for 3-phosphoglycerate kinase, the promoters of yeast acid phosphatase, the promoter of the yeast alpha-mating factors, any retroviral LTR promoter such as the RSV promoter; inducible promoters, such as the MMTV promoter; the metallothionein promoter; heat shock promoters; the albumin promoter; the histone promoter; the α -actin promoter; TK promoters; B19 parvovirus promoters; the SV10 late promoter; the ApoAI promoter and combinations thereof.

In certain embodiments, a promoter is a strong promoter, which promotes transcription of RNA at high levels, for example at levels such that the transcriptional activity of the promoter generally accounts for about 5% or more of the 50 transcriptional activity of all transcription within a cell. The strength of a promoter is often tissue-specific and thus may vary from one cell type to another. Examples of strong promoters include, but are not limited to: viral promoters (such as CaMV 35S or CoYMV), ubiquitin promoter (such as Ubi-1 55 from maize), actin promoter (e.g, Act from rice), nopaline synthase promoter, and the octopine synthase promoter, pEMU promoter, MAS promoter, or a H3 histone promoter.

In another embodiment, a promoter is a tissue-specific, cell-specific, or developmental stage-specific promoter, which promotes transcription in a single cell or tissue type, a narrow range of cells or tissues, or in one or more specific developmental stages, or at least promotes measurable more transcription in such. Examples of such promoters include, but are not limited to: anther-specific, embryo-specific, endosperm-specific, floral-specific, leaf-specific, meristemspecific, nodule-specific, phloem-specific, seed-specific, stem-specific, stomata-specific, trichome-specific, root-specific, tapetum-specific, and xylem-specific promoters. See, for instance, Carpenter et al., *The Plant Cell* 4:557-571, 1992, Denis et al., *Plant Physiol.* 101:1295-1304 1993, Opperman et al., *Science* 263:221-223, 1993, Stockhause et al., *The Plant Cell* 9:479-489, 1997; Roshal et al., *EMBO J.* 6:1155, 5 1987; Schernthaner et al., *EMBO J.* 7:1249, 1988; and Bustos et al., *Plant Cell* 1:839, 1989.

Inducible promoters or gene-switches are used to both spatially and temporally regulate gene expression. By allowing the time and/or location of gene expression to be precisely regulated, gene-switches or inducible promoters may control deleterious and/or abnormal effects caused by overexpression or non-localized gene expression. Thus, for a typical inducible promoter in the absence of the inducer, there would be little or no gene expression while, in the presence of the 15 inducer, expression should be high (i.e., off/on). Examples of stimulus-responsive promoters include, but are not limited to hormone-responsive promoters (e.g, ethanol inducible alcRencoded transcriptional activator (ALCR), a promoter derived from alcA), light-inducible promoters (such as a rbcS 20 promoter), metal-inducible promoters, heat-shock promoters, wound-inducible and stress-inducible (e.g., drought stress, salt stress, shear stress, nutrient stress) promoters. Others are activated by chemical stimuli, such as IPTG or Tetracycline (Tet), or galactose. Other promoters are respon- 25 sive to pathogen infection or insect damage.

A number of controllable gene expression systems have been devised, including those regulated by light (e.g., the pea rbcS-3A promoter, Kuhlemeier et al., The Plant Cell, 1:471-478, 1989, and the maize rbcS promoter, Schaffner and 30 Sheen, Plant Cell 3:997, 1991), heat (Callis et al., Plant Physiol. 88:965, 1988; Ainley and Key, Plant Mol. Biol., 14:949-967, 1990; Holtorf et al., Plant Mol. Biol. 29:637-646, 1995), pathogens (PR1-a; Williams et al., Biotechnology 10:540-543, 1992; Gatz, Annu. Rev. Plant Physiol. Plant Mol. 35 Biol. 48:89-108, 1997), herbicide safeners (In2-2, GST-27; De Veylder et al., Plant Cell Physiol. 38:568-577, 1997), light (Kuhlemeier et al., Plant Cell 1:471-478, 1989), wounding (Firek et al. Plant Mol. Biol. 22:129-212, 1993), ethanol (Salter et al., Plant J. 16:127-132, 1998), phytohormones (Li 40 et al., Plant Cell 3:1167-1175, 1991), steroids (Aoyama and Chua, Plant J., 11:605-612, 1997), wounding (e.g., wunl, Siebertz et al., Plant Cell 1:961, 1989), hormones, such as abscisic acid (Marcotte et al., Plant Cell 1:969, 1989); chemicals such as methyl jasminate or salicylic acid (see Gatz et al., 45 Ann. Rev. Plant Physiol. Plant Mol. Biol. 48:89-108 1997), and tetracycline (Gatz et al., Plant J. 2:397-404, 1992; Weinmann et al., Plant J., 5:559-569, 1994; Sommer et al., Plant Cell Rep. 17:891-896, 1998) (from Granger & Cyr, Plant Cell Reports 20:227-234, 2001).

It is specifically contemplated that useful promoters will include promoters present in plant genomes as well as promoters from other sources, including nopaline synthase (nos) promoter and octopine synthase (ocs) promoters carried on tumor-inducing plasmids of Agrobacterium tumefaciens, 55 caulimovirus promoters such as the cauliflower mosaic virus or figwort mosaic virus promoters. For instance, see U.S. Pat. Nos. 5,322,938 and 5,858,742 which disclose versions of the constitutive promoter derived from cauliflower mosaic virus (CaMV35S), U.S. Pat. No. 5,378,619 which discloses a Fig- 60 wort Mosaic Virus (FMV) 35S promoter, U.S. Pat. No. 5,420, 034 which discloses a napin promoter, U.S. Pat. No. 6,437, 217 which discloses a maize RS81 promoter, U.S. Pat. No. 5,641,876 which discloses a rice actin promoter, U.S. Pat. No. 6,426,446 which discloses a maize RS324 promoter, U.S. Pat. 65 No. 6,429,362 which discloses a maize PR-1 promoter, U.S. Pat. No. 6,232,526 which discloses a maize A3 promoter,

46

U.S. Pat. No. 6,177,611 which discloses constitutive maize promoters, U.S. Pat. No. 6,433,252 which discloses a maize L3 oleosin promoter, U.S. Pat. No. 6,429,357 which discloses a rice actin 2 promoter and intron, U.S. Pat. No. 5,837,848 which discloses a root specific promoter, U.S. Pat. No. 6,084, 089 which discloses cold inducible promoters, U.S. Pat. No. 6,294,714 which discloses light inducible promoters, U.S. Pat. No. 6,140,078 which discloses salt inducible promoters, U.S. Pat. No. 6,252,138 which discloses pathogen inducible promoters, U.S. Pat. No. 6,175,060 which discloses phosphorus deficiency inducible promoters, U.S. Pat. No. 6,635,806 which discloses a coixin promoter, U.S. 2002/0192813 A1 which discloses 5', 3' and intron elements useful in the design of effective plant expression vectors, U.S. 2004/0216189 A1 which discloses a maize chloroplast aldolase promoter, and U.S. 2004/0123347 A1 which discloses water-deficit inducible promoters, all of which are incorporated herein by reference. These and numerous other promoters that function in plant cells are known to those skilled in the art and available for use in recombinant polynucleotides of the present disclosure to provide for expression of desired genes in transgenic plant cells.

Furthermore, the promoters may be altered to contain multiple "enhancer sequences" to assist in elevating gene expression. Such enhancers are known in the art. By including an enhancer sequence with such constructs, the expression of the selected protein may be enhanced. These enhancers often are found 5' to the start of transcription in a promoter that functions in eukaryotic cells, but can often be inserted upstream (5') or downstream (3') to the coding sequence. In some instances, these 5' enhancing elements are introns. Particularly useful as enhancers are the 5' introns of the rice actin 1 (see U.S. Pat. No. 5,641,876) and rice actin 2 genes, the maize alcohol dehydrogenase gene intron, the maize heat shock protein 70 gene intron (U.S. Pat. No. 5,593,874) and the maize shrunken 1 gene.

In other aspects, sufficient expression in plant seed tissues is desired to effect improvements in seed composition. Exemplary promoters for use for seed composition modification include promoters from seed genes such as napin (U.S. Pat. No. 5,420,034), maize L3 oleosin (U.S. Pat. No. 6,433,252), zein Z27 (Russell et al. (1997) *Transgenic Res.* 6(2):157-166), globulin 1 (Belanger et al (1991) Genetics 129:863-872), glutelin 1 (Russell (1997) supra), and peroxiredoxin antioxidant (Per1) (Stacy et al. (1996) *Plant Mol. Biol.* 31(6): 1205-1216).

Recombinant DNA constructs prepared in accordance with this disclosure will often include a 3' element that typically contains a polyadenylation signal and site, especially if the recombinant DNA is intended for protein expression as well as gene suppression. Well-known 3' elements include those from Agrobacterium tumefaciens genes such as nos 3', tml 3, tmr 3', tms 3, ocs 3', tr7 3', e.g. disclosed in U.S. Pat. No. 6,090,627, incorporated herein by reference; 3' elements from plant genes such as wheat (Triticum aesevitum) heat shock protein 17 (Hsp17 3'), a wheat ubiquitin gene, a wheat fructose-1,6-biphosphatase gene, a rice glutelin gene a rice lactate dehydrogenase gene and a rice beta-tubulin gene, all of which are disclosed in U.S. published patent application 2002/0192813 A1, incorporated herein by reference; and the pea (Pisum sativum) ribulose biphosphate carboxylase gene (rbs 3), and 3' elements from the genes within the host plant.

Constructs and vectors may also include a transit peptide for targeting of a gene target to a plant organelle, particularly to a chloroplast, leucoplast or other plastid organelle. For descriptions of the use of chloroplast transit peptides see U.S. Pat. No. 5,188,642 and U.S. Pat. No. 5,728,925, incorporated herein by reference. For description of the transit peptide region of an Arabidopsis EPSPS gene useful in the provided constructs; see Klee et al (MGG 210:437-442, 1987).

For expression of constructs in fungi such as yeast, there are a variety of promoters to choose from for various pur-⁵ poses. The following are provided by way of example, and are not meant to be in any way limiting:

The Gal 1,10 promoter: This promoter is inducible by galactose. It can be used to turn expression of an associated nucleic acid on and off, for instance in order to follow the time dependent effects of expression. The Gal promoter is slightly leaky, and so is appropriate where it is not essential to have absolutely no expression of the passenger gene in the absence of galactose. The Gal 1 gene and Gal 10 gene are adjacent and transcribed in opposite directions from the same promoter region. The regulatory region containing the UAS sequences can be cut out on a DdeI Sau3A fragment and placed upstream of any other gene to confer galactose inducible expression and glucose repression.

PGK, GPD and ADH1 promoters: These are high expression constitutive promoters. PGK=phosphoglycerate kinase, GPD=glyceraldehyde 3 phosphate dehydrogenase, ADH1=alcohol dehydrogenase

ADH2 promoter: This gene is glucose repressible and it is 25 strongly transcribed on non-fermentable carbon sources (similar to GAL 1,10, except not inducible by galactose).

CUP1 promoter: This is the metalothionein gene promoter. It is activated by copper or silver ions added to the medium. The CUP1 gene is one of a few yeast genes that is present in 30 yeast in more than one copy. Depending on the strain, there can be up to eight copies of this gene. By way of example, a gene, when placed under CUP1 regulation, should e provided with a degree of control of the level of expression based on the amount of copper (or silver) in the medium. Copper is toxic 35 ing signals, e.g., introns, which may be positioned upstream and any cells should be tested to see how well it tolerates copper before making a CUP1 construct.

PHO5 promoter: This promoter is derived from a gene that encodes an acid phosphatase. It is induced by low or no phosphate in the medium. The phosphatase is secreted in the 40 chance it will be able to free up some phosphate from the surroundings. When phosphate is present, no PHO5 message can be found. When phosphate is absent, the promoter is strongly turned on.

Steroid inducible expression: Keith Yamamoto's lab has 45 developed an inducible system in yeast similar to the ecdysone system for mammalian cells. The rat glucocorticoid receptor gene has been inserted behind the constitutive GPD promoter to express the rat glucocorticoid receptor in yeast. A second vector was made with three glucocorticoid response 50 elements upstream of the CYC1 gene minimal promoter (cytochrome c gene). A cloning site was placed after this so a selected gene or other engineered construct could be placed under control of the 3GRE/CYC1 promoter. Both vectors are high copy vectors. This system works well with dose depen- 55 dent expression, when steroid hormone is added to the medium. Response time is rapid with $t_{1/2}$ of 7-9 minutes after addition of hormone.

Heat shock expression: By placing the UAS from a heat shock gene in front of the minimal CYC1 promoter, any gene 60 or synthetic construct can be placed under heat shock induction. This is a specialized requirement usually used in studies of heat shock response, or in regulation of RNAi under different temperature regimens.

GAL1-10 promoter: This promoter is highly regulatable by 65 galactose, such that there is a basal level on glucose, but over 100 fold increase when cells are placed in galactose medium.

The yeast GAL genes form one of the most intensely studied model systems for eukaryotic gene regulation. The structural genes, e.g. GAL1 and GAL10, are induced to very high level expression in galactose by the action of the activator Gal4p. Gal4p binds to activation sequences (UASG) that lie up stream of GAL genes and activates transcription in a process that depends on gene-proximal TATA elements and involves numerous coactivators and general transcription factors including TBP. The activation function of Gal4p is modulated by Ga180p, an inhibitory regulator that binds specifically to the activation domain of Gal4p, thus preventing gene activation in nongalactose carbon sources.

In certain embodiments, the provided constructs or methods are used or carried out in animal cells, particularly cells from the nematode C. elegans. In such embodiments, promoters or other regulatory sequences that function in animal cells are useful. Myriad animal promoters are well known to those of ordinary skill in the art, including constitutive promoters and inducible or repressible promoters, as well as promoters 20 that show cell or tissue specificity or other regulated expression. Where a siRNA triggering cassette is expressed in C. elegans or a cell from a C. elegans organism, optionally a C. elegans promoter can be used. See, for instance published U.S. Applications No. 10/239,249 (2003-0177507) and 09/422,569 (2003-0023997), which describe the use of various promoters for construct expression in the invertebrate animal C. elegans. Specific examples of C. elegans promoters include the following: unc-54, hsp16-2, unc-119, G_{0.41} and sel-12. It is also appropriate to use heterologous promoters in animal cells, including cells from (or in) C. elegans organisms

Additional promoters and/or regulatory sequences are discussed elsewhere in this document.

Plant expression vectors optionally include RNA processor downstream of a polypeptide-encoding sequence in the transgene. In addition, the expression vectors may also include additional regulatory sequences from the 3'-untranslated region of plant genes, e.g., a 3' terminator region to increase mRNA stability of the mRNA, such as the PI-II terminator region of potato or the octopine or nopaline synthase 3' terminator regions.

Such vectors also generally include one or more dominant selectable marker genes, including genes encoding antibiotic resistance (e.g., resistance to hygromycin, kanamycin, bleomycin, G418, streptomycin, paromomycin, or spectinomycin) and herbicide-resistance genes (e.g., resistance to phosphinothricin acetyltransferase or glyphosate) to facilitate manipulation in bacterial systems and to select for transformed plant cells.

Screenable markers are also used for cell transformation, such as fungus or plant cell transformation, including color markers such as genes encoding β -glucuronidase (gus) or anthocyanin production, or fluorescent markers such as genes encoding luciferase or green fluorescence protein (GFP). IX. In Vitro Production of Oligonucleotides

Though it is often appropriate to produce RNAi triggering constructs through genetic engineering techniques such as those discussed above, in some instances components of such constructs can be advantageously produced using in vitro chemical synthesis.

In vitro methods for the synthesis of oligonucleotides are well known to those of ordinary skill in the art; such conventional methods can be used to produce IROs for the disclosed methods. The most common method for in vitro oligonucleotide synthesis is the phosphoramidite method, formulated by Letsinger and further developed by Caruthers (Caruthers et al., Chemical synthesis of deoxyoligonucleotides, in Methods Enzymol. 154:287-313, 1987). This is a non-aqueous, solid phase reaction carried out in a stepwise manner, wherein a single nucleotide (or modified nucleotide) is added to a growing oligonucleotide. The individual nucleotides are added in 5 the form of reactive 3'-phosphoramidite derivatives. See also, Gait (Ed.), Oligonucleotide Synthesis. A practical approach, IRL Press, 1984.

In general, the synthesis reactions proceed as follows: First, a dimethoxytrityl or equivalent protecting group at the 5' end of the growing oligonucleotide chain is removed by acid treatment. (The growing chain is anchored by its 3' end to a solid support such as a silicon bead.) The newly liberated 5' end of the oligonucleotide chain is coupled to the 3'-phosphoramidite derivative of the next deoxynucleoside to be 15 added to the chain, using the coupling agent tetrazole. The coupling reaction usually proceeds at an efficiency of approximately 99%; any remaining unreacted 5' ends are capped by acetylation so as to block extension in subsequent couplings. Finally, the phosphite triester group produced by 20 the coupling step is oxidized to the phosphotriester, yielding a chain that has been lengthened by one nucleotide residue. This process is repeated, adding one residue per cycle. See, for instances, U.S. Pat. Nos. 4,415,732, 4,458,066, 4,500, 707, 4,973,679, and 5,132,418. Oligonucleotide synthesizers 25 that employ this or similar methods are available commercially (e.g., the PolyPlex oligonucleotide synthesizer from Gene Machines, San Carlos, Calif.). In addition, many companies will perform such synthesis (e.g., Sigma-Genosys, TX; Operon Technologies, CA; Integrated DNA Technolo- 30 gies, IA; and TriLink BioTechnologies, CA).

Oligonucleotides are conveniently available commercially up to approximately 125 nucleotides; beyond this length the efficiency and purification drops. Modified nucleotides can be incorporated into an oligonucleotide essentially as 35 described above for non-modified nucleotides.

Methods described above, or other methods known to those of ordinary skill in the art, can be used to produce oligonucleotides comprising an initiation sequence, a gene suppressing element, or combinations thereof, for instance. Such oligo- 40 nucleotides can be used to construct RNA-trigger nucleic acid cassettes, for instance.

X. Plants for Production of siRNAs

The presence of the cellular systems described herein necessary to respond to initiator sequences, and thereby produce 45 siRNAs from the described constructs, appears to be nearly universal within the plant and fungal kingdoms. These systems are also present in some invertebrates, such as C. elegans. At the molecular level for instance, DCL and RDR homologs have been found in a variety of plant and fungi 50 species, as well as C. elegans. Thus, expression of target genes using the synthetic siRNA-bearing constructs (RNAitriggering nucleic acid molecules) described herein may be modified, particularly inhibited, in a wide range of target organisms and cells of such organisms. These include plants, 55 including both monocotyledonous and dicotyledonous plants. The described system for inducing RNAi finds equal application in fungal systems, including filamentous (moldtype) and some yeast-type fungi, as well as C. elegans, a representative invertebrate animal.

Representative, non-limiting example plants include Arabidopsis; field crops (e.g. alfalfa, barley, bean, clover, corn, cotton, flax, lentils, maize, pea, rape/canola, rice, rye, safflower, sorghum, soybean, sunflower, tobacco, and wheat); vegetable crops (e.g. asparagus, beet, brassica generally, 65 broccoli, Brussels sprouts, cabbage, carrot, cauliflower, celery, cucumber (cucurbits), eggplant, lettuce, mustard, onion,

pepper, potato, pumpkin, radish, spinach, squash, taro, tomato, and zucchini); fruit and nut crops (e.g. almond, apple, apricot, banana, blackberry, blueberry, cacao, cassava, cherry, citrus, coconut, cranberry, date, hazelnut, grape, grapefruit, guava, kiwi, lemon, lime, mango, melon, nectarine, orange, papaya, passion fruit, peach, peanut, pear, pineapple, pistachio, plum, raspberry, strawberry, tangerine, walnut, and watermelon); tree woods and ornamentals (e.g. alder, ash, aspen, azalea, birch, boxwood, camellia, carnation, chrysanthemum, elm, fir, ivy, jasmine, juniper, oak, palm, poplar, pine, redwood, rhododendron, rose and rubber).

XI. Delivery of Constructs to Target Cells

Once a nucleic acid molecule (e.g., synthetic construct) encoding at least one siRNA for use in RNAi is generated, standard techniques may be used to express the encoded siRNA molecule(s) in transgenic plants, yeast, or animals. The basic approach is to clone, for instance, the synthetic siRNA construct into a transformation vector, such that it is operably linked to control sequences (e.g., a promoter) that direct expression of the nucleic acid in target cells. The transformation vector is then introduced into the target cells by one of a number of techniques (e.g., electroporation) and progeny containing the introduced nucleic acid construct are selected. In some embodiments, all or part of the transformation vector will stably integrate into the genome of the target cell. That part of the transformation vector that integrates into the target cell and that contains the introduced synthetic siRNA construct and associated sequences for controlling expression (the introduced "transgene") may be referred to as the recombinant expression cassette.

Selection of progeny, for instance, progeny plants, yeast, or invertebrate cells, containing the introduced transgene may be based upon the detection of an altered phenotype. Such a phenotype may result directly from the synthetic construct cloned into the transformation vector or may be manifested as enhanced (or reduced) resistance to a chemical agent (such as an antibiotic) as a result of the inclusion of a selectable marker gene incorporated into the transformation vector.

Examples of the modification of plant characteristics by transformation with cloned cDNA sequences are replete in the technical and scientific literature. Selected examples, which serve to illustrate the knowledge in this field of technology, include: U.S. Pat. No. 5,451,514; U.S. Pat. No. 5,750, 385; U.S. Pat. No. 5,583,021; U.S. Pat. No. 5,589,615; U.S. Pat. No. 5,268,526; U.S. Pat. No. 5,741,684; U.S. Pat. No. 5,773,692; WO 96/13582; published U.S. application Ser. No. 10/450,412 (2004-0139494), Ser. No. 09/850,846 (2002-0147168). These examples include descriptions of transformation vector selection, transformation techniques and the assembly of constructs designed to express or over-express the introduced nucleic acid.

In light of the foregoing and the provision herein of methods for producing siRNA-producing synthetic constructs governed by described initiator sequences, one of ordinary skill in the art will be able to introduce such nucleic acid constructs into plants, fungi, and animals (particularly invertebrates) in order to produce specimens exhibiting RNAi of one or more target genes.

XII. Plant Transformation, Regeneration, and Selection

60

Transformation and regeneration of both monocotyledonous and dicotyledonous plant cells is routine, and the most appropriate transformation technique will be determined by the practitioner. The choice of method will vary with the type of plant to be transformed; those skilled in the art will recognize the suitability of particular methods for given plant types. Suitable methods may include, but are not limited to: electroporation of plant protoplasts; liposome-mediated transformation; polyethylene glycol (PEG) mediated transformation; transformation using viruses; micro-injection of plant cells; micro-projectile bombardment of plant cells; vacuum infiltration; and *Agrobacterium tumefaciens* (AT) mediated transformation. Typical procedures for transforming and regenerating plants are described in the patent documents listed at the beginning of this section.

Following transformation and regeneration of plants with the transformation vector, transformed plants may be selected using a dominant selectable marker incorporated into the ¹⁰ transformation vector. Typically, such a marker will confer antibiotic resistance on the seedlings of transformed plants, and selection of transformants can be accomplished by exposing the seedlings to appropriate concentrations of the 15

After transformed plants are selected and grown to maturity, they can be assayed using the methods described herein, and other methods appropriate to the synthetic construct of the transgene, to determine whether the passenger siRNA(s) 20 are being produced, and/or whether the target gene(s) are measurably inhibited by RNAi as a result of the introduced transgene.

Numerous methods for transforming plant cells with recombinant DNA are known in the art and may be used. Two 25 commonly used methods for plant transformation are Agrobacterium-mediated transformation and microprojectile bombardment. Microprojectile bombardment methods are illustrated in U.S. Pat. Nos. 5,015,580 (soybean); 5,550,318 (corn); 5,538,880 (corn); 5,914,451 (soybean); 6,160,208 30 (corn); 6,399,861 (corn) and 6,153,812 (wheat) and Agrobacterium-mediated transformation is described in U.S. Pat. Nos. 5,159,135 (cotton); 5,824,877 (soybean); 5,591,616 (corn); and 6,384,301 (soybean), all of which are incorporated herein by reference. For Agrobacterium tumefaciens based plant 35 transformation system, additional elements present on transformation constructs will include T-DNA left and right border sequences to facilitate incorporation of the recombinant polynucleotide into the plant genome.

In general it is useful to introduce recombinant DNA randomly, i.e. at a non-specific location, in the genome of a target plant line. In special cases it may be useful to target recombinant DNA insertion in order to achieve site-specific integration, e.g. to replace an existing gene in the genome, to use an existing promoter in the plant genome, or to insert a recombinant polynucleotide at a predetermined site known to be active for gene expression. Several site specific recombination systems exist which are known to function implants include cre-lox as disclosed in U.S. Pat. No. 4,959,317 and FLP-FRT as disclosed in U.S. Pat. No. 5,527,695, both incorporated herein by reference.

Transformation methods are preferably practiced in tissue culture on media and in a controlled environment. "Media" refers to the numerous nutrient mixtures that are used to grow cells in vitro, that is, outside of the intact living organism. 55 Recipient cell targets include, but are not limited to, meristem cells, callus, immature embryos and gametic cells such as microspores, pollen, sperm and egg cells. It is contemplated that any cell from which a fertile plant may be regenerated is useful as a recipient cell. Callus may be initiated from tissue 60 sources including, but not limited to, immature embryos, seedling apical meristems, microspores and the like. Cells capable of proliferating as callus are also recipient cells for genetic transformation. Practical transformation methods and materials for making transgenic plants, e.g. various media 65 and recipient target cells, transformation of immature embryos and subsequent regeneration of fertile transgenic

plants are disclosed in U.S. Pat. Nos. 6,194,636 and 6,232, 526, which are incorporated herein by reference.

The seeds of transgenic plants can be harvested from fertile transgenic plants and be used to grow progeny generations of transformed plants including hybrid plants line for screening of plants having an enhanced agronomic trait. In addition to direct transformation of a plant with a recombinant DNA, transgenic plants can be prepared by crossing a first plant having a recombinant DNA with a second plant lacking the DNA. For example, recombinant DNA can be introduced into first plant line that is amenable to transformation to produce a transgenic plant which can be crossed with a second plant line to introgress the recombinant DNA into the second plant line. A transgenic plant with recombinant DNA providing an enhanced agronomic trait, e.g. enhanced yield, can be crossed with transgenic plant line having other recombinant DNA that confers another trait, e.g. herbicide resistance or pest resistance, to produce progeny plants having recombinant DNA that confers both traits. Typically, in such breeding for combining traits the transgenic plant donating the additional trait is a male line and the transgenic plant carrying the base traits is the female line. The progeny of this cross will segregate such that some of the plants will carry the DNA for both parental traits and some will carry DNA for one parental trait; such plants can be identified by markers associated with parental recombinant DNA Progeny plants carrying DNA for both parental traits can be crossed back into the female parent line multiple times, e.g. usually 6 to 8 generations, to produce a progeny plant with substantially the same genotype as one original transgenic parental line but for the recombinant DNA of the other transgenic parental line

In the practice of transformation DNA is typically introduced into only a small percentage of target cells in any one transformation experiment. Marker genes are used to provide an efficient system for identification of those cells that are stably transformed by receiving and integrating a transgenic DNA construct into their genomes. Preferred marker genes provide selective markers which confer resistance to a selective agent, such as an antibiotic or herbicide. Any of the herbicides to which plants may be resistant are useful agents for selective markers. Potentially transformed cells are exposed to the selective agent. In the population of surviving cells will be those cells where, generally, the resistance-conferring gene is integrated and expressed at sufficient levels to permit cell survival. Cells may be tested further to confirm stable integration of the exogenous DNA. Commonly used selective marker genes include those conferring resistance to antibiotics such as kanamycin and paromomycin (nptII), hygromycin B (aph IV) and gentamycin (aac3 and aacC4) or resistance to herbicides such as glufosinate (bar or pat) and glyphosate (aroA or EPSPS). Examples of such selectable are illustrated in U.S. Pat. Nos. 5,550,318; 5,633,435; 5,780,708 and 6,118,047, all of which are incorporated herein by reference. Screenable markers which provide an ability to visually identify transformants can also be employed, e.g., a gene expressing a colored or fluorescent protein such as a luciferase or green fluorescent protein (GFP) or a gene expressing a beta-glucuronidase or uidA gene (GUS) for which various chromogenic substrates are known.

Cells that survive exposure to the selective agent, or cells that have been scored positive in a screening assay, may be cultured in regeneration media and allowed to mature into plants. Developing plantlets can be transferred to plant growth mix, and hardened off, e.g., in an environmentally controlled chamber at about 85% relative humidity, 600 ppm CO_2 , and 25-250 microeinsteins m⁻² s⁻¹ of light, prior to transfer to a greenhouse or growth chamber for maturation.

Plants are regenerated from about 6 weeks to 10 months after a transformant is identified, depending on the initial tissue. Plants may be pollinated using conventional plant breeding methods known to those of skill in the art and seed produced, e.g. self-pollination is commonly used with transgenic corn. 5 The regenerated transformed plant or its progeny seed or plants can be tested for expression of the recombinant DNA and screened for the presence of enhanced agronomic trait. XIII. Transgenic Plants and Seeds

Transgenic plant seed provided herein are grown to generate transgenic plants having an enhanced trait as compared to a control plant. Such seed for plants with enhanced agronomic trait(s) is identified by screening transformed plants, progeny, or progeny seed for the enhanced trait(s). For efficiency, a screening program is beneficially used to evaluate 15 multiple transgenic plants (events) comprising the recombinant DNA, e.g. multiple plants from 2 to 20 or more transgenic events.

Transgenic plants grown from transgenic seed provided herein demonstrate improved agronomic traits that contribute 20 to increased yield or other trait that provides increased plant value, including, for example, improved seed quality. Of particular interest are plants having enhanced yield resulting from improved plant growth and development, stress tolerance, improved seed development, higher light response, 25 improved flower development, or improved carbon and/or nitrogen metabolism

Many transgenic events which survive to fertile transgenic plants that produce seeds and progeny plants will not exhibit an enhanced agronomic trait. Screening is necessary to identify the transgenic plant having enhanced agronomic traits from populations of plants transformed as described herein by evaluating the trait in a variety of assays to detect an enhanced agronomic trait. These assays also may take many forms, including but not limited to, analyses to detect changes in the chemical composition, biomass, physiological properties, morphology of the plant.

XIV. Targets for RNAi

The target gene can be in any cell derived from or contained in any organism. The organism can be a plant, an animal, or 40 fungus, as described herein. The target gene may be a cellular gene (i.e., derived from a cell, as opposed to a virus or other exogenous source), an endogenous gene (i.e., a cellular gene found in the genome), a transgene (i.e., a gene construct inserted at an ectopic site in the genome of the cell), or a gene 45 from a pathogen or invasive entity which is capable of infecting or infesting an organism from which the cell is derived. Specific, non-limiting examples of target genes include genes encoding: structural or regulatory molecules; enzymes; toxins; transcription factors; chromatin factors; metabolic fac- 50 tors: secreted factors; mRNA expressed by pathogens; reproductive factors; pigments; pathogen response factors; environmental stress factors; allergens; and so forth. Also contemplated are target genes that are involved in reproduction, particularly male fertility in plants; genes that enhance 55 vegetative growth. Targets also can be selected from noncoding regions of the genome of the target organism.

In addition to endogenous gene and non-gene targets, it is contemplated that the RNAi-triggering constructs and methods described herein can be used to inhibit expression of 60 pathogen or parasite genes, for instance gene sequences expressed bacterial, viral, other pathogen, animal pest, or plant pest (e.g., nematode) targets. By way of example, such gene inhibition in the context of an organism infected or infested with such pathogenic target could be used to combat 65 the pathogen. Treatment of pathogens using such a system could be preventative, wherein the RNAi-triggering 54

construct(s) are introduced before there is known infection or introduction of the pathogenic organism. In such embodiments, the presence of the RNAi-triggering system is intended to prevent, reduce, or ameliorate a subsequent infection or contamination with the target pathogen or other microorganism. Alternatively, infected or infested organisms could be treated after the microorganism(s) are present. In such embodiments, the RNAi-triggering system is intended to treat or eradicate the infection/infestation.

In yet other embodiments, an RNAi-triggering system is introduced to provide inhibitory control over a transgenic target gene sequence, or set of transgenic sequences, for instance that have been introduced into a transgenic plant, fungus, or other cell. Such targets might include transgenes that confer desirable or undesirable traits to the target organism. Representative non-limiting examples of categories of transgenes are discussed herein; any transgene could serve as a target, and specific targets will be best selected by the practitioner.

Inhibition of target gene expression or activity can be measured by monitoring the levels of target gene mRNA or proteins encoded by the target gene. Examples of known techniques used to measure mRNA levels include RNA solution hybridization, nuclease protection, Northern blot analysis, and reverse transcription which can be used in combination with polymerase chain reaction. Examples of techniques used to measure target gene protein levels include antibody binding, enzyme linked immunosorbent assay (ELISA), Western blot analysis, immunoassays (e.g. radioimmunoassay), and fluorescence activated cell sort (FACS).

Depending on the particular target gene and the level of production of the siRNA, increasing the production of siRNA(s), for example through expression from a transgene described herein, may provide partial or complete loss of expression, or function, of the target gene. The inhibition in target gene expression in different embodiments is at least a 5%, at least a 10%, at least a 20%, at least a 30%, at least a 50%, at least a 75%, at least a 85%, at least a 90%, at least a 95%, or a 100% inhibition in target gene expression.

XV. Regulated RNAi

The RNAi-triggering systems described herein can further be employed to exploit differentially regulated systems within a target, for instance in order to provide cell-specific, tissue-specific, or developmentally specific RNAi of one or more specific genes. In particular, miRNAs frequently accumulate in specific cell-types or tissues (e.g. Palatnik et al., Nature 425:257-263, 2003) or are induced under specific conditions, such as nutrient or abiotic stress (Jones-Rhoades & Bartel, Mol Cell 14:787-799, 2004). Thus, cell-, tissue-, or conditional RNAi may be regulated by cell-, tissueor condition-specific miRNA or siRNA expression by employing a target sequence (initiator sequence) that interacts with a specific regulated small RNA to guide cleavage of the target sequence in the desired expression pattern. Representative miRNAs and functions associated with their target (s) are listed in Table 4.

Alternatively, or in combination, regulated RNAi can also be achieved using expression cassettes that are only transcribed, or preferentially transcribed, in certain cells, tissues, conditions, and so forth. Represented promoters useful for such regulated expression are discussed herein.

The following examples are provided to illustrate certain particular features and/or embodiments. These examples

10

should not be construed to limit the invention to the particular features or embodiments described.

Example 1

MiRNA-Directed Phasing During Trans-Acting siRNA Biogenesis in Plants

Small RNA Blot Analysis

Low molecular weight RNA (5 µg) from Arabidopsis inflorescence tissue was used for miRNA and endogenous siRNA analysis as described (Allen et al., Nat Genet. 36:1282-1290, 15 2004). Mutant lines for dcl1-7, dcl2-1, dcl3-1, rdr1-1, rdr2-1, hen1-1, hyl1-2, rdr6-11, rdr6-15, and sgs3-11 were described previously (Allen et al., Nat Genet. 36:1282-1290, 2004; Park et al., Curr Biol 12:1484-1495, 2002; Peragine et al., Genes & Dev 18:2369-2379, 2004; Vazquez et al., Curr Biol 14:346-20 351, 2004a; Xie et al., PLoS Biol 2:642-652, 2004). The hst-15 allele used was the SALK_079290 T-DNA insertion line from ABRC, which contains a T-DNA at position 1584 from the start codon. Probes for miR159, miR167, and AtSN1-siRNA blots were described previously (Llave et al., $_{25}$ Plant Cell 14:1605-1619, 2000a; Zilberman et al., Science 299:716-719, 2003). All other miRNAs were detected using end-labeled DNA oligonucleotides. Probes for ta-siRNA loci were PCR amplified from Col-0 genomic DNA, cloned into pGEMT-Easy, and verified by sequencing. Radiolabeled 30 probes incorporating ³²P-UTP were made by T7 RNA polymerase transcription, to obtain strand specific small RNA probes. Probes were as follows: TAS3 locus, Chr3:5862146-5862295; At3g39680 (TAS2) locus, Chr2:16546831-16547300.

Computational Prediction of miRNA Targets

An initial pool of predicted target sites for validated miR-NAs was created by FASTA searches using a +15/-10 scoring matrix of the TAIR AGI transcript database, limited to 4 mispairs, 4 G:U pairs, to a total of seven, with 100,000 results obtained for the reverse complement of each small RNA. A single, one nucleotide gap was allowed. The miRNA target prediction algorithm used to score these sites was developed based on 94 experimentally validated and predicted family members of miRNA-target site duplexes, including 55 targets validated in previous studies, 11 new validated targets, plus 28 family members with conserved miRNA target sites (Target Rule Set, Table 3). Three filters based on the Target Rule Set were applied sequentially. In each case, base one is considered to be the first nucleotide from the 5' end of the miRNA. First, targets with a mismatch score greater than four were excluded. The Minimum Free Energy (ΔG_{MEE}) of a perfect miRNA-target duplex was determined by computationally attaching a perfectly complementary target sequence to a small RNA using a four base "gap" linker sequence (---). The free energy each miRNA-predicted target site (ΔG_{target}) was determined by computationally linking the target sequence to the small RNA, from which the MFE ratio was calculated ($\Delta G_{target} / \Delta G_{MFE}$). All thermodynamic values were calculated using RNAFold in the Vienna RNA package. Remaining targets with an MFE ratio less than 0.73 were excluded. Conservation of the target sequence was determined by using the region containing the target sequence in a BLAST search against the Arabidopsis transcript and EST databases, NCBI EST database, and O. sativa Unigene database, and removing any targets with no matches with less than three base changes in the target sequence. Duplicate target sites (identical genes) for related miRNA family members were combined in the final target gene set.

TABL	E 3	
------	-----	--

			Summary of	miRNA target gene predi	ctions represente	d in FIG. 1			
			Bin 1. Previously	y predicted miRNA target	genes, experime	ntally valida	ıted		
	Systematic name ^a	Common name ^a	Gene family	mi RNA family	Rule Development Set	Score ^b	MFE Ratio	Pass/Fail	Original prediction reference
1	At1g27370	SPL10	SPL	miR156	yes	3	0.808	Pass	с
2	At5g43270	SPL2	SPL	miR156	yes	3	0.842	Pass	с
3	At1g53160	SPL4	SPL	miR157	yes	3	0.820	Pass	с
4	At5g06100	MYB33	MYB	miR159	yes	3	0.787	Pass	c; d
5	At3g11440	MYB65	MYB	miR159	yes	3	0.787	Pass	c; d
6	At1g77850	ARF17	ARF	miR160	yes	0.5	0.990	Pass	с
7	At2g28350	ARF10	ARF	miR160	yes	2	0.844	Pass	с
8	At4g30080	ARF16	ARF	miR160	yes	2.5	0.863	Pass	с
9	At1g06580		PPR	miR161.1	yes	3	0.713	Fail	с
10	At1g63150		PPR	miR161.2	yes	1.5	0.856	Pass	с
11	At5g41170		PPR	miR161.1	yes	1	0.792	Pass	с
12	At1g01040	DCL1	DCL	miR162	yes	2	1.000	Pass	e
13	At1g66690		SAMT	miR163	yes	1	0.898	Pass	d
14	At1g66700		SAMT	miR163	yes	1	0.898	Pass	d
15	At1g66720		SAMT	miR163	yes	2	0.886	Pass	f
16	At3g44860		SAMT	miR163	yes	3	0.765	Pass	f
17	At1g56010	NAC1	NAC	miR164	yes	2	0.823	Pass	с
18	At3g15170	CUC1	NAC	miR164	yes	3	0.856	Pass	с
19	At5g07680		NAC	miR164	yes	2	0.849	Pass	с
20	At5g53950	CUC2	NAC	miR164	yes	3	0.856	Pass	с
21	At5g61430		NAC	miR164	yes	2	0.849	Pass	с
22	At1g30490	PHV	HD-ZipIII	miR166	yes	3	0.860	Pass	с
23	At1g52150	AtHB15	HD-ZipIII	miR166	ves	2.5	0.867	Pass	с
24	At2g34710	PHB	HD-ZipIII	miR166	ves	3	0.860	Pass	с
25	At5g60690	REV/IFL1	HD-ZipIII	miR166	ves	3	0.860	Pass	с
26	At1g30330	ARF6	ARF	miR167	ves	3.5	0.844	Pass	c: d
27	At5g37020	ARF8	ARF	miR167	yes	4	0.779	Pass	c; d

TABLE 3-continued

		Summary of miRNA tar	get gene predic	tions represent	ted in FIG. 1			
28	At1g48410 AGO1	AGO	miR168	yes	4	0.735	Pass	с
29	At1g17590	HAP2	miR169	yes	2.5	0.866	Pass	с
30	At1g54160	HAP2	miR169	yes	3	0.840	Pass	с
31	At1g72830 HAP2c	HAP2	miR169	yes	2.5	0.834	Pass	b
32	At3g05690 HAP2b	HAP2	miR169	yes	3	0.746	Pass	b
33	At3g20910	HAP2	miR169	yes	4	0.735	Pass	b
34	At5g06510	HAP2	miR169	yes	3	0.746	Pass	b
35	At2g45160 SCL6(II)	SCL	miR171	yes	0	1.000	Pass	g; c
36	At3g60630 SCL6(III)	SCL	miR171	yes	0	1.000	Pass	g; c
37	At4g00150 SCL6(IV)	SCL	miR171	yes	0	1.000	Pass	g; c
38	At2g28550 TOE1/RAP2.7	AP2	miR172	yes	3.5	0.857	Pass	d
39	At4g36920 AP2	AP2	miR172	yes	2.5	0.896	Pass	d
40	At5g60120 TOE2	AP2	miR172	yes	1.5	0.928	Pass	d
41	At5g67180 TOE3	AP2	miR172	yes	3.5	0.896	Pass	d
42	At1g30210 TCP24	TCP	miR319	yes	3.5	0.792	Pass	i
43	At1g53230 TCP3	TCP	miR319	yes	4	0.751	Pass	i
44	At2g31070 TCP10	TCP	miR319	yes	3.5	0.777	Pass	i
45	At3g15030 TCP4	TCP	miR319	yes	3.5	0.777	Pass	i
46	At4g18390 TCP2	TCP	miR319	yes	3.5	0.792	Pass	i
47	At1g12820	TIR/F-box	miR393	yes	2	0.862	Pass	b
48	At3g23690 bHLH077	bHLH	miR393	yes	3	0.871	Pass	b
49	At3g26810	TIR/F-box	miR393	yes	2	0.862	Pass	b
50	At3g62980 TIR1	TIR/F-box	miR393	yes	2.5	0.876	Pass	b
51	At4g03190	TIR/F-box	miR393	yes	3.5	0.761	Pass	b
52	At1g27340	F-box	miR394	yes	1	0.820	Pass	b
53	At5g43780 APS4	ATP sulfurylase	miR395	yes	2	0.792	Pass	b
54	At3g22890 APS1	ATP sulfurylase	miR395	yes	3.5	0.744	Pass	b
55	At2g22840 GRF1	GRF	miR396	yes	3.5	0.861	Pass	b
56	At2g36400 GRF3	GRF	miR396	yes	3	0.861	Pass	b
57	At2g45480 GRF9	GRF	miR396	yes	4	0.861	Pass	b
58	At4g24150 GRF8	GRF	miR396	yes	3.5	0.861	Pass	b
59	At4g37740 GRF2	GRF	miR396	yes	3.5	0.861	Pass	b
60	At5g53660 GRF7	GRF	miR396	yes	3.5	0.861	Pass	b
61	At2g29130	Laccase	miR397	yes	3.5	0.755	Pass	b
62	At2g38080	Laccase	miR397	yes	2.5	0.877	Pass	b
63	At5g60020	Laccase	miR397	yes	2.5	0.828	Pass	b
64	At3g15640	Cytochrome C oxidase	miR398	yes	3	0.804	Pass	b
65	At1g08830 CSD1	Copper superoxide dismutase	miR398	yes	5	0.712	Fail	b
66	At2g28190 CSD2	Copper superoxide dismutase	miR398	yes	6.5	0.761	Fail	b

Bin 2. Previously predicted miRNA target gene, computational prediction only c

	Systematic name ^a	Common name ^a	Gene family	miRNA family	Rule Development Set	Score ^b	MFE Ratio	Pass/Fail	Original prediction reference
1	At1g27360	SPL11	SPL	miR156	yes	3	0.808	Pass	с
2	At1g69170	SPL6	SPL	miR156	yes	3	0.808	Pass	с
3	At2g33810	SPL3	SPL	miR156	yes	3	0.808	Pass	с
4	At2g42200	SPL9	SPL	miR156	yes	2	0.832	Pass	с
5	At3g57920	SPL15	SPL	miR156	yes	2	0.832	Pass	с
0	At5g50570	SPL13	SPL	miR156	yes	2	0.832	Pass	с
	At5g50670	CDI 6	SPL	miR156	yes	2	0.832	Pass	с
0	Alsg15270	SPLS MVD104	SPL MVD	miR157	yes	4	0.778	Pass	c aud
10	At2g20930	MVD101	MVD	miR139	yes	3 5	0.860	F ass	c, u
11	At2g52400	MVB125	MYB	miR159	yes	3.5	0.802	Page	c
12	At5g55020	MYB120	MYB	miR159	yes	3.5	0.780	Pass	c. d
13	At2g26960	MYB81	MYB	miR159	ves	4.5	0.719	Fail	c, u
14	At4g26930	MYB97	MYB	miR159	ves	4	0.729	Fail	c
15	At1g62670		PPR	miR161.1	ves	3	0.765	Pass	c
16	At1g64580		PPR	miR161.1	ves	3.5	0.787	Pass	с
17	At1g62720		PPR	miR161.1	yes	5	0.754	Fail	с
18	At1g63080		PPR	miR161.2	yes	4	0.732	Pass	с
19	At1g63400		PPR	miR161.2	ves	2	0.846	Pass	с
20	At5g16640		PPR	miR161.2	yes	2.5	0.715	Fail	с
21	At3g44870		SAMT	miR163	yes	3	0.765	Pass	f
22	At5g39610		NAC	miR164	yes	3.5	0.763	Pass	b
23	At4g32880	AtHB8	HD-Zip	miR166	yes	3	0.860	Pass	с
24	At5g12840	HAP2a	HAP2	miR169	yes	3	0.735	Pass	b
25	At2g39250	SNZ	AP2	miR172	yes	2.5	0.922	Pass	h
26	At3g54990	SMZ	AP2	miR172	yes	1.5	0.954	Pass	h
27	At4g14680	APS3	ATP sulfurylase	miR395	yes	3.5	0.744	Pass	b
28	At3g52910	GRF4	GRF	miR396	yes	3	0.861	Pass	b
	At3g28460		unclassified	miR173	-	7	0.760	Fail, not conserved	d
	At2g40760		Rhodenase-like	miR396		5.5	0.700	Fail, not conserved	b
	At4g27180	ATK2	Kinesin-like protein B	miR396		6.5	0.527	Fail, not conserved	b

				TADLE 5-CON	tinucu				
			Summary of mi	RNA target gene predi	ctions represe	nted in FIG. 1			
	At5g12250 At3g54700		Beta-6 tubulin phosphate transporter	miR397 miR399		10 3.5	0.698 0.743	Fail, not conserved Fail, not conserved	b b
			Bin 3. New predic	ted miRNA target gene	es from ex'stin	ng target famil	ies		
	Systematic name ^a	Common name ^a	Gene family	miRNA family	Score ^b	MF	E Ratio	Pass/Fail	
1	At1g62860		PPR	miR161.1	4	().749	Pass	
2	At1g63330		PPR	miR161.2	1	().852	Pass	
3	At1g62590		PPR	miR161.2	1	(0.852	Pass	
4	At1g63630		PPR	miR161.2	2.5	().859	Pass	
5	At1g62930		PPR	miR161.2	3	().882	Pass	
6	At1g63130		PPR	miR161.2	3	().882	Pass	
7	At1g62910		PPR	miR161.2	3	(0.882	Pass	
8	At1g63230		PPR	miR161.2	3	().735	Pass	
9	At3g14020		HAP2	miR169	2	().859	Pass	
			Bin 4. Novel	miRNA target genes,	experimentall	y validated			
	Systematic name ^a	Common name ^a	Gene family	miRNA family	Score ^b	MFE Ratio	Pass/Fail	Associated ESTs	
1	At5g60760		2PGK	miR447	3.5	0.807	Pass		
2	At5g10180	AST68	Sulfate transporter	miR395	3	0.760	Pass		
3	At2g27400	TAS1a	1	miR173	2.5	0.768	Pass	CD534192, CD534180	
4	At1g50055	TAS1b		miR173	4.5		Fail		
5	At2g39675	TAS1c		miR173	2.5	0.768	Pass		
6	At2g39681	TAS2		miR173	2.5	0.768	Pass	BE521498	
7	At3g17185	TAS3		miR390	3.5	0.755	Pass	AV534298, A1998599,	
8	A+2g33770		E2-LIBC	miP 300	3.5	0.763	Pace	DA050250, AA051240	
8	At1g31280	AGO2	AGO	miR403	1	0.948	Pass	BP648434, AU230620	
			Bin 5. Predicted miR	NA taret genes tested	experiemental	ly but not vali	dated		
	Systematic			miRNA					
	namea	Common	name ^a Gene fan	nily family	Score	MFE Ratio	Pass/Fail	Original prediction re	ferenc
1	At1g64100		PPR	miR158	4	0.733	Pass	С	
2	At3g03580		PPR	miR158	3.5	0.770	Pass		
3	At2g03210	FUT2	FUT	miR158	4	0.731	Pass		
4	At2003220	FUT1	FUT	miR158	4	0.737	Pass		

TABLE 3-continued

^aSystematic and common names for genes were from TAIR (available on the World Wide Web at arabidopsis.org) and AGRIS (available on-line at arabidopsis.med.ohio-state.edu/AtTFDB/ index.jsp); ^bScore was derived from a modified version of the scoring system developed by Jones-Rhoades et al., 2004.

50

Targets for ARF3 and ARF4 were predicted by aligning nucleotide sequence from orthologs from 17 selected species using TCoffee. Similarity over a 21 nucleotide window (char-45 acteristic of a miRNA target site) was plotted using PLOT-CON in the EMBOSS software suite. Regions beyond the two predicted target sites showing low nucleotide conservation were removed for clarity. Orthologs of the At3g17185 were identified using BLAST, with ESTs only in the predicted miRNA orientation chosen. All selected ESTs were analyzed for the presence of an ARF gene or other conserved ORF by BLASTX analysis against an Arabidopsis protein database, and any match eliminated. ESTs were aligned using TCoffee, 55 and the poorly conserved region surrounding the putative miRNAs removed.

Microarray Analysis

Inflorescence tissue (stages 1-12) was collected in triplicate, with three bulked plants for each genotype per replicate. 60 Controls for dcl1-1 and hen1-1 were La-er, controls for hyl1-2, hst-15, dcl2-1, dcl3-1, rdr1-1,rdr2-1, and rdr6-15 were Col-0. RNA was extracted using Trizol, followed by purification using the Plant RNeasy Midi kit (Qiagen). Biotinylated cRNA was synthesized from 5 µg total RNA using the Mes- 65 sageAmp kit (Ambion). Twenty micrograms (20 µg) of concentration-adjusted cRNA were fragmented and hybridized

to ATH1 GeneChip arrays according to the manufacturer's protocol (Affymetrix). Samples were normalized using RMA Express (Bolstad et al., Bioinformatics 19, 185-193, 2003), and imported into Genespring v7 (Silicon Genetics) for analysis. Hierarchical clustering was performed using the standard clustering algorithm.

5' RACE Analysis of miRNA Directed Cleavage of Target Genes

Cleavage sites of miRNA target genes were mapped using the Invitrogen GeneRacer 5' RACE procedure as described previously (Kasschau et al., Dev Cell 4:205-217, 2003; Llave et al., Science 297:2053-2056, 2002). Gene specific primers were designed approximately 500 nucleotides downstream of the predicted cleavage site. These primers were used in combination with an adapter specific primer to amplify cleavage products by PCR. Purified PCR products were cloned into pGEM-T Easy.

Phylogeny Reconstruction Methods

The phylogenetic tree for the ARF family was generated by aligning the conserved ARF domain using TCoffee, followed by Bayesian reconstruction of a consensus family tree (Allen et al., Nat Genet. 36:1282-1290, 2004).

-5

Results

Computational Prediction and Validation of New miRNA Targets

A rigorous set of computationally predicted and validated targets for most Arabidopsis miRNA families has emerged (Table 4 and Table 3) (Aukerman & Sakai, Plant Cell 15:2730-2741, 2003; Chen, Science 303:2022-2025, 2004; Emery et al., Curr Biol 13:1768-1774, 2003; Jones-Rhoades & Bartel, Mol Cell 14:787-799, 2004; Kasschau et al., Dev Cell 4:205-217, 2003; Llave et al., Science 297:2053-102056, 2002b; Mallory et al., Curr Biol 14:1035-1046, 2004; Palatnik et al., Nature 425:257-263, 2003; Park et al., Curr Biol 12:1484-1495, 2002; Rhoades et al., Cell 110:513-520, 2002; Tang et al., Genes & Dev 17:49-63 2003; Vaucheret et al., Genes Dev 18:1187-1197, 2004; Vazquez et al., Curr Biol 15 14:346-351, 2004a; Xie et al., Curr Biol 13:784-789, 2003). However, clear targets for several miRNAs (miR158, miR173, miR390/391, miR399, miR403 and miR447) are not yet known.

TABLE 4

	Arabidopsis m	icroRNA and to	-siRNA Tar	get Families	
	Small RNA family ^a	Target family	Number of targets	f Target Function	25
mic	roRNA	_			
1	miR156 ^b	SBP	11	transcription factor	
2	miR158	MVD	Q	transcription factor	20
5	$miR10^{b}$	TCDg	5	transcription factor	50
4	miRJ19	ADE	3	transcription factor	
5	$miR161^b$	PPP	17	unknown	
6	$miR162^b$	DCI	1	miRNA metabolism	
7	miR163 ^b	SAMT	5	metabolism	
8	$miR164^b$	NAC	6	transcription factor	
9	$miR166^b$	HD-ZIPIII	5	transcription factor	33
10	$miR167^b$	ARF	2	transcription factor	
11	$miR168^b$	AGO1	1	miRNA metabolism	
12	$miR169^b$	HAP2	8	transcription factor	
13	$miR171^b$	SCR	3	transcription factor	
14	$miR172^b$	AP2	6	transcription factor	
15	miR173	TAS1. TAS2	4	ta-siRNA biogenesis	40
16	miR390	TAS3	1	ta-siRNA biogenesis	
17	miR393 ^b	TIR1/F-box	4	hormone signaling	
		bHLH	1	transcription factor	
18	miR394 ^b	F-box	1	hormone signaling	
19	miR395 ^b	ATPS	4	metabolism	
		AST		metabolism	45
20	miR396 ^b	GRF	7	transcription factor	
21	miR397 ^b	laccase/Cu oxidase	3	metabolism	
22	miR398 ^b	CSD	2	stress response	
		CytC oxidase	1	metabolism	
23	miR399	E2-UBC	1	ubiquitin conjugation	50
24	miR447	2PGK	1	metabolism	
25	miR403	AGO2	1	miRNA metabolism	
26	miR408	laccase	1	metabolism	
Trai	ns-acting siRNA	_			
1	TAS1	unclassified ^{s,t}	5	unknown	55
2	TAS2	PPR^{c}	8	unknown	00
3	TAS3	ARF ^c	4	transcription factor	

"miRNA families contain at least one member, with related miRNAs with up to five changes mice of a mily; miRNAs with targets used in the Rule development set;

^ctargets families validated in previous studies are in blue, italies indicated additional family 60 members validated in this study, red indicated gene families validated only in this study.

To further extend and refine the analysis of miRNA targets in plants, we developed a set of computational "rules" for Arabidopsis miRNA-target interactions involving 22 miRNA families. These were used to produce a target prediction set 65 that was experimentally tested (FIG. 1A). The rule development set included 66 experimentally validated targets and 28

previously predicted targets that are closely related to validated family members. Among the 66 validated targets were 55 previously published targets and 11 new validated targets.

Experimental validation of targets involved 5'RACE assays to detect a cleavage site opposite of position 10 from the 5' end of the miRNA (Kasschau et al., Dev Cell 4:205-217, 2003; Llave et al., Science 297:2053-2056, 2002). Detection of a cleavage product with a 5' terminus corresponding to the predicted miRNA-guided cleavage site is strong evidence in support of target site function. Validated targets included genes from multigene families in which closely related paralogs were shown previously to be miRNA targets (Bins 1 and 3, FIG. 2A), and nine novel targets discussed in detail below (Bin 4, FIGS. 3A and 3B).

Two parameters were analyzed for rule development. First, the occurrence of mispaired bases between miRNAs and targets was analyzed. All miRNA-target duplexes within the rule set contained four or fewer unpaired bases, four or fewer G:U pairs, up to one single-nucleotide bulge, and a total of seven or 20 fewer unpaired plus G:U positions. The positions of mispairs were examined by plotting the percentage of mismatched and G:U pairs at each target nucleotide positions (counting from the 3' end) (FIG. 1B). Nucleotide pairs at positions 2-13 formed a core segment with relatively few mismatches relative to positions 1 and 14-21. This core segment is longer than the core segment of animal miRNA-target duplexes (positions 2-8) (Lewis et al., Cell 115:787-798, 2003). A mispair scoring system, modified from that used by Jones-Rhoades and Bartel (Mol Cell 14:787-799, 2004), was applied to account for the reduced occurrence of mispairs within the core segment. Mismatched pairs or single nucleotide bulges were each scored as 1 and G:U pairs were scored as 0.5. Mismatches and G:U pair scores were doubled within the core segment. A score of ≤ 4 captured 91 of 94 targets in the ³⁵ rule development set for a false negative rate of 0.03.

Second, a relative thermodynamic parameter was investigated. The minimum free energy (MFE) of a hypothetical duplex containing each of the 94 targets paired with a perfectly complementary sequence (ΔG_{MFE}) was calculated and 40 compared to the free energy calculated for the actual miRNAtarget duplex (ΔG_{target}). The MFE ratio ($\Delta G_{target}/\Delta G_{MFE}$) was calculated for each duplex in the rule set. Eighty-nine of the duplexes in the rule set had an MFE ratio ≥ 0.73 (FIG. 1C), corresponding to a false negative rate of 0.05. Combining the 45 mispair (≤ 4) and MFE ratio (≥ 0.73) limits in a series of filters resulted in capture of 87 targets from the rule set (false negative rate=0.07). The mispair and MFE ratio limits were applied in searches using all validated miRNAs from the 25 families (Table 4) and the Arabidopsis transcript database, ⁵⁰ resulting in 145 prospective targets (FIG. 1D).

Target sequence conservation across species and between closely related paralogs was applied as a final filter. For all miRNAs that were conserved between monocots and dicots (or between dicot families), predicted target sites were 55 required to be similarly conserved (Jones-Rhoades & Bartel, Mol Cell 14:787-799, 2004). For non-conserved miRNAs, targets sites were required to be present within more than one paralog in Arabidopsis. When applied to the rule development set, the respective conservation filters resulted in loss of no genes. Application of the conservation filter to the 145 genes that passed the mispair and MFE ratio filters resulted in 103 genes (FIG. 1A).

To further extend the chances for target identification, an miRNA target search was also done using the Arabidopsis EST database. The same mispair and conservation filters were used, but the MFE ratio filter limit was lowered to 0.70 to account for known sequencing errors within the EST dataset. A redundancy filter was added to subtract all prospective target genes that also passed the target search using the transcript database. Six new prospective targets were identified in the EST search, resulting in a total of 109 predicted targets. These were assigned to several bins (FIG. 1A, Table 5 3). Bin 1 contained 63 of 66 previously validated targets that contributed to the rule set. Bin 2 contained 24 of the 28 predicted targets from the rule set. Thus, the overall false negative rate was 0.07. Bin 3 contained nine new predicted targets from existing target gene families. These previously nonpredicted targets included eight pentatricopeptide repeat (PPR) genes targeted by miR161.1 and miR161.2, a HAP2a gene (At1g14020) targeted by miR169, and a sulfate transporter (AST68, At5g10180) gene targeted by miR395. Bin 4 contained nine novel targets that were experimentally vali- 15 dated and analyzed in detail (see following sections). Bin 5 contained four genes that were predicted to interact with miR158, but each of these failed the 5'RACE validation assay. If it is assumed that Bin 5 genes represent all incorrect predictions from this search, then the false positive rate was 0.04. 20

Genes encoding an E2-ubiquitin conjugating enzyme (E2-UBC, At2g33770), Argonaute2 (AGO2, At 1g31280), and a 2-phosphoglycerate kinase (2PGK, At5g60760) were validated as targets of miR399, miR403 and miR477, respectively, and represent the only conventional genes in Bin 4 25 (FIG. 3A). Possibly because of computational searches using a transcript database containing a misannotated E2-UBC, miR399 was predicted previously to target a different mRNA encoding a phosphate transporter (At3g54700)(Jones-Rhoades & Bartel, Mol Cell 14:787-799, 2004). This gene 30 was not predicted in our analysis, and the 5'RACE assay failed to reveal a miR399-guided cleavage product. The E2-UBC target, which was identified here and predicted by Sunkar and Zhu (Plant Cell 16:2001-2019, 2004) only using EST databases, contains up to five miR399-interacting sites 35 in the 5' untranslated region (UTR). Cleavage products were detected with 5' termini corresponding to cleavage at four of these sites, most prominently sites 2 and 3 (FIG. 3A). Orthologous E2-UBC genes in rice and at least three other plant species each contain 3-5 conserved target sites. This is 40 the only example of both a 5'UTR target position and multiple miRNA-target sites in plant genes. The miR403-target site was identified within the 3'UTR of the AGO2 transcript from Arabidopsis and several other dicot families, but not in orthologous AGO2 transcripts from monocots. This is the 45 second miRNA-targeted AGO family member identified, as AGO1 was shown to be targeted by miR168. Whereas AGO1 is required for miRNA activity (Vaucheret et al., Genes Dev 18:1187-1197, 2004), presumably within RISC, a function for AGO2 is currently not known. The 2PGK gene 50 (At5g60760) was validated as an miR447 target (FIG. 3A), and joins a growing list of plant miRNA targets that encode proteins with metabolic functions (Jones-Rhoades & Bartel, Mol Cell 14:787-799, 2004).

The five remaining Bin 4 genes were validated as miR173 55 and miR390 targets (FIG. **3**B), and were predicted only from EST database due to their unusual nature. These are discussed in detail below.

Expression Profiling of Predicted miRNA Targets

Most miRNAs of plants direct cleavage of their targets. 60 Loss-of-function mutations in miRNA metabolic or biogenesis genes, therefore, frequently result in elevated target transcript levels (Kasschau et al., *Dev Cell* 4:205-217, 2003; Palatnik et al., *Nature* 425:257-263, 2003; Vazquez et al., *Curr Biol* 14:346-351, 2004a; Xie et al., *Curr Biol* 13:784-65 789, 2003). To systematically analyze the effects of miRNA and endogenous siRNA defects on validated and predicted

miRNA target genes in Arabidopsis, expression profiling was done using nine mutant (condition) plants and two control plants. The mutants included miRNA-defective dcl1-7, hen1-1 and hyl1-2 (Park et al., Curr Biol 12:1484-1495, 2002; Schauer et al., Trends Plant Sci 7:487-491, 2002; Vazquez et al., Curr Biol 14:346-351, 2004a), which were shown to reduce or eliminate accumulation of miRNAs. A new insertion mutant, hst-15, with predicted defects in nucleocytoplasmic transport of miRNA and ta-siRNA precursors (Bollman et al., Development 130:1493-1504, 2003) was used. Using inflorescence tissue, hst-15 had only modest or no effects on miRNA accumulation. However, as shown using the hst-1 mutant (Bollman et al., Development 130: 1493-1504, 2003; Peragine et al., Genes & Dev 18:2369-2379, 2004), hst-15 had several developmental abnormalities, including a more rapid juvenile to adult phase change, leaf curling and epinasty, altered silique phyllotaxy and small flowers (FIG. 4A). The hst-15 transcript accumulated to low levels specifically in the hst-15 mutant plant; this was in contrast to the dcl1-7 transcript, which was upregulated in each of the miRNA-defective mutants due to loss of miR162mediated feedback regulation (Xie et al., Curr Biol 13:784-789, 2003).

The mutant series also included five siRNA-defective mutants. The dcl3-1 and rdr2-1 mutants lack chromatin RNAi-associated, 24-nucleotide siRNAs, dcl2-1 and rdr1-1 mutants have defects in antiviral siRNA biogenesis, and the rdr6-15 mutant is defective in ta-siRNA biogenesis (Peragine et al., *Genes & Dev* 18:2369-2379, 2004; Vazquez et al., *Mol Cell* 16:69-79, 2004b; Xie et al., *PLoS Biol* 2:642-652, 2004). The rdr6-15 mutant contains a new insertion allele, but displays most of the same properties of previously characterized rdr6 mutants (Allen et al., *Nat Genet.* 36:1282-1290, 2004). Specifically, rdr6-15 plants displays rapid juvenile-to-adult phase change and accompanying morphological defects (FIG. 4A), and accumulates low levels of rdr6-15 transcript.

Expression profiling was done with triplicate biological samples on Affymetrix ATH1 arrays. Because DCL1, HEN1, HYL1, and likely HST, are required for miRNA biogenesis or function, we predicted that miRNA target genes would be upregulated coordinately in the corresponding mutants and largely unaffected in the siRNA biogenesis mutants. As a group, previously validated and predicted target genes (Bin 1+2 genes) generally behaved as anticipated, although clearly not all genes were upregulated in the miRNA mutants (FIG. 4B). Of the 81 genes present on the ATH1 array, 27 were significantly (P<0.01, ANOVA) upregulated in two or more of the miRNA mutants, although only 16 genes were significantly upregulated in all four miRNA mutants. Transcripts for MYB101 (miR159 target At2g32460) and a NAC domain gene (miR164 target At5g61430) were significantly (P<0.01, ANOVA) downregulated in the miRNA mutants, suggesting they may be negatively regulated by a factor that is under miRNA control. Targets from Bins 3+4, of which only 12 were represented on the array, were generally upregulated in the miRNA mutants but unaffected by the siRNA mutants, although the At2g39680 transcript (antisense to validated miR173 target) was significantly upregulated in rdr6-15 as well as in miRNA-defective mutant plants (FIG. 4C). In addition, a list of genes that were affected (P<0.01, ANOVA) in each of the dcl1-7, hen1-1 and rdr6-15 mutants was generated. This list contained five genes [At4g29770, At2g39680, At5g60450 (Auxin Response Factor4, ARF4), At2g33860 (ARF3) and At1g12770], all of which were up-regulated in the three mutants (FIG. 4D). These genes were predicted to be either miRNA targets that were also subject to a RDR6dependent RNAi pathway, or ta-siRNA targets. Three of these

genes were shown to yield transcripts that function as tasiRNA targets (At4g29770, ARF3 and ARF4), one a predicted ta-siRNA target (At1g12770), and one a novel type of miRNA target (At2g39680).

To analyze the variation patterns among all predicted and 5 validated miRNA targets, two analyses were done. First, a Principal Components Analysis (PCA) was done using expression data from Bins 1-4. An eigenvector that accounted for 65% of the variation among conditions revealed that the miRNA mutants were unified as having target-upregulation 10 effects, and the siRNA mutants were unified as having no effects (FIG. 4E). No other eigenvector accounted for more than 9% of the variation. Among 30 genes highly correlated to the primary eigenvector (r>0.95), 6 were validated targets, plus one 2PGK gene (At3g45090) closely related to the vali- 15 dated miR477 target. The predicted miR477 target site in At3g45090 failed the MFE ratio (0.69), although the expression profile suggests that At3g45090 is a miRNA target. Second, an unsupervised hierarchical clustering analysis was done, and correlated conditions were displayed as an expres- 20 sion tree. The four miRNA-defective mutants grouped within one clade, with dcl1-7 and hen1-1 forming a subclade distinct from an hst-15/hyl1-2 subclade (FIG. 4F). The dcl1-1, dcl2-1, rdr1-1 and rdr2-1 mutants formed a distinct expression clade.

To compare more broadly the effects of miRNA and siRNA 25 defects on the Arabidopsis transcriptome, condition pairs were analyzed using scatterplots. Also, a similar clustering analysis was done as for targets, using all genes. Expression values (fold-change relative to controls) for genes that are coordinately affected in two mutants should remain on the 30 diagonal, whereas genes that are differentially in two mutants affected fall above or below the diagonal. Based on this approach, the effects of hyl1-2 were most similar to the effects of hst-15, and the effects of dcl1-7 were most similar to the effects of hen1-1 (FIG. 4G). In contrast, there was little 35 similarity between transcriptome-wide effects of any of the miRNA mutants and siRNA mutants, as exemplified by the hyl1-2/dcl3-1 comparisons (FIG. 4G). Among all conditions, the miRNA-defective mutants grouped within one clade, and the siRNA mutants formed a distinct clade (FIG. 4F). With all 40 genes considered, the rdr6-15 mutant did not group with either miRNA- or siRNA-defective mutants. Thus, with the major exceptions described below, the expression profiling data indicate that miRNA-mediated regulation of targets and downstream genes is largely independent of the siRNA path- 45 ways.

miR173 Guides In-Phase Processing of Precursor Transcripts for ta-siRNAs at Several Loci

Four miR173 targets were predicted based on the EST database but not the annotated transcript database. One of 50 these predicted targets was antisense relative to the annotated gene At2g39680. Two other miR173 target sites were predicted based on ESTs AU235820 and CD534192 from paralogous loci; a third paralogous locus also contained the conserved miR173 site. miR173 target validation data for 55 transcripts deriving from each of these four loci were obtained (FIG. **3**B). None of the miR173 target transcripts contained extended, conserved protein-coding sequences.

Inspection and analysis of the four loci yielding miR173targeted transcripts revealed that each was a confirmed or 60 predicted ta-siRNA-generating locus (FIG. **5**). The three paralogous loci, termed TAS1a, TAS1b and TAS1c yielded siR255 and several similar sequences (siR289, siR752, and siR850, also referred to as siR289, siR752 and siR850, respectively) in tandem, 21-nucleotide arrays. These ta-siR-65 NAs were characterized previously and shown to require DCL1, RDR6, SGS3, and AGO1 (Peragine et al., *Genes &*

Dev 18:2369-2379, 2004; Vazquez et al., Mol Cell 16:69-79, 2004). siR255 (formally TAS1a 3'D6(+), TAS1b 3'D6(+), TAS1c 3'D3(+)) was shown to target transcripts from the related genes At4g29760, At4g29770, and At5g18040 (functions unknown) for degradation in a manner similar to plant miRNAs. This was consistent with the expression profiling data, in which At4g29770 was one of five genes up-regulated in dcl1-7, hen1-1, and rdr6-15 plants (FIG. 4D). The fourth miR173 target locus, TAS2 (which was antisense to annotated At2g39680), possessed the hallmarks of a ta-siRNA-generating site, including the derivation of five cloned small RNAs representing both polarities in accurate, 21-nucleotide register (FIG. 5C) and up-regulation in dcl1-7, hen1-1, and rdr6-15 plants (FIG. 4D). The TAS2 (At3g39680) locus mapped approximately 2 kb away from, and in the same orientation as, TAS1c At2g39675, raising the possibility that both ta-siRNA sets arise from the same precursor transcript (FIG. 5C). Relative to miRNAs, siR255 and siR1511 small RNAs were relatively abundant as they corresponded to the 19th and 10^{th} most frequently cloned sequences, respectively, from the small RNA libraries in the ASRP database (Table 5).

TABLE 5

H	Highly represented small RNAs in the ASRP database.										
Rank	Small RNA Family	ASRP no.	Total sequences								
1	miR169	1430	25570								
2	miR156	1423	14029								
3	miR169	1751	6491								
4	miR161.2	563	6227								
5	miR160	1426	4752								
6	miR159	1425	4567								
7	miR169	1514	3944								
8	miR166	934	3482								
9	miR167	5	2893								
10	siR1511 ta-siRNA	1511	1901								
11	miR390	754	1373								
12	miR169	1802	874								
13	miR169	1749	685								
14	miR169	1761	660								
15	miR168	1429'	642								
16	miR390	1703	589								
17	miR169	276	457								
18	miR169	1757	405								
19	siR255 ta-siRNA	255	321								
20	miR169	1775	299								

To confirm that TAS2 is a ta-siRNA-generating locus, and to extend the analysis of biogenesis requirements of this class of small RNA, TAS2-derived small RNAs and siR255 from the miRNA- and siRNA-defective mutants were analyzed in blot assays. Small RNAs from the opposite strand at the TAS2 locus were also analyzed. Accumulation of each small RNA was lost or diminished in dcl1-7, hen1-1, hyl1-2, rdr6-11 and sgs3-11, but not in hst-15 (FIG. 5D). Accumulation levels were unaffected in dcl2-1, dcl3-1, rdr1-1 and rdr2-1 mutants (FIG. 5D). These data confirm that TAS2 is a ta-siRNAgenerating locus.

The biogenesis data were consistent with a model in which ta-siRNA precursor transcripts are recognized by RDR6/ SGS3 and converted (at least partially) to dsRNA forms, which are then processed by DCL1 in phased, 21-nucleotide intervals to form ta-siRNA duplexes. Setting the correct register must be a critical step in this pathway, as out-of-register processing would yield small RNAs with insufficient complementarity to their targets. We hypothesized that miR173guided cleavage of precursor transcripts generates a terminus that, after RDR6/SGS3-dependent conversion to dsRNA, functions as a start point for successive DCL1-mediated cleavage events in 21-nucleotide intervals. This hypothesis predicts that the predominant ta-siRNAs will form with a 21-nucleotide phase starting at the miR173 cleavage site. A systematic coding system, in which hypothetical DCL1 cleavage products from the miR173-targeted strand [3'D1(+), 5 3'D2(+), 3'D3(+), etc.] and opposite strand [3'D1(-), 3'D2(-), 3'D3(-), etc.] were assigned a strict phasing relative to miR173 target sites, was devised (FIGS. 5A, B, C).

Each of the nine cloned ta-siRNAs identified collectively at the four miR173-targeted loci mapped precisely to the phas- 10 ing interval set by miR173-guided cleavage (FIG. 5A,B,C). As predicted from the known properties of Dicer-like enzymes, small RNAs from the non-targeted strand (for example, siR143 and siR1946) were offset by two nucleotides relative to the complementary sequence on the target 15 strand. The register was maintained at each locus through at least the 3'D6 position, and at TAS1a through the 3'D8 position. A total of 19 unique small RNAs, from positions 3'D1 to 3'D8, had 5' ends formed by accurate in-phase cleavage but 3' ends offset by one or two nucleotides. Slight variation of this 20 nature was expected, as Arabidopsis miRNA populations frequently contain processing variants that differ by one or a few nucleotides. In addition to TAS1-derived siRNAs (e.g. siR255), which were confirmed to guide cleavage of mRNA targets (FIG. 5E), a hypothetical ta-siRNA from the 3'D6(-) 25 tion, four genes (ARF1, ARF2, ARF3, and ARF4) were preposition at the TAS2 locus was predicted to interact with at least two PPR gene transcripts (At1g12770 and At1g63130, FIG. 5E). At1g12770 was one of the five dcl1-1, hen1-1 and rdr6-15-upregulated genes (FIG. 4D), which was consistent with identity as a ta-siRNA target, although we were unable to 30 validate a cleavage site at the predicted position within the transcript (FIG. 5E).

miR390 Guides In-Phase Processing of ta-siRNAs Regulating ARF3 and ARF4

The predicted target of miR390 was a transcript from the 35 annotated gene At3g17185 (FIG. 6A), for which no function was assigned previously. The hypothetical protein encoded by this gene is small (50 residues) and contains no recognizable motifs, raising the possibility that At3g17185 is a misannotated, protein-noncoding locus. The miR390 target site 40 was validated by 5'RACE analysis (9/22 PCR products sequenced), although a second cleavage site 33 nucleotides away was detected at approximately the same rate (11/22 PCR products).

The hypothesis that At3g17185 is a ta-siRNA-generating 45 locus targeted by miR390 was tested by analysis of small RNAs from the locus, and prediction and validation of putative ta-siRNA target genes. Two low-abundance, cloned small RNAs from sequences to the 5' side of the miR390 cleavage site were identified (FIG. 6A). siR1769 derived precisely 50 from the 5'D1(+) position, whereas siR1778 was out-of-register (relative to the miR390-guided cleavage site) between the-5'D7 and 5'D8 positions. Blot assays using strand- or sequence-specific radiolabeled probes to detect small RNAs arising from between the 5'D5 to the 5'D11 positions revealed 55 that DCL1-, HEN1- and RDR6- and SGS3-dependent, 21-nucleotide small RNAs arose from both strands (FIG. 6B). Thus, the At3g17185 locus forms transcripts that yield small RNAs with biogenesis requirements consistent with other ta-siRNAs. In addition to 21-nucleotide RNAs, this locus also 60 vielded detectable 24-nucleotide RNAs, which were clearly DCL3- and RDR2-dependent and RDR6- and SGS3-independent (FIG. 6B).

Potential targets of sequenced and hypothetical ta-siRNAs from the At3g17185 locus were identified through several computational and experimental validation steps. First, phylogenetic conservation of the miR390 target site, which was

predicted to set the phasing for ta-siRNA precursor processing, was analyzed. Transcripts and ESTs from each of 17 species of monocot and dicot plants contained a miR390 target site, which was uniquely conserved relative to immediate flanking sequence in each case (FIG. 6C). Second, functional ta-siRNAs and their targets were predicted to be phylogenetically conserved across an equivalent evolutionary distance. In Arabidopsis, two highly conserved, tandem 21-nucleotide sequences were detected at positions that nearly co-aligned with the hypothetical 5'D7(+) and 5'D8(+)positions relative to the miR390 cleavage site (FIG. 6C). These two intervals contained near-identical copies of the same sequence, which was conserved among all transcripts that contained a miR390 target site (FIG. 6C). The spacing between the conserved, tandem sequences and the miR390 target site varied between the 5'D7(+) and 5'D8(+) positions in different species. In all plants, however, the tandem sequences and the miR390 target site varied between the 5'D7(+)/5'D8(+) and the 5'D3(+))/5'D4(+) positions in different species. In all plants, however, the tandem sequences started in either perfect 21-nucleotide register (5/19 species) or one-nucleotide offset (14/19 species) relative to the miR390 cleavage site.

Third, using the rules developed for miRNA target predicdicted to be targets of these conserved ta-siRNAs. Both ARF3 and ARF4 genes behaved as ta-siRNA targets, as each was up-regulated in dcl1-7, hen1-1 and rdr6-15 mutant plants (FIG. 4D). Both ARF3 and ARF4 genes from 16 species contained two regions ('A' and 'B') of complementarity to the predicted ta-siRNAs (FIG. 6D); the 'A' site was also conserved in ARF1 and ARF2 genes across all plant species tested. And fourth, the 'A' site in both ARF3 and ARF4 was validated as a ta-siRNA target site by 5'RACE. In contrast to most miRNA target sites, the ARF3 and ARF4 'A' site contained several minor cleavage products in addition to the product formed by cleavage at the canonical target position (FIG. 6D). Evidence supporting ta-siRNA targeting at the 'B' site within the ARF4 transcript was also obtained (FIG. 6D). Thus, the ta-siRNA-generating locus was named TAS3.

Although a small RNA from the TAS3 5'D2(-) position was not cloned, a hypothetical ta-siRNA from this position may account for the second TAS3 transcript cleavage site mapped by 5'RACE (FIG. 6A). This cleavage site occurs precisely at the position predicted if TAS3 5'D2(-) guided cleavage by a RISC-like mechanism. This cleavage site would also set the phase for ta-siRNA precursor processing to generate siR1778. This suggests that ta-siRNAs have the potential to interact with transcripts from which they originate as well as mRNA targets.

Discussion

Combined with previous data, most notably from Jones-Rhoades et al., we are now aware of 25 validated miRNA families, 53 unique miRNA sequences and 99 potential MIRNA loci in A. thaliana. Seventy-three genes have now been validated experimentally as targets for miRNAs in 24 families. Fifty-three targets were validated in previous studies. Twenty predicted targets of eleven miRNAs were validated or confirmed in this study (FIG. 5, Table 3). These included mRNAs for SBP4 (miR156), Auxin Response Factor 16 (ARF16; miR160), two NAC domain proteins (miR164), AtHB15 (miR165/166), ARF6 (miR167), six HAP2 family proteins (miR169), E2-UBC (miR399), AGO2 (miR403), 2PGK (miR447), and five non-coding genes (miR173 and miR390).

miRNAs are processed from genes that produce a primary transcript that forms a stable foldback structure, processed by DCL1, and therefore requires no polymerase and produces no antisense small RNAs. Trans-acting siRNAs have similar biogenesis requirements as miRNAs, but lack a stable foldback structure (Peragine et al., Genes & Dev 18:2369-2379, 2004; Vazquez et al., Mol Cell 16:69-79, 2004b). As a result, they require a polymerase, most likely RDR6, for second strand generation. Two defining characteristics of ta-siRNAs are the presence of antisense 21-nucleotide small RNAs, and a linear, in-phase processing of both sense and small RNAs. Unlike other classes of siRNAs, ta-siRNAs can be incorporated into RISC and trigger site-specific cleavage of target genes, similar to miRNAs. Both miRNAs and ta-siRNAs are uniquely insensitive to DCL2, DCL3, RDR1, and RDR2. In the absence of a comprehensive profile of biogenesis mutants, 15it is impossible to properly catalog small RNA function. Using this strict set of criteria, we characterized four miRNA families, two of which were previously identified.

Our target prediction algorithm confirmed the robust predictions for the majority of validated miRNAs. Additional 20 targets were validated within this group, including eight targets residing in the untranslated region of the target messenger RNA, including SPL4, an E2-UBC gene At2g33770, and six HAP2 transcripts. Notably, most miR156 targets are located in the coding region of SPL transcripts, whereas two 25 reside immediately downstream of the stop codon in the 3' UTR, SPL3 and SPL4 (Rhoades et al., Cell 110:513-520, 2002). Interestingly, two splicing variants of SPL4 exist, one with the miR156 target site (AU227430, BP595743) and one that lacks the target site (BX814070.1), although the coding 30 sequence is unchanged. Potentially the alternately spliced variant of SPL4 would allow an additional level of miRNAmediated control. The E2-UBC gene is unique in that it contains five miR399 targets in its 5' UTR. The multiple miR399 target sites are conserved among distantly related plant spe- 35 cies. The multiple sites might be necessary for miRNA targeting in the 5' UTR to increase the chance of cleavage before ribosomes could clear the miRNA from the mRNA, although the nature of multi-site regulation remains to be determined.

We identified six novel miRNA target loci in the Arabidop- 40 sis EST database using a computational prediction algorithm developed based on validated miRNA-target characteristics. Previous computational searches for miRNA targets in plants have only used transcript databases, as a result missing these target genes (Jones-Rhoades & Bartel, Mol Cell 14:787-799, 45 2004). The miR403 target, Ago2, is the second Argonaute family gene to be miRNA regulated. Arabidopsis Ago2 does not have a close ortholog in mammals, and its role in small RNA function is unknown (Carmell et al., Genes Dev 16:2733-2742, 2002; Mochizuki et al., Cell 110:689-699, 50 2002). The remaining five miRNA targets from the EST database search are non-protein coding loci, all of which produce 21-nucleotide small RNAs, in phase with the miRNA cleavage site. Four loci were validated to generate functional tasiRNAs, including a family of unclassified genes, as well as 55 ARF3 and ARF4. The ta-siRNA target genes were upregulated in dcl1-7, hen/4, and rdr6-15, which could provide a diagnostic test for ta-siRNA target genes. Both miR390 and the TAS3 locus are conserved among distantly related plants. A complete profile of small RNA coding-genes will require 60 thorough complementary molecular and computational approaches, perhaps with consideration of conserved 21-nucleotide regions in annotated intergenic regions. Potentially, identification of non-protein coding genes will be facilitated by genome tiling data (Yamada et al., Science 65 302:842-846, 2003) in combination with small RNA cloning and biogenesis profiling.

We propose a model in which miRNA cleavage initiates the starting phase for ta-siRNA production (FIG. 7). The primary miRNA targeted cleavage of an RNA Polymerase II transcript (step 1) recruits a RISC complex to the RNA. In addition, RDR6 and SGS3 could be recruited by the RISC:miRNA: target complex. Cleavage by the miRNA at a specific position creates a unique initiation position. Following cleavage, RDR6/SGS3 polymerize a second strand (step 2), creating a double stranded RNA (dsRNA Either the 5' (e.g. TAS3) or 3' (e.g. TAS1 and TAS2) cleavage product can be utilized as the RDR6 template. In either case, DCL processing of 21-nucleotide siRNA duplexes (step 3) proceeds in-phase from the primary miRNA cleavage site. Dicer in animals is known to catalyze cleavage from a free end (Zhang et al., Cell 118:57-68, 2004). We did not identify any in-phase small RNAs beyond nine phases from the miRNA cleavage initiation site, suggesting either the RDR6/SGS3 complex or the DCL1 complex is not highly processive. One strand of the siRNA duplex is loaded back into a RISC complex, following the known siRNA incorporation rules (Khvorova et al., Cell 115: 209-216, 2003; Schwarz et al., Cell 115:199-208, 2003). Following RISC incorporation of the ta-siRNA (step 4), ta-siR-NAs function like miRNAs to facilitate cleavage or target genes in trans (step 5).

The regulatory role of miRNAs for all target genes previously identify is to repress target gene expression, through either cleavage or by blocking translation. Our results suggest that miRNAs also act as a positive regulator of ta-siRNA biogenesis through recruitment of RISC and initiation of unique and highly specific phasing for DCL1-mediated processing. Although we have only found evidence for a single active ta-siRNA (or highly similar tandem sequence repeat), multiple, phased ta-siRNAs could provide an advantage through generation of multiple, independent regulatory (tasiRNA-forming) units from a single locus. The discovery that a miRNA:ta-siRNA:target regulon is conserved among distantly related plants shows that this type of regulation is not specific to *Arabidopsis*, opening the possibility of an entirely new class of small RNA mediated gene regulation.

Example 2

MiRNA-Directed Biogenesis of ta-siRNAs In Vivo

To experimentally test the hypothesis that ta-siRNA biogenesis is initiated by miRNA-guided cleavage of primary transcripts, TAS1 and TAS2 were co-expressed transiently with MIR173 in *Nicotiana benthamiana*. If miR173 is required for siR255 production, as predicted herein, then siR255 should be formed only in the presence of miR173. At least some of the material in this example was published in Allen et al. (*Cell* 121:207-221, 2005), which is incorporated herein by reference in its entirety.

Expression cassettes containing the TAS1a, TAS1b, TAS1c and TAS2 loci (which all include both an initiator sequence, containing an initiator cleavage site, and a gene suppressing element) were delivered into *Nicotiana benthamiana* plant cells (Llave et al., *Plant Cell* 14:1605-1619, 2002; Palatnik et al., *Nature* 425:257-263, 2003) in the presence or absence of an expression cassette containing miR173, and ta-siRNA accumulation was scored. Expression of full-length TAS1b [35S:TAS1b(+)], a short version of TAS1b [35S:TAS1b(+)sh], and full-length TAS1a [35S: TAS1a(+)] resulted in siR255 accumulation only in the presence of a construct (35S:miR173) expressing miR173 (FIG. 14A, lanes 7, 8, 13, 14, 17, 18). Likewise, siR255 from the TAS1c construct [35S:TAS1c(+)], and siR1511 from the

TAS2 construct [35S:TAS2(+)], both accumulated only in the presence of the miR173 construct (FIG. **14**B, lanes 7, 8, 11, 12). Ta-siRNAs were not detected after expression of any of the TAS1 or TAS2 constructs alone (FIG. **14**A, lanes 3, 4, 11, 12, 15, 16; FIG. **14**B, lanes 5, 6, 9, 10), or after expression of 5 the miR173-non-targeted strand of the short version of TAS1b[35S:TAS1b(-)sh] in either the presence or absence of miR173 (FIG. **14**A, lanes 5, 6, 9, 10). In the presence of miR173, siR255 accumulated to levels up to 7.6 fold higher using the TAS1a(+) and TAS1c(+) constructs compared to the 10 TAS1b(+) constructs. This may reflect a relatively poor miR173-TAS1b interaction, which involves two mismatched positions near the target cleavage site (FIG. **5**B).

To confirm that ta-siRNA biogenesis requires miRNAdirected targeting of primary transcripts, a TAS1b mutant ¹⁵ construct [35S:TAS1b(+)shmut1] with a disrupted miR173 target site was expressed in the presence of miR173. The TAS1b mutant was also expressed in the presence of a modified miR173 construct (35S:miR173res1) containing base substitutions to restore interaction with the TAS1b mutant ²⁰ (FIG. **14**C, top). Mutations affecting the TAS1b target site or miR173 resulted in the loss of siR255 biogenesis (FIG. **14**C, lanes 7, 8, 11, 12). In contrast, siR255 accumulation was restored when the TAS1b mutant was co-expressed with the miR173res1 construct (FIG. **14**C, lanes 13, 14). ²⁵

Thus, in each independent experiment, siRNAs from each locus were detected (by RNA blot assay) only in the presence of a construct that formed miR173 (FIG. 14). Mutations that disrupted the miR173 target site in the TAS1b construct eliminated siRNA (siR255) formation. However, mutations in the ³⁰ miR173 sequence to restore complementarity with the mutated target sequence restored the formation of siR255 (FIG. 14). These data support the model that states ta-siRNA biogenesis requires a miRNA-guided initiation cleavage. It also demonstrates that an expression cassette containing an ³⁵ initiator sequence and a gene suppressing element can direct production of a siRNA in the presence of an expression cassette containing a miRNA. Stated another way, these data show that a functional miRNA target site in the ta-siRNA primary transcript is required to trigger ta-siRNA formation. ⁴⁰

See also Example 6, below, for additional details.

Example 3

Plant Transformation Vectors/Plasmids

This example illustrates the construction of plasmids for transferring recombinant DNA into plant cells which can be regenerated into transgenic plants, e.g., expressing in a plant siRNA for suppression of an endogenous gene. See also 50 Example 6, below.

A recombinant DNA construct for plant transformation construct 1A is fabricated for use in preparing recombinant DNA for transformation into corn tissue comprising the a selectable marker expression cassette, a siRNA-triggering 55 cassette and a cleavage initiating cassette. The marker expression cassette comprises a rice actin 1 promoter element(s) operably linked to sequence(s) encoding a chloroplast transit peptide from Arabidopsis thaliana ShkG gene and an aroA protein from Agrobacterium tumefaciens, strain CP4, fol- 60 lowed by a 3' region of an Agrobacterium tumefaciens nopaline synthase gene (nos). The siRNA-triggering cassette is positioned tail to tail with the marker expression cassette and comprises 5' regulatory DNA from a maize seed specific promoter L3 (as disclosed in U.S. Pat. No. 6,433,252) oper- 65 ably linked to DNA encoding RNA comprising an initiator sequence that is highly complementary to a microRNA such

as miR173 (or any microRNA or siRNA, including any listed herein) and at least one 21-nucleotide segment from LKR. An initiation cleavage cassette is positioned head to head with the marker expression cassette and comprises a maize seed specific promoter L3 and DNA expressing a microRNA (e.g., miR173) that guides cleavage of the initiation cleavage site in the siRNA-triggering cassette. Construct 1A is useful for plant transformation, e.g. by microprojectile bombardment. Transgenic corn callus is produced by microprojectile bombardment of construct 1A using methods disclosed in U.S. Pat. No. 6,399,861.

A plasmid vector 1B for use in *Agrobacterium*-mediated methods of plant transformation is prepared by inserting construct 1A into a plasmid between left and right T-DNA border sequences from *Agrobacterium*. Outside of the T-DNA borders the plasmid also contains origin of replication DNA to facilitate replication of the plasmid in both *E. coli* and *Agrobacterium tumefaciens* and a spectinomycin/stretptomycin resistance gene for selection in both *E. coli* and *Agrobacterium*. Transgenic corn callus is produced by *Agrobacterium*-mediated transformation of plasmid vector 1B using methods disclosed in U.S. Pat. No. 5,591,616.

Transgenic corn plants are regenerated from transgenic callus produced by microprojectile bombardment and *Agro-*²⁵ *bacterium*-mediated transformation; callus is placed on media to initiate shoot development in plantlets which are transferred to potting soil for initial growth in a growth chamber at 26° C. followed by growth on a mist bench before transplanting to 5 inch pots where plants are grown to matu-³⁰ rity. The plants are self fertilized and seed is harvested for screening as seed, seedlings or progeny R2 plants or hybrids, e.g. for yield trials in the screens indicated above. Transgenic plants with higher levels of lysine resulting from suppressed levels of LKR and which are homozygous for the recombi-³⁵ nant DNA are identified. The homozygous plants are self pollinated to produce transgenic seed with the recombinant DNA comprising siRNA-triggering cassettes.

Example 4

Inhibition of Plant Pest Genes

This example illustrates the construction of plasmids for transferring recombinant DNA into plant cells which can be 45 regenerated into transgenic described herein, particularly expressing in a plant siRNA for suppression of genes in a plant pest.

Recombinant DNA constructs 2A, 2B and 2C are fabricated for soybean transformation by microprojectile bombardment essentially like construct 1A except that the promoter used in the siRNA-triggering cassette and the initiation cleavage cassette is a root tissue-expressing promoter and the 21-nucleotide segment is derived from DNA encoding soybean cyst nematode proteins as disclosed in US Patent Application Publication 2004/0098761 A1. In construct 2A the 21-nucleotide segment is from a major sperm protein; in construct 2B the 21-nucleotide segment is from a chitin synthase; and in construct 2C the 21-nucleotide segment is from an RNA polymerase II. Soybean is transformed by microprojectile bombardment using constructs 2A, 2B and 2C using methods as disclosed in U.S. Pat. No. 5,914,451 and transgenic soybean plants are regenerated which exhibit resistance to soybean cyst nematode infestation as compared to control plants.

Plasmid vectors 2D, 2E and 2F for use in *Agrobacterium*mediated methods of plant transformation are prepared by inserting constructs 2A, 2B and 2C, respectively, into plas-

mids with T-DNA borders similar to plasmid vector. Soybean is transformed by Agrobacterium-mediated transformation of plasmid vectors 2D, 2E and 2F using methods disclosed in U.S. Pat. No. 6,384,301 and transgenic soybean plants are regenerated which exhibit resistance to soybean cyst nema-5 tode infestation as compared to control plants.

Example 5

Expression of Arabidopsis thaliana MIRNA Genes

Recent molecular cloning and computational analyses have identified nearly one-hundred potential genetic loci for MIRNA genes in the Arabidopsis thaliana genome. However, information about the structure and expression of these genes is generally lacking. The transcriptional start site for each of 63 miRNA precursor transcripts from 52 MIRNA (99 total loci tested) was mapped. A portion of the loci yielded multiple transcripts from alternative start sites, and some con- 20 tained introns between the foldback structure and the 5' end. Analysis of a representative set of transcripts revealed characteristics consistent with transcription by Pol II. A canonical TATA box motif was identified computationally upstream of the start site(s) at some MIRNA loci. The 5' mapping data 25 were combined with miRNA cloning and 3'-PCR data to definitively validate expression some of known MIRNA genes. These data provide a molecular basis to explore regulatory mechanisms of miRNA expression in plants.

Material from this example was published as Xie et al., 30 Plant Physiol. 138(4):2145-2154, 2005; Epub 2005 Jul. 22, which is incorporated herein by reference in its entirety.

MicroRNAs (miRNAs) are ~21-nucleotide noncoding RNAs that post-transcriptionally regulate expression of target genes in multicellular plants and animals (Bartel, Cell 116: 35 281-297, 2004). Mature miRNAs are generated through multiple processing steps from longer precursor transcripts that contain imperfect foldback structures. In animals, MIRNA genes are transcribed by RNA polymerase II (pol II) (Bracht et al., RNA 10:1586-1594, 2004; Cai et al., RNA 10:1957- 40 1966, 2004; Lee et al., EMBO J. 23:4051-4060, 2004), yielding a primary transcript (pri-miRNA) that is processed initially by nuclear RNaseIII-like Drosha (Lee et al., Nature 425:415-419, 2003). The resulting pre-miRNA transcripts are transported to the cytoplasm and processed by Dicer to 45 Cloning of A. thaliana Small RNAs and miRNA Prediction. yield mature-size miRNAs (Lee et al., EMBO J. 21:4663-4670, 2002). Less is known about the miRNA biogenesis pathway in plants, although most or all miRNAs require Dicer-like1 (DCL1) (Park et al., Curr Biol 12:1484-1495, 2002; Reinhart et al., Genes Dev 16:1616-1626, 2002). The 50 lack of a Drosha ortholog in plants, and the finding that DCL1 functions at multiple steps during biogenesis of miR163, suggest that the plant miRNA pathway may differ from the animal pathway (Kurihara & Watanabe, Proc Natl Acad Sci USA 101:12753-12758, 2004). MiRNAs in both animals and 55 plants incorporate into an effector complex known as RNAinduced Silencing Complex (RISC) and guide either translation-associated repression or cleavage of target mRNAs (Bartel, Cell 116:281-297, 2004).

Computational and molecular cloning strategies revealed 60 over 100 potential MIRNA genes belonging to at least 27 families in the Arabidopsis genome (Llave et al., Plant Cell 14:1605-1619, 2002; Mate et al., Plant Physiol 130:6-9, 2002; Park et al., Curr Biol 12:1484-1495, 2002; Reinhart et al., Genes Dev 16:1616-1626, 2002; Jones-Rhoades & Bartel, 65 Mol Cell 14:787-799, 2004; Sunkar & Zhu, Plant Cell 16:2001-2019, 2004; Wang et al., Genome Biol 5:R65, 2004).

These miRNA families target mRNAs encoding proteins that include a variety of transcription factors involved in development, DCL1 and the RISC factor ARGONAUTE1(AGO1), components of the SCF complex involved in ubiquitin-mediated protein degradation, and several other classes of metabolic and stress-related factors (Rhoades et al., Cell 110:513-520, 2002; Xie et al., Curr Biol 13:784-789, 2003; Jones-Rhoades & Bartel, Mol Cell 14:787-799, 2004; Sunkar & Zhu, Plant Cell 16:2001-2019, 2004; Vaucheret et al., Genes Dev 18:1187-1197, 2004) (see also Example 1). Based on tissue distribution and limited in situ expression data, most plant miRNAs are likely regulated at spatial and/or temporal levels during development (Chen, Science 303:2022-2025, 2004; Juarez et al., Nature 428:84-88, 2004; Kidner & Martienssen, Nature 428:81-84, 2004). Overexpression or knockout of MIRNA genes, or expression of MIRNA genes outside of their normal expression domains, can lead to severe developmental defects (Aukerman & Sakai, Plant Cell 15:2730-2741, 2003; Palatnik et al., Nature 425:257-263, 2003; Achard et al., Development 131:3357-3365, 2004; Chen, Science 303:2022-2025, 2004; Juarez et al., Nature 428:84-88, 2004; Kidner & Martienssen, Nature 428:81-84, 2004; Laufs et al., Development 131:4311-4322, 2004; Mallory et al., Curr Biol 14:1035-1046, 2004a; Mallory et al., EMBO J. 23:3356-3364, 2004; McHale & Koning, Plant Cell 16:1730-1740, 2004; Emery et al., Curr Biol 13:1768-1774, 2003; Zhong & Ye, Plant Cell Physiol 45:369-385, 2004). Understanding the mechanisms governing MIRNA gene expression patterns and integration into regulatory networks will be necessary for a clear understanding of the biological function of miRNAs.

In this example, several new Arabidopsis miRNAs were identified by a computationally assisted cloning approach and the use of mutants that contained miRNA-enriched pools of small RNAs. Expression of 99 MIRNA genes in Arabidopsis was examined experimentally. First, features associated with transcription initiation of MIRNA genes were analyzed, revealing core promoter, start sites and other properties that were consistent with a pol II mechanism of transcription. And second, a survey of expression of each known MIRNA locus was done to identify functional MIRNA genes.

Materials and Methods

Extraction of low molecular weight RNA and library construction was done as described (Llave et al., Plant Cell 14:1605-1619, 2000; Lau, Science 294:858-862, 2001). RNA was extracted from three-day post germination seedlings, embryos from developing siliques, aerial tissues including rosette leaves and apical meristems, or stage 1 to 12 enriched inflorescence from wildtype Columbia-0, and jaw-D, rdr2-1 and dcl3-1 mutants described previously (Palatnik et al., Nature 425:257-263, 2003; Xie et al., PLoS Biol 2:642-652, 2004). Seedling libraries were constructed for Col-0, rdr2-1, and dcl3-1, embryo libraries for rdr2-1, aerial libraries for jaw-D, and inflorescence libraries for Col-0 and rdr2-1. Sequences were filtered to remove organellar, rRNA, and those not present in A. thaliana. Remaining small RNAs between 18 and 26 nucleotides were deposited in the ASRP database (available on-line at asrp.cgrb.oregonstate.edu/). Candidate miRNA prediction used a set of six filters. First, structural RNAs were filtered before entry into the ASRP database by manual scoring of BLAST hits to known rRNA, tRNA, and organellar RNA. Second, small RNAs from repeats identified using RepeatMasker (Jurka, Trends Genet. 16:418-420, 2000) or from predicted protein-coding genes

and psuedogenes only were removed. Third, a small RNA cluster filter was applied to remove small RNAs within 500 nt of another small RNA in the opposite orientation. The fourth filter removed any small RNA outside the typical size (20-22 nucleotides). Fifth, characteristics including the minimum paired bases of the miRNA:miRNA* duplex in the reference set (≥ 16), maximum foldback size (350 nucleotides), and a requirement for the miRNA and its duplex to be on a single stem were determined. Foldbacks in which the miRNA: miRNA duplex contained more than three contiguous 10 unpaired bases were excluded. The RNAFold in the Vienna RNA Package was used to predict potential duplexes containing the small RNA, and those with duplexes not meeting the above criteria were excluded (Hofacker, Nucleic Acids Res 31:3429-3431, 2003). Sixth, validated miRNAs and closely related family members, as well as small RNAs processed from a miRNA locus (including miRNA*) were identified by FASTA and comparison of small RNA loci on the ASRP genome browser. These small RNAs were annotated as family members of validated miRNAs, and removed from the 20 predicted miRNA pool.

Small RNA Blot Analysis.

Low molecular weight RNA (5 µg) from A. thaliana inflorescence tissue was used for miRNA and endogenous siRNA analysis. Mutant lines for dcl1-7, dcl2-1, dcl3-1, rdr1-1, rdr2- 25 1, hen1-1, hyl1-2, rdr6-11, rdr6-15, and sgs3-11 were described previously (Park et al., Curr Biol 12:1484-1495, 2002; Allen et al., Nat Genet. 36:1282-1290, 2004; Peragine et al., Genes & Dev 18, 2368-2379, 2004; Vazquez et al., Curr Biol 14:346-351, 2004; Xie et al., PLoS Biol 2:642-652, 30 2004). The hst-15 allele used was the SALK_079290 T-DNA insertion line from ABRC, which contains a T-DNA at position 1584 from the start codon. Probes for miR159, miR167, and AtSN1-siRNA blots were described previously (Llave et al., Plant Cell 14:1605-1619, 2002; Zilberman et al., Science 35 299:716-719, 2003). All other miRNAs were detected using end-labeled DNA oligonucleotides. Probes for ta-siRNA loci were PCR amplified from Col-0 genomic DNA, cloned into pGEMT-Easy, and verified by sequencing. Radiolabeled probes incorporating ³²P-UTP were made by T7 RNA poly- 40 Identification and Validation of Arabidopsis miRNAs merase transcription, to obtain strand specific small RNA probes. Probes were as follows: At1g17185 locus, Chr3: 5862146-5862295; At2g39680 locus, Chr2:16546831-16547300.

5'RACE Mapping of MIRNA Transcripts

Two Arabidopsis thaliana (Col-0) sample preparations were used for RNA isolation: inflorescence tissues from 4-week old plants grown under greenhouse condition and 4-day old seedlings grown on MS media in a growth chamber. Total RNA was extracted using TRIzol reagent (Invitrogen) 50 followed by column purification using a RNA/DNA midi kit (Qiagen). The extracts were subjected to two rounds of purification using Oligotex (Qiagen) for the enrichment of poly (A)⁺ RNA. The 5' ends of MIRNA transcripts were mapped by a RNA ligase-mediated 5'RACE (RLM-5'RACE, Invitro- 55 gen). Complementary DNA (cDNA) was synthesized with poly(A)+-enriched RNA (125 ng/reaction), which was first treated with calf intestine phosphatase and tobacco acid pyrophosphatase (CIP+TAP), using random oligonucleotide hexamers as primers. A cDNA pool containing equal amounts of 60 cDNA from each tissue was used as template in 5'RACE PCR with a primer (Invitrogen) specific to the RNA adaptor sequence and a locus-specific reverse primer. In cases where no product was detected, a second-round PCR was done using a 5' nested primer and a locus-specific nested primer. The 65 default annealing temperature in the touchdown PCR reaction was 65° C. For a MIRNA locus with a negative 5'RACE

result after the second-round PCR, two additional PCR reactions with the nested primers were done with altered annealing temperatures. The PCR products from a positive 5'RACE were gel-purified and cloned into pGEM-Teasy vector. A minimum of 6 clones were sequenced for each PCR product.

The RLM-5'RACE procedure was used to analyze the presence or absence of a cap structure on several miRNA transcripts. A capped mRNA [Scarecrow-like6-IV (SCL6-IV)] and a non-capped RNA (miR171-guided cleavage product of SCL6-IV mRNA) were used as control RNAs. Parallel RLM-5'RACE reactions were done using poly(A)+-enriched RNA that was CIP+TAP treated and non-treated, which was selective for amplification of 5' ends that contained or lacked a cap structure, respectively.

For some miRNA transcripts, 3'RACE was done using poly(A)+-enriched RNA. cDNA was synthesized using an adaptor-tagged oligo(dT) primer. Two gene-specific forward primers were designed for each locus tested. The identity of the 3'RACE products were confirmed by sequencing. The sequences of the locus-specific primers are provided in SEQ ID NOs: 349 to 614, and were published in Supplementary Table 2 in Xie et al., Plant Physiol. 138(4):2145-2154, 2005; Epub 2005 Jul. 22.

Computational Identification of Conserved Upstream Sequence Motifs

A 60-bp (-50 to +10) genomic sequence flanking the start site for 63 transcripts from 47 MIRNA loci was analyzed using BioProspector, a Gibbs sampling-based motif-finding program (Liu et al., 2004). Searches with a motif width of 6-8 nucleotides were done. In all cases, TATA-like sequences were identified as the only conserved motif. A second search (8-nucleotide width) was done using an extended MIRNA upstream region (-200 to +50) to analyze the distribution of the putative TATA motif using MotifMatcher, with the 8-nucleotide motif matrix generated by BioProspector as a sample motif (Ao et al., Science 305:1743-1746, 2004). Up to three matches to the TATA motif were allowed.

Results and Discussion

Several small RNA libraries were constructed from wildtype (Col-0) A. thaliana seedling and inflorescence tissues, and from aerial tissues of jaw-D plants that over express miR-JAW (miR319) (Palatnik et al., Nature 425:257-263, 2003). Among all 2357 sequences analyzed collectively from these libraries, only 32.7% corresponded to known or subsequently validated miRNA families. Most of the remaining small RNAs corresponded to diverse sets of endogenous small RNAs arising from repeated sequences such as transposons, retroelements, simple sequence repeats, inverted duplications, rDNA genes and other genic and intergenic sequences (Llave et al., Plant Cell 14:1605-1619, 2002; Xie et al., PLoS Biol 2:642-652, 2004). To genetically enrich for miRNAs, small RNA libraries were constructed from embryo, seedling, and inflorescence tissues of rdr2-1 mutant plants, and from seedlings of dcl3-1 mutant plants. These plants contain relatively low levels of ~24-nucleotide siRNAs from repeated sequences, but maintain normal levels of miR-NAs (Xie et al., PLoS Biol 2:642-652, 2004). Among 3164 sequences analyzed collectively from the rdr2-1 and dcl3-1 libraries, 70.5% corresponded to previously characterized miRNAs, representing a 2.2-fold overall enrichment relative to the wild-type libraries. Endogenous siRNAs from known repeat families (identified from RepBase) were reduced 43.9fold in the mutant libraries. The majority of the remaining small RNAs corresponded to sequences from two rdr2-independent small RNA-generating loci, or from rRNA genes. Unique miRNA and endogenous siRNA sequences from all libraries are available in the *Arabidopsis* Small RNA Project (ASRP) database (available on-line at asrp.cgrb.oregonstate.edu).

To identify new miRNAs in the cloned libraries, the small 5 RNA sequences were subjected to a series of five computational filters (FIG. 8A). The filters were designed using the properties of a founder set of published, validated Arabidopsis miRNAs with codes within the range of miR156-miR399 10(excluding miR390 and miR391; RFAM). Among the 48 unique miRNA sequences from 92 loci (22 validated miRNA families) in the founder set, 34 miRNA sequences from 71 loci (19 families) were in the cloned database. The initial filters eliminated all small RNA sequences deriving from 15 structural RNA genes, other annotated genes and repetitive loci identified by RepeatMasker (FIG. 8A). Sequences originating from loci that yielded multidirectional clusters of small RNAs, which is a hallmark of many siRNA-generating loci, were eliminated. Small RNAs that were not 20-22 nucle- 20 otides in length, based on the cloned sequence, were also removed. Small RNAs originating from loci that lacked the potential to form a miRNA precursor-like foldback structure, consisting of a stem in which 16 or more positions within the putative miRNA-miRNA* duplex region were paired, were 25 excluded. To test the sensitivity of these filters, the complete founder set of miRNAs was processed through the five filters. All but three passed, corresponding to a false negative rate of 0.032. MiR163 failed because it is 24 nucleotides long, and miR166 from two loci failed because of 6 mispaired miRNA 30 positions within the foldback stem. From the cloned dataset, a total of 103 small RNAs from passed the five filters (FIG. 8A). These did not correspond to 103 unique loci, however, as many miRNA-generating loci yield multiple processed forms that are offset by one or a few nucleotides. Elimination of all 35 · sequences corresponding to founder miRNAs yielded a set of 18 small RNAs, corresponding to 13 genetic loci, as candidate new miRNAs (FIG. 8A). This set included miR390, miR391, miR403 and miR447 (FIG. 8B). Six of the 18 small RNAs corresponded to a cluster of processing variants from 40 the two miR390 loci.

Given the high sensitivity of the computational filters using the founder set, a second set of published Arabidopsis sequences with miRNA designations were analyzed. These have not been subjected to extensive experimental validation 45 as miRNAs. This set includes all sequences with codes between miR400-miR420 (Sunkar & Zhu, Plant Cell 16:2001-2019, 2004; Wang et al., Genome Biol 5:R65, 2004), except miR403. In contrast to the founder set, most of the small RNAs in the second set failed at one or more steps. Six 50 small RNAs (miR401, 405a-d, 407, 416) were identified as transposon-derived, two (miR402, 408) were from annotated genes, and ten (miR401, 404, 406, 408, 413, 414, 417-420) failed the foldback prediction criteria. Given the high computational failure rate (0.84) of this set, which was 26-fold 55 higher than the false negative rate of the founder set, it is likely that many or most of these are endogenous siRNAs and not bona fide miRNAs.

Candidate miRNAs from each of the 13 loci identified in the computational analysis was subjected to validation blot 60 assays using a series of *Arabidopsis* miRNA-defective (dcl1, hyl1, hen1, and hst) and siRNA-defective (dcl2, dcl3, rdr1, rdr2, rdr6 or sgs3) mutants (Reinhart et al., *Genes Dev* 16:1616-1626, 2002; Kasschau et al., *Dev Cell* 4:205-217, 2003; Jones-Rhoades & Bartel, *Mol Cell* 14:787-799, 2004; 65 Vazquez et al., *Curr Biol* 14:346-351, 2004; Xie et al., *PLoS Biol* 2:642-652, 2004). In addition, small RNAs were ana78

lyzed in transgenic plants expressing three viral RNAi suppressors (P1/HC-Pro, p19 and p21), which frequently enhance the level of miRNA accumulation (Mallory et al., Proc Natl Acad Sci USA 99:15228-15233, 2002; Kasschau et al., Dev Cell 4:205-217, 2003; Papp et al., Plant Physiol 132:1382-1390, 2003; Chapman et al., Genes Dev. 18:1179-86, 2004) but decrease the level of ta-siRNA accumulation. Previously validated miR159, miR167 and miR173, and AtSN1-derived siRNAs were analyzed in parallel as controls. Reproducible signals were detected in Col-0 and La-er control plants only using probes for miR390, miR391, miR403 and miR447 (FIG. 8C). Each of these accumulated to relatively low levels in the dcl1-7,hen1-1 and hyl1-2 mutants, but accumulated to normal or near-normal levels in the dcl2-1, dcl3-1, rdr1-1, rdr2-1, rdr6-11 and sgs3-11 mutants (FIGS. 8C,D). The hst-15 mutant accumulated nearly normal amounts of the four candidates as well as the three miRNA controls (FIG. 8C), indicating that miRNA accumulation in the tissues tested was relatively insensitive to loss of HST function. MiR390, miR391, miR403 and miR447 were either up-regulated or unaffected by each of the three viral suppressor proteins (FIG. 8D). Based on structural and biogenesis criteria, we conclude that miR390, miR391, miR403 and miR447 are bona fide miRNAs. Small RNAs from the remaining eight loci (Table 6) were not detected in blot assays and were not characterized further.

TABLE 6

Predic	ted m	iRNA candidates tested e	experime	entally
Locus	ASRP no.	Sequence	miRNA vali- dation	miRNA name, notes
1, 2	7544	AAGCUCAGGAGGGAUAGCGCC SEQ ID NO: 143	yes	miR390
3	1728	UUCGCAGGAGAGAUAGCGCCA SEQ ID NO: 144	yes	miR391
4	359	AUUAGAUUCACGCACAAACUCG SEQ ID NO: 145	yes	miR403
5	1890	UUGGGGACGAGAUGUUUUGUUG SEQ ID NO: 146	yes	miR447
6	382	GAGCCGACAUGUUGUGCAACUU SEQ ID NO: 147	no	not detected
7	991	AAUGGAAGCCUUGUCAGCUUAU SEQ ID NO: 148	no	not detected
8	1072	UAAAGUCAAUAAUACCUUGAAG SEQ ID NO: 149	no	not detected
9	1345	UAUAAGCCAUCUUACUAGUU SEQ ID NO: 150	no	not detected
10	1744	UUCUGCUAUGUUGCUGCUCAUU SEQ ID NO: 151	no	not detected
11	1928	UCUAAGUCUUCUAUUGAUGUUC SEQ ID NO: 152	no	not detected
12	1943	CUGUCUUCUCAACUUCAUGUGA SEQ ID NO: 153	no	not detected
13	2028	CGGCUCUGAUACCAAUUGAUG SEQ ID NO: 154	no	not detected

"Four processing variants from the two miR390 loci were cloned.

MiR390 and miR391 are related miRNAs that differ by five nucleotides, whereas miR403 and miR447 are distinct from all other known miRNAs. If miR390 and miR391 are assigned to the same family, then Arabidopsis contains 25 experimentally validated families of miRNAs encoded by up to 99 genes (Table 7). Among these families, 19 are conserved between dicots and monocots.

One family (miR403) is conserved among families within dicots, and five families (miR158, miR161, miR163, miR173 and miR447) have been identified only in Arabidopsis.

			Arabidopsis miR	NA fami	lles			
miRNA	miRNA			ASRP	library ^b	Plant	Target	SEQ ID
families	family	Locus	Sequence ^a	Col-0 rdr2/dcl3		${\tt species}^c$	family	NO.
1	miR156	a-f	<u>U</u> GACAGAAGA <u>G</u> AGUGAGCAC	+	+	At, Bn, Gm, Ha, Hv, Lj, Mt, Nt, Os, Pta, Ptr, Sb, Si, So, St, Vv, Zm	SBP	155
	miR156	g	<u>C</u> GACAGAAGA <u>G</u> AG <u>U</u> GAGCACA	-	-	At		156
	miR156	h	<u>UU</u> GACAGAAGA <u>A</u> AG <u>A</u> GAGCAC	-	-	At		157
	miR157	a-d	<u>UU</u> GACAGAAGA <u>U</u> AG <u>A</u> GAGCAC	-	+	At, Ptr		158
2	miR158	a	<u>u</u> cccaaauguagacaaagca	+	-	At	PPR	159
		b	<u>C</u> CCCAAAUGUAGACAAAGCA	-	-	At		160
3	miR159	a	<u>U</u> UUGGA <u>U</u> UGAAGGGAGCUC <u>UA</u>	+	+	At, Gm, Hv*, Lj, Mt, Os, Pg*, Ptr, So*, Sb*, Ta*, Vv, Zm	МҮВ	161
	miR159	b	<u>u</u> uugga <u>u</u> ugaagggagcuc <u>uu</u>	-	+	At		162
	miR159	с	<u>u</u> uugga <u>u</u> ugaagggagcuc <u>cu</u>	-	-	At		163
	miR319	a-b	UUGGA <u>C</u> UGAAGGGAGCUC <u>CCU</u>	+	+	At, Bo, Gm, Lt, Os, Ptr, Ta	TCP	164
	miR319	с	UUGGA <u>C</u> UGAAGGGAGCUC <u>CUU</u>	-	-	At, Os		165
4	mir160	a-c	UGCCUGGCUCCCUGUAUGCCA	+	+	At, Gm , Os, Ptr, Tt, Zm	ARF	166
5	miR161.1	a	UUGAAAGUGACUA <u>CAUCGGGG</u>	+	+	At	PPR	167
	miR161.2	a	<u>UCAAUGCA</u> UUGAAAGUGACUA	+	+	At		168
6	miR162	a-b	UCGAUAAACCUCUGCAUCCAG	+	+	At, Gm, Ll , Mt, Os, Ptr, Vv	DCL	169
7	miR163	a	UUGAAGAGGACUUGGAACUUCGAU	+	-	At	SAMT	170
8	miR164	a-b	UGGAGAAGCAGGGCACGUGC <u>A</u>	-	+	At, Pb, Ta	NAC	171
	miR164	С	UGGAGAAGCAGGGCACGUGC <u>G</u>	+	+	At		172
9	miR165	a-b	UCGGACCAGGCUUCAU <u>C</u> CCCC	-	+	At, Hc , Ptr	HD- ZIPIII	173
	miR166	a-g	UCGGACCAGGCUUCAU <u>U</u> CCCC	+	+	At, Gm, Hv , In*, Mt , Os, Ptr, Sb, Zm		174
10	miR167	a-b	U <u>G</u> AAGCUGCCAGCAUGAUCU <u>A</u>	+	+	At, Gm, Os , Pc *, Ptr, Zm	ARF	175
	miR167	С	U <u>U</u> AAGCUGCCAGCAUGAUCU <u>U</u>	-	-	At		176
	miR167	đ	U <u>G</u> AAGCUGCCAGCAUGAUCU <u>GG</u>	+	+	At, Gm, In, Ptr, So		177

TABLE 7

			Arabidopsis mi	RNA fami	lies			
miRNA	miRNA			ASRP	library ^b	Plant	Target	SEQ ID
families	family	Locus	Sequence ^a	Col-0	rdr2/dcl3	${\tt species}^c$	family	NO.
11	miR168	a-b	UCGCUUGGUGCAGGUCGGGAA	+	+	At, Bp, Gm, Ht, Hv, Le, Os, Ptr, Sb, So, St, Vv, Zm	AG01	178
12	miR169	a	<u>C</u> AGCCAAGGAUGACUUGCC <u>GA</u>	+	+	At, Gm, Os , Ptr, Ptr	HAP2	179
	miR169	b-c	<u>C</u> AGCCAAGGAUGACUUGCC <u>GG</u>	+	+	At, Gm , Os, Ptr, Zm		180
	miR169	d-g	<u>UG</u> AGCCAAGGAUGACUUGCC <u>G</u>	+	+	At, Ptr		181
	miR169	h-n	<u>U</u> AGCCAAGGAUGACUUGCC <u>UG</u>	+	+	At, Ls, Os , Pb , Ptr, Sb, So, Ta		182
13	miR170	a	UGAUUGAGCCG <u>U</u> G <u>U</u> CAAUAUC	-	+	At	SCR	183
	miR171	a	UGAUUGAGCCG <u>C</u> G <u>C</u> CAAUAUC	+	+	At, Os, Ptr, Ta, Zm		184
	miR171.2	b-c	UUGAGCCG <u>UGC</u> CAAUAUC <u>ACG</u>	+	-	At, Os, Ptr, Ta, Zm		185
	miR171.1	C	UGAUUGAGCCG <u>U</u> G <u>C</u> CAAUAUC	_	+	At, Gm, Hc , Hv , Os, Ptr, Ta, Zm		186
14	miR172	a-b	<u>A</u> GAAUCUUGAUGAUGCUGCA <u>U</u>	-	+	At, Gm , Le, Os, Ptr, St	AP2	187
	miR172	c-d	<u>A</u> GAAUCUUGAUGAUGCUGCA <u>G</u>	+	-	At, Cs		188
	miR172	е	GGAAUCUUGAUGAUGCUGCAU	-	+	At, Os, Ptr		189
15	miR173	a	UUCGCUUGCAGAGAGAAAUCAC	-	+	At	TAS1, TAS2	190
16	miR390	a-b	<u>AAGCU</u> CAGGAG <u>G</u> GAUAGCGCC	+	+	At, Os , Ptr, St, Zm	TAS3	143
	miR391	a	<u>UUCG</u> CAGGAG <u>A</u> GAUAGCGCC <u>A</u>	-	+	At		144
17	miR393	a-b	UCCAAAGGGAUCGCAUUGAUC	-	-	At, Os, Ptr	TIR1/ F-box bHLH	191
18	miR394	a-b	UUUGGCAUUCUGUCCACCUCC	-	-	At, Gm , Os, Ptr, Rp	F-box	192
19	miR395	a, d- e	CUGAAGUGUUUGGGGG <u>A</u> ACUC	-	-	At, Gm, Os , Ptr, Ta	ATPS	193
	miR395	b- c, f	CUGAAGUGUUUGGGGG <u>G</u> ACUC	-	-	At		194
20	miR396	a	UUCCACAGCUUUCUUGAACU <u>G</u>	-	+	At, Bv, Gm, Mc, Os, Ptr, Ppe, Ptr, So, St, Zm	GRF	195
	miR396	b	UUCCACAGCUUUCUUGAACUU	-	-	At, Bn, Gm , Mc, Os, Ptr, St		196
21	miR397	a	UCAUUGAGUGCA <u>G</u> CGUUGAUG	-	+	At, Hv , Os, Ptr	laccase	197
	miR397	b	UCAUUGAGUGCA <u>U</u> CGUUGAUG	-	_	At		198

TABLE 7-continued

			Arabidopsis miR	NA fami	llies			
miRNA	miRNA			ASRP	library ^b	Plant	Target	SEQ ID
families	family	Locus	Sequence ^a	Col-0	rdr2/dcl3	${\tt species}^c$	family	NO.
22	miR398	a	UGUGUUCUCAGGUCACCCCU <u>U</u>	-	-	At, Cs, Gm, Lj, Mt, Os, Ptr	CSD	199
	miR398	b-c	UGUGUUCUCAGGUCACCCCU <u>G</u>	-	+	At, Gm, Ha, Ls, Mt, Nb, Os, Zm*	CytC	200
23	miR399	a	UGCCAAAGGAGA <u>U</u> UUGCC <u>CU</u> G	-	-	At	E2- UBC	201
	miR399	b, c	UGCCAAAGGAGA <u>G</u> UUGCC <u>CU</u> G	-	+	At, Mt , Os, Ptr , Sb		202
	miR399	d	UGCCAAAGGAGA <u>U</u> UUGCC <u>CC</u> G	-	-	At, Os		203
	miR399	e	UGCCAAAGGAGA <u>U</u> UUGCC <u>UC</u> G	-	-	At		204
	miR399	f	UGCCAAAGGAGA <u>U</u> UUGCC <u>CG</u> G	-	-	At, Os		205
24	miR403	a	aUUAGAUUCACGCACAAACUCG	+	-	At, Ptr	AGO2	145
25	miR447	a-b	UUGGGGACGAGAUGUUUUGUUG	-	+	At	2PGK	146
	miR447	с	UUGGGGACGA <u>C</u> AUCUUUUGUUG	-	-			206

 a miRNAs are grouped by related families, with differences among families underlined,

^bCol-O libraries included Col-O seedling, acrial, and inflorescence tissues, plus jaw-d sequences, rdr2/dcl3 contained seedling libraries from both mutants, and inflorescence tissues of rdr2; ^cPresence of miRNA in genomic sequence is indicated in regular text, EST sequences are in bold, see information available on the World Wide Web at sanger.ac.uk/Software/Rfam/mima/index.shtml for primary stem sequences; sequences with 1-2 base changes from the Arabidopsis sequence are indicated by an asterisk.

pol II Transcripts

To determine if a reference set of Arabidopsis thaliana MIRNA gene transcripts contain 5' cap structures typical of RNA pol II transcripts, a series of RNA ligase-mediated 5'RACE reactions were done using $poly(A)^+$ -selected RNA 40 that was pretreated with either calf intestine phosphatase plus tobacco acid pyrophosphatase (CIP+TAP) or buffer alone. Only transcripts containing a 5' cap should ligate to adapters, and subsequently amplify by PCR, following CIP+TAP treatment. Transcripts lacking a cap should ligate and amplify 45 only from the sample treated with buffer alone. As controls, capped Scarecrow-like6-IV (SCL6-IV, At4g00150) transcript and miR171-guided 3' cleavage product from SCL6-IV (containing a 5' monophosphate) were analyzed using gene specific primer sets (FIG. 9A) (Llave et al., Science 297:2053-50 2056, 2002). CIP+TAP-dependent 5'RACE products of the predicted size, ~400 and ~1,110 bp, were detected using 5'-proximal and cleavage site-proximal primer sets, respectively (FIG. 9B, lanes 2 and 4). Buffer-dependent 5'RACE product was detected only using the cleavage site-proximal 55 primer set (FIG. 9B, lanes 1 and 3). Using locus-specific

Arabidopsis miRNA Precursors Exhibit Characteristics of 35 primer sets for MIR163, MIR397b and MIR398c, CIP+TAPdependent products but not buffer-dependent products were detected (FIG. 9B, lanes 5-10), indicating that the 5' end of each miRNA transcript was capped. For 47 out of the 92 Arabidopsis MIRNA loci tested, 5'RACE products from poly (A)⁺-selected and 5' capped RNA were detected (see below and Table 8). Combined with previous data for MIR172b and MIR163, and the evidence for a poly(A) tail on miRNA precursor transcripts, plant MIRNA genes are likely transcribed by an RNA pol II mechanism. These data are also consistent with recent analyses of MIRNA gene transcripts from animals (Bracht et al., RNA 10:1586-1594, 2004; Cai et al., RNA 10:1957-1966, 2004; Lee et al., EMBO J. 23:4051-4060, 2004).

Identification of a Core Promoter Element for Arabidopsis MIRNA Genes

Products of 5'RACE reactions were detected using locusspecific primers for 52 of 99 MIRNA genes tested. Transcription start sites were inferred by sequence analysis of the cloned PCR products. At several loci, such as MIR171a, MIR172b, and MIR172e, multiple 5'RACE products were detected and up to three clusters of alternative transcription start sites were identified (Table 8).

TABLE 8A

	Validate	d miRNA	sequenc	es clo	ned from	Arabidopsis	small RNA	libraries	
	Times	ASRP database			Pc	osition	_		
miRNA	isolated	No	Locus	Chrom.	Start	End	Sequence		
miR156	233	1423	a	2	10683613	106683632	UGACAGAAG SEO ID NO	GAGAGUGAGCAC): 155	

	Validate	d miRNA	sequen	ces clo	ned from .	Arabidopsis	small RNA libraries
	Times	ASRP database			Po	sition	
miRNA	isolated	No	Locus	Chrom.	Start	End	Sequence
			b	4	15074951	15074970	
			С	4	15415497	15415516	
			d	5	3456714	3456733	
			е	5	3867214	3867233	
			f	5	9136129	9136148	
niR156	3	1662	d	5	3456714	3456734	UUGACAGAAGAGAGUGAGCAC SEQ ID NO: 207
niR156	1	1783	е	5	3867213	3867233	GUGACAGAAGAGAGUGAGCAC SEQ ID NO: 208
			f	5	9136128	9136148	
niR156	1	1950	а	2	10683612	106683632	UGACAGAAGAGAGUGAGCAC SEQ ID NO: 155
			b	4	15074951	15074971	
			С	4	15415496	15415516	
			d	5	3456713	3456733	
			е	5	3867214	3867234	
			f	5	9136129	9136149	
niR157	1	1424	a	1	24916958	24916939	UGACAGAAGAUAGAGAGCAC SEO ID NO: 209
			b	1	24924768	24924787	
			c	3	6244698	6244679	
			d	1	18030676	18030657	
iR157	6	1770	a	1	24916959	24916939	UUGACAGAAGAUAGAGAGCAC
							SEQ ID NO: 158
			b c	1 3	24924767 6244699	24924787 6244679	
iR157	2	1952	đ	1	18030677	18030657	CUGACAGAAGAUAGAGAGCAC SEQ ID NO: 210
1R157*	1	1782	а	1	24916888	24916868	GCUCUCUAGCCUUCUGUCAUC SEQ ID NO: 211
			b	1	24924838	24924858	
niR158	18	142	a	3	3366373	3366354	UCCCAAAUGUAGACAAAGCA SEQ ID NO: 159
niRl58*	1	1727	a	3	3366396	3366416	CUUUGUCUACAAUUUUGGAAA SEQ ID NO: 212
11R158*	1	1735	a	3	3366397	3366416	CUUUGUCUACAAUUUUGGAA SEQ ID NO: 213
niR158*	1	2007	a	3	3366395	3366416	CUUUGUCUACAAUUUUGGAAAA SEQ ID NO: 214
niR159	224	1425	a	1	27716915	27716895	UUUGGAUUGAAGGGAGCUCUA SEQ ID NO: 161
niR159	7	1747	b	1	6220806	6220826	UUUGGAUUGAAGGGAGCUCUU SEQ ID NO: 162
niR159	1	1756	b	1	6220804	6220824	UCUUUGGAUUGAAGGGAGCUC SEO ID NO: 215
			a	1	27716917	27716897	
ıiR159	2	1800	a	1	27716915	27716896	UUUGGAUUGAAGGGAGCUCU SEO ID NO: 216
			b	1	6220806	6220825	55g ID 10. 210
niR159	1	2011	a	1	27716914	27716895	UUGGAUUGAAGGGAGCUCUA SEQ ID NO: 217
niR319	5	1665	a	4	12353119	12353139	UUGGACUGAAGGGAGCUCCCU
			b	5	16677717	16677697	5EQ ID NO: 164

	Validate	d miRNA :	sequen	ces clo	ned from 2	Arabidopsis	small RNA libraries
	Times	ASRP database			Po	sition	_
miRNA	isolated	No	Locus	Chrom	Start	End	Sequence
niR160	101	1426	a	2	16347360	16347380	UGCCUGGCUCCCUGUAUGCCA SEO ID NO: 166
			b c	4 5	9888999 19026405	98889019 19026385	22g 12 10 10 100
niR160	1	1752	a	2	16347360	16347381	UGCCUGGCUCCCUGUAUGCCAU SEQ ID NO: 218
niR160	1	1754	a	2	16347360	16347381	GCCUGGCUCCCUGUAUGCCA SEQ ID NO: 219
			b c	4 5	9888999 19026404	98889019 19026385	
niR160*	1	1941	с	5	19026322	19026342	CGUACAAGGAGUCAAGCAUGA SEQ ID NO: 20
niR161.1	4	111	a	1	17829398	17829418	UUGAAAGUGACUACAUCGGGG SEQ ID NO: 167
niR161.1	1	497	a	1	17829399	17829418	UGAAAGUGACUACAUCGGGG SEQ ID NO: 221
niR161.1	10	1746	a	1	17829399	17829419	UGAAAGUGACUACAUCGGGGU SEQ ID NO: 222
niR161.2	307	563	a	1	17829390	17829410	UCAAUGCAUUGAAAGUGACUA SEQ ID NO: 168
niR161.2	6	1707	a	1	17829390	17829411	UCAAUGCAUUGAAAGUGACUAC SEQ ID NO: 223
niR161.2	5	1712	a	1	17829390	17829409	UCAAUGCAUUGAAAGUGACU SEQ ID NO: 224
niR161.2	1	213	a	1	17829391	17829410	CAAUGCAUUGAAAGUGACUA SEQ ID NO: 225
niR162	4	395	a	5	2634957	2634937	UCGAUAAACCUCUGCAUCCAG
			b	5	7740613	7740633	51g 15 10. 105
niR163	1	1390	a	1	24888022	24888045	UUGAAGAGGACUUGGAACUUCGAU SEQ ID NO: 170
niR164	2	1427	a	2	19527840	19527860	UGGAGAAGCAGGGCACGUGCA
			b	5	287583	287603	רע היד איז אוז דער איז איז איז איז
niRl64*	2	1812	с	5	9852751	9852771	CACGUGUUCUACUACUCCAAC SEQ ID NO: 226
niR165	30	1428	a	1	78952	78932	UCGGACCAGGCUUCAUCCCCC SEO ID NO: 173
			b	4	368876	368856	·····
niR166	299	934	a	2	19183311	19183331	UCGGACCAGGCUUCAUUCCCC SEQ ID NO: 174
			b	3	22933276	22933296	
			C A	5	2838738	2838758	
			a e	5	∠840/09 16792772	2840729 16792752	
			f	5	17533605	17533625	
			a	5	25522108	25522128	
niR166	5	1743	a	2	19183311	19183332	UCGGACCAGGCUUCAUUCCCCC SEQ ID NO: 227
			b	3	22933276	22933297	
			c d	5 5	2838738 2840709	2838759 2840730	
miR166	2	1764	a	2	19183310	19183331	UUCGGACCAGGCUUCAUUCCCC SEQ ID NO: 228

	Validate	ed miRNA :	sequen	ces clo	ned from A	Arabidopsis	small RNA libraries
	Times	ASRP database			Po	sition	_
miRNA	isolated	l No	Locus	Chrom.	Start	End	Sequence
miR166	1	1779	a	2	19183310	19183330	UUCGGACCAGGCUUCAUUCCC SEQ ID NO: 229
miR166*	1	1955	a	2	19183198	19183218	GGACUGUUGUCUGGCUCGAGG
			b	3	22933187	22933207	SEQ ID NO: 230
miR167	160	5	а	3	8108097	8108117	UGAAGCUGCCAGCAUGAUCUA
			b	3	23417152	23417172	SEQ ID NO: 175
miR167	3	35	a	3	8108097	8108116	UGAAGCUGCCAGCAUGAUCU
			b c	3 1	23417152 11137537	23417171 11137556	SEQ ID NO: 231
miR167	2	447	a	3	8108098	8108117	GAAGCUGCCAGCAUGAUCUA
			b	3	23417153	23417172	SEQ ID NO: 232
miR167	2	697	a	3	8108096	8108117	AUGAAGCUGCCAGCAUGAUCUA SEQ ID NO: 233
miR167	5	557	b	3	23417152	23417173	UGAAGCUGCCAGCAUGAUCUAU SEQ ID NO: 234
miR167	1	790	b	3	23417151	23417172	GUGAAGCUGCCAGCAUGAUCUA SEQ ID NO: 235
miR167	1	281	С	1	11137537	11137557	UGAAGCUGCCAGCAUGAUCUG SEQ ID NO: 236
miR167	6	535	с	1	11137537	11137558	UGAAGCUGCCAGCAUGAUCUGG SEQ ID NO: 177
miR168	22	1429	a	4	10578663	10578683	UCGCUUGGUGCAGGUCGGGAA
			b	5	18376120	18376100	
miR168*	5	489	a	4	10578748	10578768	CCCGCCUUGCAUCAACUGAAU SEQ ID NO: 237
miR168*	1	1970	a	4	10578748	10578767	CCCGCCUUGCAUCAACUGAA SEQ ID NO: 238
miR168*	1	2076	a	4	10578747	10578767	UCCCGCCUUGCAUCAACUGAA SEQ ID NO: 239
miR169	614	1430	a	3	4359209	4359189	CAGCCAAGGAUGACUUGCCGA SEQ ID NO: 179
miR169	26	1749	a	3	4359209	4359190	CAGCCAAGGAUGACUUGCCG
			b c	5 5	8527514 15888116	8527533 15888097	SEQ ID NO. 240
miR169	119	1751	b	5	8527514	8527534	CAGCCAAGGAUGACUUGCCGG
			C	5	15888116	15888096	SEQ ID NO: 180
miR169	12	1757	a	3	4359211	4359191	UGCAGCCAAGGAUGACUUGCC SEQ ID NO: 241
miR169	4	1762	b	5 3	8527512 4805824	8527532 4805805	AGCCAAGGAUGACUUGCCGG SEQ ID NO: 242
			b c	4 5 5	11483124 8527515 15888115	11483105 8527534 15888096	
miR169	5	1766	a	3	4359209	4359188	CAGCCAAGGAUGACUUGCCGAU

AGCCAAGGAUGACUUGCCGAU SEQ ID NO: 243

TABLE 8A-continued

	Validate	d miRNA	sequen	ces clo	ned from .	Arabidopsis	small RNA libraries
		ASRP					
	Times	database			Po	sition	_
miRNA	isolated	No	Locus	Chrom.	Start	End	Sequence
miR169	1	1768	a	3	4359210	4359190	GCAGCCAAGGAUGACUUGCCG
			b	5	8527513	8527533	SEQ ID NO: 244
miR169	13	1775		1	20043242	20043223	AGCCAAGGAUGACUUGCCGA SEO ID NO: 245
			a	1 3	20045256 4359208	20045275 4359189	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
miR169	1	1787		1	20043242	20043222	AGCCAAGGAUGACUUGCCGAU SEO ID NO: 246
			a	1 3	20045256 4359208	20045276 4359188	~
miR169	5	1802	С	5	15888116	15888095	CAGCCAAGGAUGACUUGCCGGU SEQ ID NO: 247
miR169	3	1813	b	5	8527515	8527535	AGCCAAGGAUGACUUGCCGGA SEQ ID NO: 248
miR169	1	1817		3	4805804	4805824	~ AGCCAAGGAUGACUUGCCGGU
			с	5	15888115	15888095	SEQ ID NO: 249
miR169	2	1820		3	4805803	4805824	AGCCAAGGAUGACUUGCCGGUU SEQ ID NO: 250
miR169	1	1824	b	5	8527514	8527535	CAGCCAAGGAUGACUUGCCGGA SEQ ID NO: 251
miR169*	1	1772	a	3	4359018	4359037	GGCAAGUUGUCCUUGGCUAC SEQ ID NO: 252
miR169*	1	1773	b	5	8527595	8527616	GGCAAGUUGUCCUUCGGCUACA SEQ ID NO: 253
miR169	22	276	d	1	20043244	20043224	UGAGCCAAGGAUGACUUGCCG SEQ ID NO: 181
			е	1	20045254	20045274	
			f	3	4805826	4805806	
			g	4	11483126	11483106	
miR169	402	1514	h	1	6695555	6695535	UAGCCAAGGAUGACUUGCCUG SEQ ID NO: 182
			i	3	9873362	9873343	
			j	3	9873739	9873720	
			k	3	9876931	9876912	
			1	3	9877296	9877277	
			m	3	9879575	9879555	
mi D160	1	1760	n	3	9879947	9879927	ACCONSCIENCE
MIKI09	T	1760		-	0095554	0095555	SEQ ID NO: 254
			i	3	9873362	9873343	
			j	3	9873739	9873720	
			ĸ	3	9876931	9876912	
			T	3	9877296	9877277	
			m	3	9879574	9879555	
			n	3	98/9946	98/992/	
miR169	48	1761	i	3	9873363	9873342	UAGCCAAGGAUGACUUGCCUGA SEQ ID NO: 255
			j	3	9873740	9873719	
			1	3	9877297	9877276	
			n	3	9879947	9879926	
miR169	1	1765	i	3	9873362	9873342	AGCCAAGGAUGACUUGCCUGA SEO ID NO: 256
			÷	3	9873739	9873719	
			1	3	9877296	9877276	
			n	3	9879946	9879926	

		ASRP					
	Times	database			Po	sition	
miRNA	isolated	No	Locus	Chrom.	Start	End	Sequence
miR169	3	1771	m	3	9879575	9879554	UAGCCAAGGAUGACUUGCCUGU SEQ ID NO: 257
miR169	1	1774	h	1	6695556	6695535	GUAGCCAAGGAUGACUUGCCUG SEQ ID NO: 258
			i	3	9873364	9873343	~
			j	3	9873741	9873720	
			k	3	9876933	9876912	
			m n	3	9879576 9879948	9879555 9879927	
miR169	1	1776	i	3	9873363	9873341	UAGCCAAGGAUGACUUGCCUGAC SEQ ID NO: 259
miR169	1	1815		3	4644341	4644361	UAGCCAAGGAUGACUUCCCUU SEQ ID NO: 260
miR169	1	1990	h	1	6695555	6695536	UAGCCAAGGAUGACUUGCCU SEQ ID NO: 261
			i	3	9873363	9873344	
			j	3	9873740	9873721	
			ĸ	3	9876932	9876913	
			r m	s r	9879575	9879556	
			n	3	9879947	9879928	
niR170	1	1431	a	5	26428840	26428820	UGAUUGAGCCGUGUCAAUAUC SEQ ID NO: 183
miR171	34	39	a	3	19084500	19084520	UGAUUGAGCCGCGCCAAUAUC SEQ ID NO: 184
miR171	1	638	a	3	19084500	19084519	UGAUUGAGCCGCGCCAAUAU SEQ ID NO: 262
miR171.2	1	444	b	1	3961387	3961367	UUGAGCCGUGCCAAUAUCACG SEQ ID NO: 185
			С	1	22933780	22933760	
miR171.1	1	1876	С	1	22933783	22933763	UGAUUGAGCCGUGCCAAUAUC SEQ ID NO: 186
miR172	1	811	С	3	3599817	3599797	AGAAUCUUGAUGAUGCUGCAG
			đ	3	20598970	20598990	SEQ ID NO: 188
miR172*	1	1854	е	5	24005710	24005729	GCAGCACCAUUAAGAUUCAC
			a	5	1188298	1188279	SEQ ID NO: 263
miR172*	1	2019	a	5	1188298	1188278	GCAGCACCAUUAAGAUUCACA
			e	5	24005710	24005730	SEQ ID NO: 264
miR173	1	886	а	3	8236168	8236189	UUCGCUUGCAGAGAGAAAUCAC
	-		~	2	-200100		SEQ ID NO: 190
miR173*	1	2033	a	3	8236234	8236254	UGAUUCUCUGUGUAAGCGAAA SEQ ID NO: 265
miR390	89	754	a	2	16069049	16069069	AAGCUCAGGAGGGAUAGCGCC
			b	5	23654187	23654207	550 ID 10. 173
miR390	25	1703	a	2	16069050	16069069	AGCUCAGGAGGGAUAGCGCC SEO ID NO: 266
			b	5	23654188	23654207	~
miR390	3	1784	a	2	16069049	16069068	AAGCUCAGGAGGGAUAGCGC SEO ID NO: 267
			b	5	23654187	23654206	

				TABLE	8A-con	tinued	
	Validated	l miRNA :	sequenc	ces clo	ned from 2	Arabidopsis	small RNA libraries
		ASRP					
	Times d	latabase			Po	sition	_
miRNA	isolated	No	Locus	Chrom.	Start	End	Sequence
miR390	3	1758	a	2	16069051	16069069	GCUCAGGAGGGAUAGCGCC SEO ID NO: 268
			b	5	23654189	23654207	
miR390	2	1972	a	2	16069050	16069070	AGCUCAGGAGGGAUAGCGCCA SEQ ID NO: 269
			b	5	23654188	23654208	
miR390*	1	206	b	5	23654260	23654279	CGCUAUCCAUCCUGAGUUCC SEQ ID NO: 270
miR390*	1	2051	b	5	23654260	23654280	CGCUAUCCAUCCUGAGUUCCA SEQ ID NO: 271
miR391	7	1728	a	5	24310386	24310406	UUCGCAGGAGAGAUAGCGCCA SEQ ID NO: 144
miR391*	1	1991	a	5	24310737	24310457	ACGGUAUCUCUCCUACGUAGC SEQ ID NO: 272
miR396*	1	1724	a	2	4149413	4149434	GGUUCAAUAAAGCUGUGGGAAG SEQ ID NO: 273
miR397	1	1794	a	4	2625958	2625979	UCAUUGAGUGCAGCGUUGAUGU SEQ ID NO: 274
miR398	4	1994	b	5	4691110	4391130	UGUGUUCUCAGGUCACCCCUG
			С	5	4394781	4694801	3EQ ID NO: 200
miR399	1	1867	b	1	23349074	23349054	CCUGCCAAAGGAGAGUUGCCC SEQ ID NO: 275
ASRP1839	3	1839	a	1	29427439	29427458	UUCGAUGUCUAGCAGUGCCA SEQ ID NO: 276
miR447	1	1890	a	4	1528188	1528209	UUGGGGACGAGAUGUUUUGUUG SEQ ID NO: 146
			b	4	1535480	1535501	
	0		с	4	1523381	1523360	UUGGGGACGACAUCUUUUGUUG SEQ ID NO: 206
miR403	1	359	а	2	19422223	19422244	AUUAGAUUCACGCACAAACUCG SEQ ID NO: 145

expression of 99 predicted miRNA genes coding for validated Arabidopsis microRNAs. Expression of a specific locus was 50 considered definitive (dark shading) if a primary transcript was detected by 5' or 3'RACE, or a unique miRNA sequence was cloned or amplified from the ASRP library described here $_{55}$ (gray shading with total clones sequenced) or from another published library (Other Refs.). The number of clones corresponding to a specific miRNA or miRNA*(in parentheses) 60 sequence in the ASRP database is shown. Sequences that were detected only in other studies are indicated by orange in the 3'RACE and references columns. Loci for which data support expression from more than one possible gene are 65 indicated by light shading.

Table 8B provides another summary of locus-specific
	Arc	abidopsis	microRNAs	
Locus	5' RACE	3' RACE	Cloned in ASRP	Other Refs.
MIR156a	Yes	nt		
MIR156b	No	No		
MIR156c	Yes	nt		
MIR156d	No	nt	228	
MIR156e	Yes	nt		
MIR156f	Yes	nt		[11]
MIR156g	No	No		[11]
MIR156h	No	No		
MIR157a	No	Yes		
MIR157b	No	Yes		
MIR157c	Yes	nt	9(1)	
MIR157d	Yes	nt		
MIR158a	No	nt	18(3)	[1 1]
MIR158b	No	No		[11]
MIR159a	Yes	nt	225	
MIR159b	Yes	nt	7	
MIR159c	No	No		[0 1 2]
MIR319a	Yes	nt	\$	[0-12]
MIR319b	Yes	nt		
MIR319c	No	nt		
MIR160a	Yes	nt		
MIR160b	Yes	nt	103(1)	[11]
MIR160c	Yes	nt		
MIR161	Yes	nt	334	[1, 6, 11]
MIR162a	Yes	Yes	А	[11]
MIR162b	Yes	Yes	7	[11]

TABLE 8B-continued

Locus specific expression of 99 predicted MIRNA genes coding for validated *Arabidopsis* microRNAs

MIR 160f	NI-	NL.	0000000000000	
MIRTOM	INO	NO	22	
MIR169g	No	No		
MIR169h	Yes	nt		
MIR169i	No	nt		
MIR169j	No	No	4 7 8	[11]
MIR169k	No	No	438	
MIR1691	Yes	nt		
MIR169m	No	nt		
MIR169n	Yes	nt		
MIR170	Yes	nt		
MIR171a	Yes	nt	35	[6, 7, 11, 12]
MIR171b	Yes	nt		
MIR171c	Yes	nt		
MIR172a	Yes	nt	- (3)	
MIR172e	Yes	nt	1427	
MIR172b	Yes	nt		[2, 3, 10]
MIR172c	Yes	nt	20000000000000000000000000000000000000	
MIR172d	No	No	4	
MIR173	No	nt	1(1)	[10]
MIR390a	No	nt	199,91	
MIR390b	No	nt	*44147	[12]
MIR391	No	nt	7(1)	
MIR393a	No	No		[4 12]
MIR393b	No	No		[4, 12]
MIR394a	Yes	nt		[4]
MIR394b	No	No		[+]

MIR163	Yes	nt	1	[1, 5, 10, 11]
MIR164a	Yes	nt	2	
MIR164b	Yes	nt		[11]
MIR164c	No	nt	0(2)	
MIR165a	Yes	nt	20	
MIR165b	No	No	30	
MIR166a	Yes	nt		
MIR166b	Yes	nt		
MIR166c	Yes	nt		[11]
MIR166d	Yes	nt	307(1)	
MIR166e	No	Yes		
MIR166f	No	Yes		
MIR166g	No	No		
MIR167a	Yes	nt	172	
MIR167b	Yes	nt		[6, 10,
MIR167c	No	No		11, 13]
MIR167d	No	nt	7	
MIR168a	No	nt	33/71	[11 13]
MIR168b	No	No	44117	[11, 15]
MIR169a	Yes	nt	619(1)	
MIR169b	No	nt	178/15	
MIR169c	Yes	nt		[11]
MIR169d	No	No		
MIR169e	No	No	<u>4</u> 4	

MIR395a	No	No		
MIR395b	No	No		
MIR395c	Yes	nt		[4]
MIR395d	No	No		
MIR395e	Yes	nt		
MIR395f	No	No		
MIR396a	Yes	nt	0(1)	[4]
MIR396b	No	No		[']
MIR397a	No	nt	1	F4 101
MIR397b	Yes	nt		[4, 12]
MIR398a	No	nt		
MIR398b	No	Yes		[4 12]
MIR398c	Yes	nt	4	[", 12]
MIR399a	No	No		
MIR399b	Yes	nt	1	
MIR399c	Yes	nt		
MIR399d	Yes	nt		[4, 12]
MIR399e	No	No		
MIR399f	No	nt		
MIR403	Yes	Yes	1	[12]
MIR447a	Yes	nt		
MIR447b	Yes	nt		
MIR447c	Yes	nt		

nt, not tested. References cited are: 1. Allen et al., *Nat Genet* 36:1282-1290, 2004; 2. Aukerman & Sakai, *Plant Cell* 15:2730-

2741, 2003; 3. Chen, Science 303:2022-2025, 2004; 4. Jones-Rhoades & Bartel, Mol Cell
 14:787-799, 2004; 5. Kurihara &
 Watanabe, Proc Natl Acad Sci USA 101:12753-12758, 2004; 6. Llave et al., Plant Cell
 14:1605-1619, 2002; 7. Llave et al.,

15

25

40

TABLE 8B-continued

Locus specific expression of 99 predicted MIRNA genes coding for validated Arabidopsis microRNAs

Science 297:2053-2056, 2002; 8. Mette et al., *Plant Physiol* 130:6-9, 2002; 9. Palatnik et al., *Nature* 425:257-263, 2003; 10. Park et al., *Curr Biol* 12:1484-1495, 2002; 11. Reinhardt et al., Genes Dev. 16:1616-1626, 2002; 12. Sunkar and Zhu Plant Cell 16:2001-2019, 2004; 13. Arabidopsis EST clones were identified for MIRI67d (Gen-Bank accession AU239920) and MIRI68a (H77158).

For each 5'RACE product detected, the transcription start site was assigned to the most highly represented sequence among six randomly selected clones. In cases where two clustered sequences were equally represented, the extreme 5' sequence was assigned as the start site. Following this procedure, the 5' ends representing 63 transcripts from the 52 MIRNA loci were identified (FIG. 10 and Table 8). The vast majority of transcripts initiated with an adenosine (83%) that was preceded by a pyrimidine residue (FIG. 10A). Twelve loci yielded multiple transcripts that were consistent with alternative start sites. Three transcripts (one from MIR156a and two from MIR172b) contained introns between the 5' end and foldback sequence. Each of these characteristics is consistent with transcription by RNA pol II.

To identify conserved motifs flanking the initiation sites at each mapped locus, a 60-bp genomic segment (-50 to +10 relative to the start site) was computationally analyzed using BioProspector. An 8-nucleotide TATA box-like sequence was detected upstream from 83% of transcription start sites (FIG. 30 **10**B). Using MotifMatcher to scan a broader segment (-200 to +50), the TATA-like sequence was shown to be centered at position removed from the start site (FIG. 10C). The TATA motif at position -30 is entirely consistent with TATA motifs for protein-coding genes (Patikoglou et al., Genes Dev 35 13:3217-3230, 1999; Shahmuradov et al., Nucleic Acids Res 31:114-117, 2003). We conclude, therefore, that these are authentic TATA box sequences within core promoter elements of MIRNA genes.

Expression of Arabidopsis MIRNA Genes

Despite repeated attempts with multiple primer sets, 5' start sites were mapped for only about one-half of predicted MIRNA genes (Table 8B). This may have been due to either less-than-optimal 5'RACE procedures and low expression levels (false negative results) or lack of expression of some 45 loci predicted to be MIRNA genes. It is also possible that some primer sets were designed within intron sequences. To develop a more comprehensive account of Arabidopsis MIRNA genes with validated expression data, informatic and experimental approaches were taken. In the informatic strat- 50 egy, the ASRP database was scanned for locus-specific miRNA or miRNA* (miRNA-complementary species within miRNA duplexes) sequences (Gustafson et al., Nucleic Acid Research 33:D637-D640, 2005). Unique miRNA or miRNA* sequences specific to MIR158a, MIR167d, MIR173, 55 MIR391, MIR397a and MIR164c loci were each represented in the database (FIG. 10). In addition, unique miRNA sequences specific to MIR319c, MIR398a, and MIR399f were represented in an independent *Arabidopsis* small RNA library (Table 8B) (Sunkar & Zhu, Plant Cell 16:2001-2019, 60 2004). For each of three families (MIR390/391, MIR393, and MIR168) in which negative 5'RACE data were obtained, multiple predicted loci encode an identical miRNA that was detected in at least one small RNA library (Reinhart et al., Genes Dev 16:1616-1626, 2002; Jones-Rhoades & Bartel, 65 Mol Cell 14:787-799, 2004; Sunkar & Zhu, Plant Cell 16:2001-2019, 2004; Gustafson et al., Nucleic Acid Research

33:D637-D640, 2005). For MIR168a, a locus-specific EST clone (GenBank accession H77158) exists to confirm expression. For two miRNAs that are represented by a single locus (miR173 and miR391), expression was inferred by cloning or detection of the miRNA sequence. Thus, 5'RACE and unambiguous miRNA cloning/detection support expression of 68 of 99 predicted Arabidopsis MIRNA loci.

For the remaining 31 predicted MIRNA genes, locus-specific primers were designed to amplify sequences immediately downstream of the precursor foldback sequence through a 3' RACE procedure. Positive results were obtained for five loci.

Example 6

Small RNA Formation in Plants

This example provides a demonstration of the ability to 20 produce novel siRNAs using engineered ta-siRNA-generating loci. This demonstration includes miRNA-dependent formation of novel siRNAs for RNAi against exogenous and endogenous RNA sequences, and phenotypes associated with silencing of an endogenous gene (phytoene desaturase, or PDS) using the artificial, engineered cassettes.

Development of Constructs for Wild-Type and Artificial tasiRNA Biogenesis Assays in N. benthamiana

The following artificial ta-siRNAs targeting Arabidopsis genes encoding phytoene desaturase (PDS) and PINOID (PID), as well as GFP, were designed and expressed using an Arabidopsis thaliana TAS/c-based construct: 35S:TAS1c; 35S:TAS1cGFPd3d4 (SEQ ID NO: 277); 35S: TAS1cPDSd3d4 (SEQ ID NO: 278); and 35S: TAS1cPIDd3d4 (SEQ ID NO: 279). The ta-siRNA constructs were made in the TAS1c context, as shown in FIG. 11.

The artificial ta-siRNAs were expressed in place of the normal 3'D3(+) and 3'D4(+) positions of TAS1c (positional nomenclature as in Allen et al., Cell 121:207-221, 2005). Artificial ta-siRNA sequences were chosen based on the principles of the asymmetry rules and presented by Schwarz et al. (Cell 115:199-208, 2003) and Khvorova et al. (Cell 115:209-216, 2003). The artificial siRNAs chosen were designed as perfect complementary matches to their corresponding target genes, although it is assumed that artificial siRNAs may contain mismatches similar to those in known miRNA:target duplexes (see Allen et al., Cell 121:207-221, 2005, for examples). Each of these constructs contained two 21-nt siRNA modules, with the siRNAs designed to target mRNAs for GFP, PDS and PID.

Engineered TAS1c loci were expressed using the CaMV 35S promoter and the nos terminator as regulatory elements. The expressed sequence was inserted between att sites (positions 55 to 79 and 1106 to 1130 in each) for recombination into a "Gateway" vector. The two consecutive, 21-nucleotide engineered ta-siRNAs correspond to nucleotide positions 520 to 561 in each of SEQ ID NOs: 277, 278, and 279. Vector sequence is shown in positions 1 to 99 and 1090 to 1185 of each of these sequences; primers used to amplify the cassettes hybridize at positions 96 to 123 and 1069 to 1089.

Demonstration of Artificial ta-siRNA Biogenesis and Activity in N. benthamiana

Transient ta-siRNA expression assays in Nicotiana benthamiana were done as in Allen et al. (Cell 121:207-221, 2005). Stable Arabidopsis thaliana transgenic lines were created using the Agrobacterium mediated floral dip method. Transgenic seed from transformed plants was plated on Murashige-Skoog media containing kanamycin (50 μ g/ml), and blot assays were done as described in Allen et al. (*Cell* 121:207-221, 2005).

Introduction of each construct (35S:TAS1c [which forms ³ wild-type TAS1c ta-siRNAs], 35S:TAS1cGFPd3d4, 35S: TAS1cPDSd3d4, and 35S:TAS1cPIDd3d4) into *N. benthamiana* in a transient assay resulted in miR173-dependent formation of ta-siRNAs (FIG. **12**). In the case of 35S: TAS1cGFPd3d4, the artificial ta-siRNA construct was co-expressed with a functional GFP gene. Expression of at least one artificial ta-siRNA was detected in a miR173-dependent manner, by blot assay using each construct (FIG. **12**). The GFP gene was silenced by the artificial GFP ta-siRNAs in a 15 miR173-dependent manner (FIG. **12**).

A PDS artificial ta-siRNA-generating construct was introduced into wild-type *Arabidopsis* and rdr6-15 and dcl4-2 (Xie et al., *Proc Natl Acad Sci USA*. 102(36):12984-12989, 2005; Epub 2005 Aug. 29) mutant plants. Both strong and weak loss-of-function PDS phenotypes were detected, but only in wildtype plants and not in rdr6-15 or dcl4-2 plants (Table 9 and FIG. **13**). This indicates that functional artificial ta-siRNAs were formed through the activity of the normal ta-siRNA pathway.

102	
TABLE	9

Observed [expressing engineer	red TAS1cPDSd3d4	insgenic nines
	No Phenotype	Weak Phenotype	Strong Phenotype
Col-0 (n = 102)	8/102	36/102	58/102
rdr6-15 (n = 291)	291/291	—	—
dc14-2 (n = 15)	15/15	—	

This disclosure describes the discovery of a new system for RNAi in vivo, and provides methods, constructs, and compositions useful for exploiting this discovery. The disclosure further provides myriad initiator sequences and methods for identifying additional initiator sequences that are useful in directing in vivo generation of predictable 21-mer siRNAs, as well as methods of using constructs containing such an initiator sequence to mediate RNAi. It will be apparent that the precise details of the methods described may be varied or modified without departing from the spirit of the described invention. We claim all such modifications and variations that fall within the scope and spirit of the disclosure and the claims below.

20

20

20

·····
<210> SEQ ID NO 1 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide
<400> SEQUENCE: 1
gugcucucuc ucuucuguca
<210> SEQ ID NO 2 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide
<400> SEQUENCE: 2
cugcucucuc ucuucuguca
<pre>cugcucuc ucuucuguca <210> SEQ ID NO 3 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide</pre>
<pre>cugcucuc ucuucuguca </pre> <pre><210> SEQ ID NO 3 </pre> <pre><211> LENGTH: 20 </pre> <pre><212> TYPE: RNA </pre> <pre><213> ORGANISM: artificial sequence </pre> <pre><220> FEATURE: </pre> <pre><223> OTHER INFORMATION: synthetic nucleotide </pre> <400> SEQUENCE: 3
<pre>cugcucuc ucuucuguca <2210> SEQ ID NO 3 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 3 uugcuuacuc ucuucuguca</pre>

SEQUENCE LISTING

US	8.	030	0.47	73	B2
$\sim \sim$	ς,	0.0		-	

-1	^	
	114	
. 1	U .J	

	-continued
-400- CEOHENCE A	
<400> SEQUENCE: 4	
cegcucucuc ucuucuguca	20
<210> SEQ ID NO 5 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 5	
uggagcuccc uucauuccaa u	21
<210> SEQ ID NO 6 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 6	
ucgaguuccc uucauuccaa u	21
<210> SEQ ID NO 7 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 7	
augagcucuc uucaaaccaa a	21
<210> SEQ ID NO 8 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 8	
<pre><210> SEQ ID NO 9 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide</pre>	22
<400> SEQUENCE: 9	
uagagcuucc uucaaaccaa a	21
<210> SEQ ID NO 10 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 10	
uggagcucca uucgauccaa a	21
<210> SEQ ID NO 11	

<211> LENGTH: 21

1	A	5
r	υ	Э.

ntinued

106

	-continued
212 TYPE BNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 11	
	21
ageageaeee aaceaa a	21
<210> SEQ ID NO 12	
<211> LENGTH: 21	
<212> TYPE: RNA	
<2213> ORGANISM: AITIICIAI Sequence	
<223> OTHER INFORMATION: synthetic nucleotide	
-	
<400> SEQUENCE: 12	
	0.1
cagageucee uucacuceaa u	21
<210> SEQ ID NO 13	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 13	
uggageueee uucaeueeaa u	21
<210> SEQ ID NO 14	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 14	
	01
uggageueee uucaeueeaa g	21
<210> SEQ ID NO 15	
<211> LENGTH: 21	
<212> TYPE: RNA <213> OPGANISM, artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 15	
uqqaqcuccc uuuaauccaa u	21
<210> SEQ ID NO 16	
LENGTH: ZI TYDE: ENA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
400 CEOUENCE, 16	
<400> 2FÕnFWCF: T0	
uggcaugcag ggagccaggc a	21
<210> SEQ ID NO 17	
<2125 TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
400 SEQUENCE: 17	
tion begoence. If	

aggaauacag ggagccaggc a

-continued

<210> SEQ ID NO 18 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 18	
ggguuuacag ggagccaggc a	21
<210> SEQ ID NO 19 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 19	
aggcauacag ggagccaggc a	21
<210> SEQ ID NO 20 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 20	
aagcauacag ggagccaggc a	21
<210> SEQ ID NO 21 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 21	
accugaugua aucacuuuca a	21
<210> SEQ ID NO 22 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 22	
cccggaugua aucacuuuca g	21
<210> SEQ ID NO 23 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 23	
uuguuacuuu caaugcauug a	21
<210> SEQ ID NO 24 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE:	

<223> OTHER INFORMATION: synthetic nucleotide

US	8.	030	0.47	73	B2
$\sim \sim$	ς,	0.0		-	

-	~ ~	
- 1	4101	
	11.4	
	v	

	-continued
<400> SEQUENCE: 24	
cccugaugua uuuacuuuca a	21
<210> SEQ ID NO 25 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 25	
uagucacguu caaugcauug a	21
<210> SEQ ID NO 26 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 26	21
cecugaugua uucacuuuca g	21
<210> SEQ ID NO 27 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 27	
cccugauguu guuacuuuca g	21
<210> SEQ ID NO 28 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 28	
uagucacuuu cagcgcauug a	21
<210> SEQ ID NO 29 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 29	
uccaaaugua gucacuuuca g	21
<210> SEQ ID NO 30 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
CION SEQUENCE: 30	21
<210> SEO ID NO 31	

<211> LENGTH: 21

-continued

<pre><212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide</pre>	
<400> SEQUENCE: 31	
uccaaaugua gucacuuuca g	21
<210> SEQ ID NO 32 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 32	
uccaaaugua gucacuuuca a	21
<210> SEQ ID NO 33 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEOUENCE: 33	
uuquaacuuu caquqcauuq a	21
<210> SEQ ID NO 34 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 34	
uagucacguu caaugcauug a	21
<210> SEQ ID NO 35 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 35	
uuguuacuuu cagugcauug a	21
<210> SEQ ID NO 36 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 36	
cccugauguu gucacuuuca c	21
<210> SEQ ID NO 37 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 37	
uuguuacuua caaugcauug a	21

-continued

<210> SEO ID NO 38	
<211> LENGTH: 21	
<212> TYPE: RNA <213> ORGINISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 38	
-	
uagucuuuuu caacgcauug a	21
<210> SEQ ID NO 39	
<211> LENGTH: 22 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 39	
cuqqauqcaq aqquauuauc qa	22
<210> SEO ID NO 40	
<211> LENGTH: 22	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
4005 SECTIENCE: 40	
CION DEQUERCE. IN	
cuggaugcag aggucuuauc ga	22
<210> SEQ ID NO 41	
<211> LENGTH: 22	
<212> IIPE: RWA <213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 41	
	22
cuyyauycay ayyuuuuauc ya	22
<210> SEQ ID NO 42 <211> LENGTH: 23	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATORE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 42	
aucgaguucc aaguccucuu caa	23
<210> SEO ID NO 43	
<211> LENGTH: 23	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<pre><223> OTHER INFORMATION: synthetic nucleotide</pre>	
<400> SEQUENCE: 43	
aucgaguucc agguccucuu caa	23
<210> SEQ ID NO 44	
<211> LENGTH: 23	
<212> TYPE: RNA <213> ORGANISM: artificial sequence	
2000 EFATIDE.	

<220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide

ZUI	8 ()3() 47	13	R 2
00	0,0	,,,,	<i>,</i> т/	5	D2

-	1	_
		~
		· • 2

	-continued
<400> SEQUENCE: 44	
aucgaguucc aaguuuucuu caa	23
<210> SEQ ID NO 45 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 45	
agcacguacc cugcuucucc a	21
<210> SEQ ID NO 46 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
uuuacgugee cugeuucuee a	21
<210> SEQ ID NO 47 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 47	01
<pre><210> SEQ ID NO 48 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide</pre>	
<400> SEQUENCE: 48	
ucuacgugee cugeuucuee a	21
<210> SEQ ID NO 49 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 49	
cucacgugac cugcuucucc g	21
<210> SEQ ID NO 50 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 50	
cgcacgugac cugcuucucc a	21
<210> SEO ID NO 51	

<211> LENGTH: 21

117	
-----	--

-continued

118

-	-continued
<pre><212> TYPE: RNA <213> ORGANISM: artificial sequence</pre>	
<pre><220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide</pre>	
<400> SEQUENCE: 51	
cuuacguguc cugcuucucc a	21
<210> SEO ID NO 52	
<211> LENGTH: 21 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 52	
cuuacgugee cugeuucuee a	21
<210> SEQ ID NO 53	
<211> LENGTH: 21 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 53	
gccacgugca cugcuucucc a	21
<210> SEQ ID NO 54	
<211> LENGTH: 21 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<pre><220> FEATORE: <223> OTHER INFORMATION: synthetic nucleotide</pre>	
<400> SEQUENCE: 54	
uugggaugaa gccugguccg g	21
<210> SEQ ID NO 55	
<211> LENGTH: 21	
<213> ORGANISM: artificial sequence	
<220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 55	
cugggaugaa gccugguccg g	21
<210> SEQ ID NO 56 <211> LENGTH: 21	
<212> TYPE: RNA	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 56	
cuggaaugaa gccugguccg g	21
<210> SEQ ID NO 57	
<211> ILNGIR: 21 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 57	

ccgggaugaa gccugguccg g

-continued

<210> SEQ ID NO 58 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 58	
gagaucagge uggeageuug u	21
<pre><210> SEQ ID NO 59 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide</pre>	
<400> SEQUENCE: 59	
uagaucaggc uggcagcuug u	21
<210> SEQ ID NO 60 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 60	
aagaucaggo uggcagcuug u	21
<210> SEQ ID NO 61 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 61	
uucccgagcu gcaucaagcu a	21
<210> SEQ ID NO 62 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 62	
aagggaaguc auccuuggcu g	21
<210> SEQ ID NO 63 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 63	
	21
adddaadaa aaccaaddaa a	
<210> SEQ ID NO 64 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE:	

<223> OTHER INFORMATION: synthetic nucleotide

DIT	81	120	ጉ ፈና	72	P 2
00	0,0	, ,,,	л,т.	15	D2

<400> SEQUENCE: 64	
aggggaaguc auccuuggcu a	21
<210> SEQ ID NO 65 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 65	
aggcaaauca ucuuuggcuc a	21
<210> SEQ ID NO 66 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 66	
gcggcaauuc auucuuggcu u	21
<210> SEQ ID NO 67 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 67	
ccggcaaauc auucuuggcu u	21
<210> SEQ ID NO 68 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 68	
aagggaaguc auccuuggcu a	21
<210> SEQ ID NO 69 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 69	
guggcaacuc auccuuggcu c	21
<210> SEQ ID NO 70 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 70	
ugggcaauuc auccuuggcu u	21
<210> SEQ ID NO 71	

<211> LENGTH: 21

continued

=	continued
<pre></pre>	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 71	
auggcaaauc auccuuggcu u	21
<210> SEQ ID NO 72 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 72	
uagggaaguc auccuuggcu c	21
<210> SEQ ID NO 73 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 73	
cugggaaguc auccuuggcu c	21
<210> SEQ ID NO 74 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 74	
gauauuggeg eggeueaaue a	21
<210> SEQ ID NO 75 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 75	
cugcagcauc aucaggauuc u	21
<210> SEQ ID NO 76 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 76	
cagcagcauc aucaggauuc u	21
<210> SEQ ID NO 77 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 77	

-continued

<210> SEQ ID NO 78	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: AICHICIAI Sequence	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEOUENCE: 78	
uggcagcauc aucaggauuc u	21
<210> SEQ ID NO 79	
<211> LENGTH: 21	
<212> IIPE: RNA <213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 79	
uuguagcauc aucaggauuc c	21
<210> SEQ ID NO 80	
<211> LENGTH: 21 <212> TYDE: DNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 80	
	21
uugeageaue aueaggauue e	21
<210> SEQ 1D NO 81 <211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 81	
caggggggacc cuucagucca a	21
<210> SEO ID NO 82	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 82	
gagggguccc cuucagucca u	21
<210> SEQ ID NO 83	
<211> LENGTH: 21	
<212> IIPE: RNA <213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 83	
gagggguccc cuucagucca g	21
<210> SEQ ID NO 84	
<211> LENGTH: 21 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	

<223> OTHER INFORMATION: synthetic nucleotide

US	8.	030	0.47	73	B2
$\sim \sim$	ς,	0.0		-	

1	1	7
1	4	1

	-continued
<400> SEQUENCE: 84	
aagggguacc cuucagucca g	21
<210> SEQ ID NO 85 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 85	
uaggggggacc cuucagucca a	21
<210> SEQ ID NO 86 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 86	
gaggggaccc cuucagucca g	21
<210> SEQ ID NO 87 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 87	
ucggggcaca cuucagucca a	21
<210> SEQ ID NO 88 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 88	
aaacaaugcg aucccuuugg a	21
<210> SEQ ID NO 89 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 89	
agaccaugcg aucccuuugg a	21
<210> SEQ ID NO 90 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 90	
ggucagagcg aucccuuugg c	21
<210> SEO ID NO 91	

<211> LENGTH: 21

-continued

	-continued
<212> TYPE: RNA <213> ORGANISM: artificial sequence	
<220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 91	
agacaaugcg aucccuuugg a	21
<210> SEQ ID NO 92 <211> LENGTH: 21	
<212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 92	
ggagguugac agaaugccaa a	21
<210> SEQ ID NO 93 <211> LENGTH: 21 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 93	
gaguuccucc aaacacuuca u	21
<210> SEQ ID NO 94	
<212> TYPE: RNA	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 94	
gaguuccucc aaacucuuca u	21
<210> SEQ ID NO 95	
<211> LENGIN: 21 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 95	
aaguucuccc aaacacuuca a	21
<210> SEQ ID NO 96	
<211> LENGTH: 22 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 96	
ucguucaaga aagccugugg aa	22
<210> SEQ ID NO 97	
<211> LENGTH: 22 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 97	

-continued

<210> SEQ ID NO 98 <211> LENGTH: 22 <212> TYPE: ENA	
<pre><213> ORGANISM: artificial sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 98	
ucguucaaga aagcaugugg aa	22
<210> SEQ ID NO 99 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 99	
acguucaaga aagcuugugg aa	22
<210> SEQ ID NO 100 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 100	
ccguucaaga aagccugugg aa	22
<210> SEQ ID NO 101 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 101	
aaucaaugcu gcacucaaug a	21
<210> SEQ ID NO 102 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 102	
agucaacgcu gcacuuaaug a	21
<210> SEQ ID NO 103 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 103	
aaucaaugcu gcacuuaaug a	21
<pre><210> SEQ ID NO 104 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> EENTURE.</pre>	

<220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide

ZUI	8 ()3() 47	13	R 2
00	0,0	,,,,	<i>,</i> т/	5	D2

-		
1	22	
	$\sim \sim$	

	-continued
-400 - CEONENCE, 104	
<4005 SEQUENCE: 104	01
aagggguuud dugagaudad a	21
<210> SEQ ID NO 105	
<211> LENGIH: 22 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide</pre>	
<400> SEQUENCE: 105	
ugcgggugac cugggaaaca ua	22
<210> SEQ 1D NO 106 <211> LENGTH: 22	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 106	
aaggugugac cugagaauca ca	22
<210> SEQ ID NO 107	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATORE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 107	
	22
guguuuuuo uouuouugog uu	
<210> SEQ ID NO 108	
<211> LENGTH: 22	
<212> IYPE: RNA <213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 108	
gugauuuuuc ucuacaagcg aa	22
<210> SEQ ID NO 109	
<211> LENGTH: 22	
<212> IIPE: RNA <213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 109	
gugauuuuuc ucuccaagcg aa	22
<210> SEQ ID NO 110	
<211> LENGTH: 21	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: SYNTHETIC nucleotide	
<400> SEQUENCE: 110	
uagggcauau cuccuuuggc a	21
<210> SEQ ID NO 111	

<211> LENGTH: 21

continued

- CC	ontinued
<pre><212> TYPE: RNA <213> ORGANISM: artificial sequence</pre>	
<pre><220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide</pre>	
<400> SEQUENCE: 111	
	01
uugggeaaau eueeuuugge a	21
<210> SEQ ID NO 112	
<211> LENGTH: 21 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 112	
ucgagcaaau cuccuuuggc a	21
<2105 SEO ID NO 113	
<211> LENGTH: 21	
<212> TYPE: RNA <213> OPGINISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 113	
uagagcaaau cuccuuuggc a	21
<210> SEQ ID NO 114	
<211> LENGTH: 21	
<212> TIFE: NAA <213> ORGANISM: artificial sequence	
<220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 114	
uagggcaaau cuucuuuggc a	21
<210> SEQ ID NO 115 <211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 115	
uagggcaaau cuccuuuggc a	21
<210> SEQ ID NO 116	
<211> LENGTH: 21	
<212> 11PE: KNA <213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 116	
cugggcaaau cuccuuuggc a	21
<210> SEQ ID NO 117	
<211> LENGTH: 21	
<213> ORGANISM: artificial sequence	
<220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 117	
ucgggcaaau cuccuuuggc a	21

-continued

<210> SEQ ID NO 118 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence	
<220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 118	
ccgggcaaau cuccuuuggc a	21
<210> SEQ ID NO 119 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 119	
gcgggcaaau cuucuuuggc a	21
<210> SEQ ID NO 120 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 120	
aagggcaaau cuccuuuggc a	21
<210> SEQ ID NO 121 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 121	
uagggcaaau cuccuuuggc g	21
<210> SEQ ID NO 122 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 122	
cugggcaaau cuccuuuggc g	21
<210> SEQ ID NO 123 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 123	
uucggcaaau cuccuuuggc a	21
<210> SEQ ID NO 124 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE:	

<223> OTHER INFORMATION: synthetic nucleotide

ZUI	8 ()3() 47	13	R 2
00	0,0	,,,,	<i>,</i> т/	5	D2

1	20
	.37

	-continued
400. CEOURICE 104	
<400> SEQUENCE: 124	
ggaguuugug cgugaaucua au	22
<210> SEQ ID NO 125 <211> LENGTH: 22 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 125	
cuugucuauc ccuccugagc ua	22
<210> SEQ ID NO 126 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 126	
uaugucuauc ccuucugagc ug	22
<210> SEQ ID NO 127 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
-400 SECHIENCE: 127	
(100) SEQUENCE. 12/	
uaugucuauc ccuucugagc ua	22
<pre><210> SEQ ID NO 128 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide </pre>	
<400> SEQUENCE: 128	
uaugucuauc ccuucugagc ug	22
<210> SEQ ID NO 129 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 129	
ucggucuauc ccuccugagc ug	22
<210> SEQ ID NO 130 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 130	
uuagucuauc ccuccugage ua	22
aasjasdade oodoodyago da	
<210> SEQ ID NO 131 <211> LENGTH: 22	

continued

142

-concinded	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<pre><220> FEATORE: <223> OTHER INFORMATION: synthetic nucleotide</pre>	
-	
<400> SEQUENCE: 131	
auugccuauc ccuccugagc ug	22
<210> SEO ID NO 132	
<211> LENGTH: 22	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 132	
ccuuqcuauc ccuccuqaqc uq	22
5 5 5 5	
-210. CEO ID NO 122	
<210> SEQ ID NO 133 <211> LENGTH: 22	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: SYNCHELIC NUCLEOLIDE	
<400> SEQUENCE: 133	
	22
euugueuaue eeueeugage ug	22
<210> SEQ ID NO 134	
<211> LENGTH: 22 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 134	
	22
ecculculue ceuceugage ula	22
<210> SEQ ID NO 135	
<211> LENGIH: 22 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 135	
	22
Saugasanas soucougago au	
<210> SEQ ID NO 136	
<211> DENGIN: 22 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 136	
cccuucuauc ccuccugagc ua	22
<210> SEQ ID NO 137	
<211> LENGTH: 22	
<212> IIFE: RNA <213> ORGANISM: artificial sequence	
<220> FEATORE:	
<220> FEATORE: <223> OTHER INFORMATION: synthetic nucleotide	
<220> FEATORE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 137	

cccuucuauc ccuccugagc ua

-continued

<210> SEQ ID NO 138	
<211> LENGTH: 22	
<213> ORGANISM: artificial sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide</pre>	
-	
<400> SEQUENCE: 130	
ccuuucuauc ccuccugagc ua	22
010 (E0 TR NO 100	
<210> SEQ ID NO 139 <211> LENGTH: 22	
<212> TYPE: RNA	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 139	
ccugucuauc ccuccugagc ua	22
<210> SEQ ID NO 140	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 140	
	22
agagacaaac ceaecagage aa	22
<210> SEQ ID NO 141	
<211> LENGTH: 21	
<212> TYPE: RNA <213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synchetic nucleotide	
<400> SEQUENCE: 141	
ugacaaacau cucgucccca a	21
<210> SEQ ID NO 142 <211> LENGTH: 21	
<212> TYPE: RNA	
<pre><213> ORGANISM: altilitial sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 142	
ugacaaacau cucguuccua a	21
<210> SEQ ID NO 143	
<211> LENGTH: 21 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 143	
	21
<210> SEQ ID NO 144	
<211> LENGTH: 21	
<212> TIFE: RUA <213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: SYNCHELIC NUCLEOUIDE	

US	8.	030	0.47	73	B2
$\sim \sim$	ς,	0.0		-	

145	45	1
-----	----	---

	-continued
<400> SEQUENCE: 144	
uucgcaggag agauagcgcc a	21
<210> SEQ ID NO 145 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 145	
auuagauuca cgcacaaacu cg	22
<210> SEQ ID NO 146 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEOUENCE: 146	
uuggggacga gauguuuugu ug	22
<210> SEQ ID NO 147 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 147	
gageegacau guugugeaae uu	22
<210> SEQ ID NO 148 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 148	
aauggaagee uugueageuu au	22
<210> SEQ ID NO 149 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 149	
uaaagucaau aauaccuuga ag	22
<210> SEQ ID NO 150 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 150	
uauaagccau cuuacuaguu	20
<210> SEQ ID NO 151	

<210> SEQ ID NO ISI <211> LENGTH: 22

-continued
212> TYPE: RNA 213> ORGANISM: artificial sequence 220> FEATURE: 223> OTHER INFORMATION: synthetic nucleotide
400> SEQUENCE: 151
ucugcuaug uugcugcuca uu 22
210> SEQ ID NO 152 211> LENGTH: 22 212> TYPE: RNA 213> ORGANISM: artificial sequence 220> FEATURE: 223> OTHER INFORMATION: synthetic nucleotide
400> SEQUENCE: 152
cuaagucuu cuauugaugu uc 22
210> SEQ ID NO 153 211> LENGTH: 22 212> TYPE: RNA 213> ORGANISM: artificial sequence 220> FEATURE: 223> OTHER INFORMATION: synthetic nucleotide
400> SEQUENCE: 153
ugucuucuc aacuucaugu ga 22
210> SEQ ID NO 154 211> LENGTH: 21 212> TYPE: RNA 213> ORGANISM: artificial sequence 220> FEATURE: 223> OTHER INFORMATION: synthetic nucleotide
ggcucugau accaauugau g 21
210> SEQ ID NO 155 211> LENGTH: 20 212> TYPE: RNA 213> ORGANISM: artificial sequence 220> FEATURE: 223> OTHER INFORMATION: synthetic nucleotide
400> SEQUENCE: 155
gacagaaga gagugagcac 20
210> SEQ ID NO 156 211> LENGTH: 21 212> TYPE: RNA 213> ORGANISM: artificial sequence 220> FEATURE: 223> OTHER INFORMATION: synthetic nucleotide
400> SEQUENCE: 156
gacagaaga gagugagcac a 21
210> SEQ ID NO 157 211> LENGTH: 21 212> TYPE: RNA 213> ORGANISM: artificial sequence 220> FEATURE: 223> OTHER INFORMATION: synthetic nucleotide 400> SEQUENCE: 157

-continued

<210> SEQ ID NO 158 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 158	
uugacagaag auagagagca c	21
<210> SEQ ID NO 159 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 159	
ucccaaaugu agacaaagca	20
<210> SEQ ID NO 160 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 160	
ccccaaaugu agacaaagca	20
<210> SEQ ID NO 161 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 161	
uuuggauuga agggagcucu a	21
<210> SEQ ID NO 162 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 162	
uuuggauuga agggagcucu u	21
<210> SEQ ID NO 163 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 163	0.1
uuuggauuga agggagcucc u	21
<210> SEQ ID NO 164 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE:	

<223> OTHER INFORMATION: synthetic nucleotide

ZUI	8 ()3() 47	13	R 2
00	0,0	,,,,	<i>,</i> т/	5	D2

1	<u> </u>	
	וכ	

	-concinued
<400> SEQUENCE: 164	
uuggacugaa gggagcuccc u	21
<210> SEQ ID NO 165 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 165	
uuggacugaa gggagcuccu u	21
<210> SEQ ID NO 166 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 166	
ugccuggcuc ccuguaugcc a	21
<210> SEQ ID NO 167 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 167	
uugaaaguga cuacaucggg g	21
<210> SEQ ID NO 168 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 168	21
ucaaugcauu gaaagugacu a	21
<210> SEQ ID NO 169 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 169	
ucgauaaacc ucugcaucca g	21
<210> SEQ ID NO 170 <211> LENGTH: 24 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 170	
uugaagagga cuuggaacuu cgau	24
<210> SEQ ID NO 171 <211> LENGTH: 21	

-cont	inued	
<pre></pre> <pre><212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide</pre>		
- <400> SEQUENCE: 171		
~ uggagaagca gggcacgugc a	21	
<210> SEQ ID NO 172 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide		
<400> SEQUENCE: 172		
uggagaagca gggcacgugc g	21	
<210> SEQ ID NO 173 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide		
<400> SEQUENCE: 173		
ucggaccagg cuucaucccc c	21	
<210> SEQ ID NO 174 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 174		
ucggaccagg cuucauuccc c	21	
<210> SEQ ID NO 175 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide		
<400> SEQUENCE: 175		
ugaagcugcc agcaugaucu a	21	
<210> SEQ ID NO 176 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 176		
	21	
<pre><210> SEQ ID NO 177 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 177</pre>		
<400> PRÕNENCE: T//		

L	JS	8.0	030	0.4	73	B 2
				- 7 -		

-continued

<210 SEC ID NO 178	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATORE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 178	
	21
ucgcuuggug caggucgggga a	21
<210> SEQ ID NO 179	
<211> LENGTH: 21 <212> TYPE+ RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 179	
cagccaagga ugacuugccg a	21
<210> SEQ ID NO 180	
<211> LENGTH: 21	
<212> TYPE: RNA <213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
400× CEOUENCE, 100	
<400> SEQUENCE: 180	
cagccaagga ugacuugccg g	21
<210> SEO ID NO 181	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 181	
uqaqccaaqq auqacuuqcc q	21
010. (EQ. T. NO. 100.)	
<210> SEQ 1D NO 182 <211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
2209 STALK INCOMMITTON. Synchronic Indefeoting	
<400> SEQUENCE: 182	
וואמנינאאמי וומאמווומנינוו מ	21
uuyoouuyyu uyacuuyoou y	<u> </u>
<210> SEQ ID NO 183	
<210> SEQ ID NO 183 <211> LENGTH: 21 <212> TYPE: RNA	
<210> SEQ ID NO 183 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence	
<pre><210> SEQ ID NO 183 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: </pre>	
<210> SEQ ID NO 183 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<210> SEQ ID NO 183 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 183	
<210> SEQ ID NO 183 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 183	
<210> SEQ ID NO 183 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 183 ugauugagcc gugucaauau c	21
<210> SEQ ID NO 183 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 183 ugauugagcc gugucaauau c	21
<210> SEQ ID NO 183 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 183 ugauugagcc gugucaauau c <210> SEQ ID NO 184	21
<pre><210> SEQ ID NO 183 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 183 ugauugagcc gugucaauau c <210> SEQ ID NO 184 <211> LENGTH: 21 <212> TYPE: ENA</pre>	21
<pre><210> SEQ ID NO 183 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 183 ugauugagcc gugucaauau c </pre>	21
<pre><210> SEQ ID NO 183 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 183 ugauugagcc gugucaauau c </pre>	21

ZUI	8 ()3() 47	13	R 2
00	0,0	,,,,	<i>,</i> т/	5	D2

-		
	A 1	
	. 7 /	

	-continued
<400> SEQUENCE: 184	
ugauugagcc gcgccaauau c	21
<210> SEQ ID NO 185 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 185	
uugageegug eeaauaueae g	21
<210> SEQ ID NO 186 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 186	
ugauugagee gugeeaauau e	21
<210> SEQ ID NO 187 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 187	
agaaucuuga ugaugcugca u	21
<210> SEQ ID NO 188 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 188	
agaaucuuga ugaugcugca g	21
<210> SEQ ID NO 189 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 189	
ggaaucuuga ugaugcugca u	21
<210> SEQ ID NO 190 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 190	
~ uucgcuugca gagagaaauc ac	22
<210> SEQ ID NO 191	

<211> LENGTH: 21

159	
-----	--

-	continued
<pre></pre> <pre><pre></pre><pre></pre><pre></pre></pre>	
- <400> SEQUENCE: 191	
uccaaaggga ucgcauugau c	21
<210> SEQ ID NO 192 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 192	
uuuggcauuc uguccaccuc c	21
<pre><210> SEQ ID NO 193 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide</pre>	
<400> SEQUENCE: 193	
cugaaguguu ugggggaacu c	21
<pre><210> SEQ ID NO 194 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 194</pre>	
cugaaguguu uggggggacu c	21
<210> SEQ ID NO 195 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 195	
uuccacagcu uucuugaacu g	21
<pre><210> SEQ ID NO 196 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 106</pre>	
<400> SEQUENCE: 196	
uuccacagcu uucuugaacu u	21
<pre><210> SEQ ID NO 197 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 197</pre>	
<400> 2FÕnFWCF: TA1	

ucauugagug cagcguugau g

-continued

<210> SEQ ID NO 198 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 198	
ucauugagug caucguugau g	21
<210> SEQ ID NO 199 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 199	
uguguucuca ggucaccccu u	21
<210> SEQ ID NO 200 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 200	
uguguucuca ggucaccccu g	21
<210> SEQ ID NO 201 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 201	
ugccaaagga gauuugcccu g	21
<210> SEQ ID NO 202 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 202	
ugccaaagga gaguugcccu g	21
<210> SEQ ID NO 203 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 203	
ugccaaagga gauuugcccc g	21
<210> SEQ ID NO 204 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE:	

<223> OTHER INFORMATION: synthetic nucleotide

ZUI	8 ()3() 47	73	R 2
00	0,1	,,,,	י ד,	5	D2

-1	10
	64
	\mathbf{v}

105	107
	-continued
<400> SEQUENCE: 204	
- ugccaaagga gauuugccuc g	21
<210> SEQ ID NO 205 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence	
<220> FEALURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 205	
ugccaaagga gauuugcccg g	21
<210> SEQ ID NO 206 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 206	20
uuggggacga caucuuuugu ug	22
<210> SEQ ID NO 207 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 207	
uugacagaag agagugagca c	21
<210> SEQ ID NO 208 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 208	
gugacagaag agagugagca c	21
<210> SEQ ID NO 209 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 209	
ugacagaaga uagagagcac	20
<210> SEQ ID NO 210 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 210	
~ cugacagaag auagagagca c	21
<210> SEQ ID NO 211 <211> LENGTH: 21	

1	65	
	\mathbf{v}	

- COI	ntinued
<pre><112> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 211	
gcucucuagc cuucugucau c	21
<210> SEQ ID NO 212 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 212	
cuuugucuac aauuuuggaa a	21
<210> SEQ ID NO 213 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 213	
cuuugucuac aauuuuggaa	20
<210> SEQ ID NO 214 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 214	
cuuugucuac aauuuuggaa aa	22
<210> SEQ ID NO 215 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 215	
ucuuuggauu gaagggagcu c	21
<210> SEQ ID NO 216 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 216	
uuuggauuga agggagcucu	20
<210> SEQ ID NO 217 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 217	

uuggauugaa gggagcucua

US	8.0)30	.473	B 2
$\overline{\mathbf{v}}$	\sim, \sim		, , , , , , , , , , , , , , , , , , , ,	

-continued

<210> SEQ ID NO 218 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide					
<400> SEQUENCE: 218					
ugecuggeue eeuguaugee au	22				
<210> SEQ ID NO 219 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide					
<400> SEQUENCE: 219					
gccuggcucc cuguaugcca	20				
<210> SEQ ID NO 220 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide					
<400> SEQUENCE: 220					
cguacaagga gucaagcaug a	21				
<210> SEQ ID NO 221 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide					
<400> SEQUENCE: 221					
ugaaagugac uacaucgggg	20				
<210> SEQ ID NO 222 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide					
<400> SEQUENCE: 222					
ugaaagugac uacaucgggg u	21				
<210> SEQ ID NO 223 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide					
<400> SEQUENCE: 223					
ucaaugcauu gaaagugacu ac	22				
<210> SEQ ID NO 224 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide					
US	8.	030	0.47	73	B2
-------------	----	-----	------	----	----
$\sim \sim$	ς,	0.0		-	

-	10
	6U
	U7

-continued					
<400> SECHENCE: 224					
	20				
ucaaugcauu gaaagugacu	20				
<210> SEQ ID NO 225 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide					
<400> SEQUENCE: 225					
caaugcauug aaagugacua	20				
<210> SEQ ID NO 226 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 226					
cacguguucu acuacuccaa c	21				
<210> SEQ ID NO 227 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide					
<400> SEQUENCE: 227					
ucggaccagg cuucauuccc cc	22				
<210> SEQ ID NO 228 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide					
<400> SEQUENCE: 228					
uucggaccag gcuucauucc cc	22				
<210> SEQ ID NO 229 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide					
<400> SEQUENCE: 229					
uucggaccag gcuucauucc c	21				
<210> SEQ ID NO 230 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 230					
ggacuguugu cuggcucgag g	21				
<210> SEQ ID NO 231					

<211> LENGTH: 20

-continued

<pre><212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: synthetic nucleotide	
ugaagcugcc agcaugaucu	20
<210> SEQ ID NO 232 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 232	
gaagcugcca gcaugaucua	20
<pre><210> SEQ ID NO 233 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide </pre>	
<400> SEQUENCE: 233	
augaagcugc cagcaugauc ua	22
<210> SEQ ID NO 234 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 234	
ugaagcugcc agcaugaucu au	22
<pre><210> SEQ ID NO 235 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 235</pre>	
gugaagcugc cagcaugauc ua	22
<210> SEQ ID NO 236 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 236	
ugaagcugcc agcaugaucu g	21
<210> SEQ ID NO 237 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 237	

<223> OTHER INFORMATION: synthetic nucleotide

-continued

<210> SEQ ID NO 238 <211> LENGTH: 20	
<212> TYPE: RNA <213> ORGANISM: artificial sequence <220> EFATURE.	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 238	
cccgccuugc aucaacugaa	20
<210> SEQ ID NO 239 <211> LENGTH: 21	
<212> TYPE: RNA <213> ORGANISM: artificial sequence	
<pre><220> FEALURE: <223> OTHER INFORMATION: synthetic nucleotide</pre>	
<400> SEQUENCE: 239	
ucccgccuug caucaacuga a	21
<210> SEQ ID NO 240	
<211> LENGTH: 20 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 240	
cagccaagga ugacuugccg	20
<210> SEQ ID NO 241	
<211> LENGTH: 21 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 241	
ugcagccaag gaugacuugc c	21
<210> SEQ ID NO 242	
<211> LENGTH: 20 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence <220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 242	
agccaaggau gacuugccgg	20
<210> SEQ ID NO 243	
<211> LENGTH: 22 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide</pre>	
- <400> SEQUENCE: 243	
cagccaagga ugacuugccg au	22
<210> SEQ 1D NO 244 <211> LENGTH: 21	
<212> TYPE: RNA	
<pre><213> ORGANISM: artificial sequence <220> FEATURE:</pre>	

DIT	81	120	ጉ ፈና	72	P 2
00	0,0	, ,,,	л,т.	15	D2

1	75
1	13

-continued					
<400> SEQUENCE: 244					
gcagccaagg augacuugcc g	21				
<210> SEQ ID NO 245 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide					
<400> SEQUENCE: 245					
agccaaggau gacuugccga	20				
<210> SEQ ID NO 246 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 246					
agccaaggau gacuugccga u	21				
<210> SEQ ID NO 247 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide					
<400> SEQUENCE: 247	22				
<pre><210> SEQ ID NO 248 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 248</pre>					
agccaaggau gacuugccgg a	21				
<210> SEQ ID NO 249 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide					
<400> SEQUENCE: 249					
agccaaggau gacuugccgg u	21				
<210> SEQ ID NO 250 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 250					
agccaaggau gacuugccgg uu	22				
<210> SEQ ID NO 251 <211> LENGTH: 22					

continued

178

	-continued
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 251	
caqccaaqqa uqacuuqccq qa	22
<210> SEQ ID NO 252	
<211> LENGTH: 20	
<212> INPE: RNA <213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 252	
ggcaaguugu ccuuggcuac	20
<210> SEQ ID NO 253	
<211> LENGTH: 22 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide</pre>	
(223) OTHER INFORMATION: Synchectic Indefeoting	
<400> SEQUENCE: 253	
ggcaaguugu ccuucggcua ca	22
<210> SEQ ID NO 254	
<211> LENGTH: 20 <212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synchetic nucleotide	
<400> SEQUENCE: 254	
agccaaggau gacuugccug	20
<210> SEQ ID NO 255 <211> LENGTH: 22	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide</pre>	
Toos Segumon. 200	
uagccaagga ugacuugccu ga	22
AND SEA IN NO SEC	
<210/ SEQ 10 200 <211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 256	
	21
ayocaayyau yacuuyeeug a	21
<210> SEO ID NO 257	
<211> LENGTH: 22	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 257	
-	

uagccaagga ugacuugccu gu

<210> SEQ ID NO 258 <211> LENGTH, 22	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
ADD SECUENCE: 258	
(100) bigomen. 200	
guagccaagg augacuugcc ug	22
010. (TO TO NO 050	
<210> SEQ ID NO 259 <211> LENGTH· 23	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 259	
uagccaagga ugacuugccu gac	23
-2105 SEO ID NO 260	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 260	
uagecaagga ugacuucecu u	21
-210, SEO ID NO 261	
<2115 LENGTH 20	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 261	
uagecaagga ugaeuugeeu	20
-210, CEO ID NO 262	
<2115 LENGTH 20	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: SYNTHETIC NUCLEOTIDE	
<400> SEQUENCE: 262	
ugauugagcc gcgccaauau	20
<210> SEO TD NO 263	
<211> LENGTH: 20	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 263	
~	
gcagcaccau uaagauucac	20
2105 SEO ID NO 264	
<211> LENGTH: 21	
<212> TYPE: RNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic nucleotide	

-continued

DIT	81	120	ጉ ፈና	72	P 2
00	0,0	, ,,,	л,т.	15	D2

-1	01	
1	01	

-continued	
<400> SEQUENCE: 264	
gcagcaccau uaagauucac a	21
<210> SEQ ID NO 265 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 265	
ugauucucug uguaagcgaa a	21
<pre><210> SEQ ID NO 266 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide <400> SEQUENCE: 266</pre>	
ageucaggag ggauagegee	20
<210> SEQ ID NO 267 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
aagcucagga gggauagcgc	20
<210> SEQ ID NO 268 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 268	
gcucaggagg gauagcgcc	19
<210> SEQ ID NO 269 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 269	
agcucaggag ggauagcgcc a	21
<210> SEQ ID NO 270 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide	
<400> SEQUENCE: 270	
cgcuauccau ccugaguucc	20

<210> SEQ ID NO 271 <211> LENGTH: 21

-continued

-contin	ued	
<pre><212> TYPE: RNA <213> ORGANISM: artificial sequence <220> BEATURE:</pre>		
<220> FEATORE: <223> OTHER INFORMATION: synthetic nucleotide		
<400> SEQUENCE: 271		
cgcuauccau ccugaguucc a	21	
<210> SEQ ID NO 272 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide		
<400> SEQUENCE: 272		
acgguaucuc uccuacguag c	21	
<210> SEQ ID NO 273 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide		
<400> SEQUENCE: 273		
gguucaauaa agcuguggga ag	22	
<210> SEQ ID NO 274 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide		
<400> SEQUENCE: 274		
ucauugagug cagcguugau gu	22	
<210> SEQ ID NO 275 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide		
<400> SEQUENCE: 275		
ccugccaaag gagaguugcc c	21	
<210> SEQ ID NO 276 <211> LENGTH: 20 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic nucleotide		
<400> SEQUENCE: 276		
uucgaugucu agcagugcca	20	
<pre><210> SEQ ID NO 277 <211> LENGTH: 1185 <212> TYPE: DNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: construct with artificial ta-s Aequorea victoria gene encoding GFP <400> SEQUENCE: 277</pre>	iRNAs targeting	
ZIONA DEGORNAR: 711		

US 8,030,473 B2

-continued	
ctctagagga teecegggta eegggeeeee eetegaggeg egecaageta teaaacaagt	60
ttgtacaaaa aagcaggete egeggeegee egetteacea aacetaaace taaaeggeta	120
agcccgacgt caaataccaa aaagagaaaa acaagagcgc cgtcaagctc tgcaaatacg	180
atctgtaagt ccatcttaac acaaaagtga gatgggttct tagatcatgt tccgccgtta	240
gategagtea tggtettgte teatagaaag gtaetttegt ttaettettt tgagtatega	300
gtagagcgtc gtctatagtt agtttgagat tgcgtttgtc agaagttagg ttcaatgtcc	360
cggtccaatt ttcaccagcc atgtgtcagt ttcgttcctt cccgtcctct tctttgattt	420
cgttgggtta cggatgtttt cgagatgaaa cagcattgtt ttgttgtgat ttttctctac	480
aagogaatag accatttatc ggtggatott agaaaattat gatgtataog ttgtgggagt	540
ttatttgtat agttcatcca tgaactagaa aagacattgg acatattcca ggatatgcaa	600
aagaaaacaa tgaatattgt tttgaatgtg ttcaagtaaa tgagattttc aagtcgtcta	660
aagaacagtt gctaatacag ttacttattt caataaataa ttggttctaa taatacaaaa	720
catattcgag gatatgcaga aaaaaagatg tttgttattt tgaaaagctt gagtagtttc	780
teteegaggt gtagegaaga ageateatet aetttgtaat gtaattttet ttatgtttte	840
actttgtaat tttatttgtg ttaatgtacc atggccgata tcggttttat tgaaagaaaa	900
tttatgttac ttctgttttg gctttgcaat cagttatgct agttttctta taccctttcg	960
taagcttcct aaggaatcgt tcattgattt ccactgcttc attgtatatt aaaactttac	1020
aactgtatcg accatcatat aattctgggt caagagatga aaatagaaca ccacatcgta	1080
aagtgaaata agggtgggcg cgccgaccca gctttcttgt acaaagtggt tcgataattc	1140
cttaattaac tagttetaga geggeegeee acegeggtgg agete	1185
<pre><210> SEQ ID NO 278 <211> LENGTH: 1185 <212> TYPE: DNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: construct with artificial ta-siRNAs target Arabidopsis gene encoding PDS </pre>	ting
<400> SEQUENCE: 278	
ctctagagga teccegggta ecgggecece ectegaggeg egecaageta teaaacaagt	60
ttgtacaaaa aagcaggoto cgcggoogoo ogottoacca aacotaaaco taaacggota	120
agcccgacgt caaataccaa aaagagaaaa acaagagcgc cgtcaagctc tgcaaatacg	180
atctgtaagt ccatcttaac acaaaagtga gatgggttct tagatcatgt tccgccgtta	240
gatcgagtca tggtcttgtc tcatagaaag gtactttcgt ttacttcttt tgagtatcga	300
gtagagegte gtetatagtt agtttgagat tgegtttgte agaagttagg tteaatgtee	360
cggtccaatt ttcaccagcc atgtgtcagt ttcgttcctt cccgtcctct tctttgattt	420
cgttgggtta cggatgtttt cgagatgaaa cagcattgtt ttgttgtgat ttttctctac	480
aagogaatag accatttatc ggtggatctt agaaaattat aagtagcact tccccaccta	540
ttagetttge tttggtcage tgaactagaa aagacattgg acatatteea ggatatgeaa	600
aagaaaacaa tgaatattgt tttgaatgtg ttcaagtaaa tgagattttc aagtcgtcta	660
aagaacagtt gctaatacag ttacttattt caataaataa ttggttctaa taatacaaaa	720
catattcgag gatatgcaga aaaaaagatg tttgttattt tgaaaagctt gagtagtttc	780
teteegaggt gtagegaaga ageateatet aetttgtaat gtaattttet ttatgtttte	840
actttgtaat tttatttgtg ttaatgtacc atggccgata tcggttttat tgaaagaaaa	900

US 8,030,473 B2

-1	07	
	X /	
	U) /	

-continued

tttatgttac ttctgttttg gctttgcaat cagttatgct agttttctta taccctttcg	960
- taagetteet aaggaategt teattgattt ceaetgette attgtatatt aaaaetttae	1020
aactgtatcg accatcatat aattctgggt caagagatga aaatagaaca ccacatcgta	1080
aagtgaaata agggtgggcg cgccgaccca gctttcttgt acaaagtggt tcgataattc	1140
cttaattaac tagttetaga geggeegeee aeegeggtgg agete	1185
<210> SEQ ID NO 279 <211> LENGTH: 1185 <212> TYPE: DNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: construct with artificial ta-siRNAs targe Arabidopsis gene encoding PID	eting
<400> SEQUENCE: 279	
ctctagagga tccccgggta ccgggccccc cctcgaggcg cgccaagcta tcaaacaagt	60
ttgtacaaaa aagcaggete egeggeegee egetteacea aaeetaaaee taaaeggeta	120
agcccgacgt caaataccaa aaagagaaaa acaagagcgc cgtcaagctc tgcaaatacg	180
atctgtaagt ccatcttaac acaaaagtga gatgggttct tagatcatgt tccgccgtta	240
gatcgagtca tggtcttgtc tcatagaaag gtactttcgt ttacttcttt tgagtatcga	300
gtagagcgtc gtctatagtt agtttgagat tgcgtttgtc agaagttagg ttcaatgtcc	360
cggtccaatt ttcaccagcc atgtgtcagt ttcgttcctt cccgtcctct tctttgattt	420
cgttgggtta cggatgtttt cgagatgaaa cagcattgtt ttgttgtgat ttttctctac	480
aagcgaatag accatttatc ggtggatctt agaaaattat caaaagtaat cgaacgccgc $% \left($	540
tcattagtcg gcgcaacgaa cgaactagaa aagacattgg acatattcca ggatatgcaa	600
aagaaaacaa tgaatattgt tttgaatgtg ttcaagtaaa tgagattttc aagtcgtcta	660
aagaacagtt gctaatacag ttacttattt caataaataa ttggttctaa taatacaaaa	720
catattcgag gatatgcaga aaaaaagatg tttgttattt tgaaaagctt gagtagtttc	780
teteegaggt gtagegaaga ageateatet aetttgtaat gtaatttet ttatgtttte	840
actttgtaat tttatttgtg ttaatgtacc atggccgata tcggttttat tgaaagaaaa	900
tttatgttac ttctgttttg gctttgcaat cagttatgct agttttctta taccctttcg	960
taagetteet aaggaategt teattgattt ceaetgette attgtatatt aaaaetttae	1020
aactgtatcg accatcatat aattctgggt caagagatga aaatagaaca ccacatcgta	1080
aagtgaaata agggtgggcg cgccgaccca gctttcttgt acaaagtggt tcgataattc	1140
cttaattaac tagttctaga gcggccgccc accgcggtgg agctc	1185
<210> SEQ ID NO 280 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 280	
gtgctctctc tcttctgtca	20
<210> SEQ ID NO 281 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE:	

continued

-concinued	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 281	
ccaagggaag aggcagugca u	21
<210> SEQ ID NO 282 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 282	
accagugaag aggcugugca g	21
<210> SEQ ID NO 283 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 283	
gccagggaag aggcagugca u	21
<210> SEQ ID NO 284 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
	21
Jeeggagaag aggeagagea a	
<210> SEQ ID NO 285 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 285	
gccggugaag aggcugugca g	21
<210> SEQ ID NO 286 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 286	
aaacgggttc ctaatcttta tatatacctt ccatcatcaa aagaccattc attgttcact	60
<210> SEQ ID NO 287 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 287	
ataaagaaag gtaagactct ttgaaataga gagagataag gttttctctt atcttcttct	60
<210> SEQ ID NO 288 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	

-continued <400> SEQUENCE: 288 tetteteete teetettatt aatetaatee teeteeega atattetet geetttagtt 60 <210> SEQ ID NO 289 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 289 ctcttctcct tcggttataa atattctctc cggttttgct tgtttaacct aaaagcctca 60 <210> SEQ ID NO 290 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEOUENCE: 290 tctatcccca tttggctata aaaagccccg acaggtctca gtttcttccc acatccaaag 60 <210> SEQ ID NO 291 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 291 tetetecatt ttggetataa aaagecacaa cagggtetee attetteee geagecaatg 60 <210> SEQ ID NO 292 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 292 tttctcaact tactcctata tatatacaca ttactctcta ttttcccttt gtcacttcat 60 <210> SEQ ID NO 293 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 293 tggtctcaaa tctttcctat atatacacac cactttccat tacaccattt actcttcacc 60 <210> SEQ ID NO 294 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 294 tqttcctttt tttcttttct ttttattctt ctatcacqaa tatctaaacc actataatta 60 <210> SEQ ID NO 295 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 295 acgaatatct aaaccactat aattacgact ctctatctat catttcttcc aaaacatgac 60 <210> SEQ ID NO 296 <211> LENGTH: 60

<212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana

<213> ORGANISM: Arabidopsis thaliana

194

-continued <400> SEQUENCE: 296 ggctacagat ttttgtcttt aaaaagccat tcaagtttca atggtttttc acttttgttc 60 <210> SEQ ID NO 297 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 297 qttctaaatt tqaaqcttat aaaaacccat cactactttt qcatacttqt atccqcaqtq 60 <210> SEQ ID NO 298 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 298 tacctttgtt tttgctataa aaagccataa ctccttcatt ttctttagac atctcttctt 60 <210> SEQ ID NO 299 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 299 tettgtetae atatacatat atttatatae acacatgtat eteteteate acaceettaa 60 <210> SEQ ID NO 300 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 300 atcccaccct taattgtttt atataaacca tttctcctcc tctctccatc accttcaatc 60 <210> SEQ ID NO 301 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 301 tttatcattt ttctcctcta tatatatgtg ccaccattcc tcttatactc ataactctcc 60 <210> SEQ ID NO 302 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 302 tettetetet tteecettta tatattiqta ceacatatte etetteaace aaaactette 60 <210> SEQ ID NO 303 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEOUENCE: 303 ctttctcttc ttccttcata tttatataca accttctctc acttatctct aactcatcct 60 <210> SEQ ID NO 304 <211> LENGTH: 60 <212> TYPE: DNA

<400> SEQUENCE: 304 tgttatgaga cttttagata cattttagtt ataaatatga atcaaataca ttttagttct 60 <210> SEQ ID NO 305 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 305 tttaqataca ttttaqttat aaatatqaat caaatacatt ttaqttctaq aaqaaaaaac 60 <210> SEQ ID NO 306 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 306 accagatcta taaagtttgt tattaaaaga tagagagaga ggagggatgt agtaggccaa 60 <210> SEQ ID NO 307 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEOUENCE: 307 catcaaagga aaattagtat aaataagcat agaggcgtcc atggattatc acagttctca 60 <210> SEQ ID NO 308 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 308 ctagcaacct agcacttata tatgtagagt ttgtgaaatt tagggcagac aagcccccac 60 <210> SEQ ID NO 309 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 309 atgcaatett tgggeetata tatacaaace ttteeataae caaagttete atactacaaa 60 <210> SEQ ID NO 310 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 310 atagatattt ccgtttgcta taaatgagaa agcacttaca acatacatac attctctctt 60 <210> SEQ ID NO 311 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEOUENCE: 311 tgtttctgtt gtgtcttatt aaaagcccat cttcgtctcc gccactcatc attccctcat 60 <210> SEQ ID NO 312 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana

-continued <400> SEQUENCE: 312 tetecaetae teaattett cataaaacee ceettttat tteteteatt etetetteea 60 <210> SEQ ID NO 313 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 313 aatttettea taaaaceeee ettttattt eteteattet etetteeate ateaceaete 60 <210> SEQ ID NO 314 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 314 tettqaqttt ttttetette ttaaaaacet ettetteact tateettete ateattetet 60 <210> SEQ ID NO 315 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEOUENCE: 315 tggtcatttg tgcctctata tatacaagac ataggtttat tttgtctcac acataccttt 60 <210> SEQ ID NO 316 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 316 ttgctcctct ctcctatgta taaatattcg cctcacacat agacctattt agcttcttct 60 <210> SEQ ID NO 317 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 317 teteeteett ateeetteta tataaacaet egtettette tteaettgat gaacagaaaa 60 <210> SEQ ID NO 318 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 318 caaatcotot otcatotott totataagta totatagogo otottaaaco acaaagcato 60 <210> SEQ ID NO 319 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 319 tatetetgae ceatetteta tataaaceea gagegggtaa gteetetagt atteataage 60 <210> SEQ ID NO 320 <211> LENGTH: 60 <212> TYPE: DNA

<213> ORGANISM: Arabidopsis thaliana

-continued <400> SEQUENCE: 320 aactggtaga aagatctata agtacgatac accttatact tcaagagagc aagacaatgc 60 <210> SEQ ID NO 321 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 321 ttcqtacqqt catqcctata taacacacat aqtaqtcttq tqqqatactc atcaacaacc 60 <210> SEQ ID NO 322 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 322 ttccttctct caagggttat aaataaaacg agagcacatg aatgtaaggc atgagacata 60 <210> SEQ ID NO 323 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEOUENCE: 323 cgagtetega gggttataaa aagagageae atgeatgtat ggaataagge aaaaacatat 60 <210> SEQ ID NO 324 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 324 tgagagtagc agagttatta aatgcttcgc agaattgcag ttgcacattc actcccttct 60 <210> SEQ ID NO 325 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 325 taattettee teaaaatett ttetetttt ttggttatat atatttgaat tttgatttat 60 <210> SEQ ID NO 326 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 326 cttcttcaac catcttcqta tttatatctt cttcttcact atqcatactc ataaactttq 60 <210> SEQ ID NO 327 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 327 tetteateac cetettegta tttatatete etteactetg caaacecaag aaaaaacatt 60 <210> SEQ ID NO 328 <211> LENGTH: 60 <212> TYPE: DNA

<213> ORGANISM: Arabidopsis thaliana

.

202

-continued <400> SEQUENCE: 328 ccaaataaat caacatatat attattacac agtcacatct cttactgtgc atatatattt 60 <210> SEQ ID NO 329 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 329 acatetetta etqtqcatat atatttaqae aaacacatet etetetetet atetetetea 60 <210> SEQ ID NO 330 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 330 gttttactat tttagcagta tatattaaga agttcagatg ttattcgatc atctgttttt 60 <210> SEQ ID NO 331 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEOUENCE: 331 aagtcattgc gtgtctctat aaataccaca cttcaccttc ttcttcactt gcacctctca 60 <210> SEQ ID NO 332 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 332 tttttctcgt ttttttcttc ttcttctcca agaaaataga gatcgaaaag attagatcta 60 <210> SEQ ID NO 333 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 333 tttaatttgt taattatata tattttatgc acatcattgg agaaaacacc aaataggctc 60 <210> SEQ ID NO 334 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 334 tetttatege tteatatat taaaagteta catetatete tttetaggte aetagetaga 60 <210> SEQ ID NO 335 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 335 aaaaggtttt acggtttgtg tataaaagac ttgcaatctt gagatatgtc atattgagaa 60 <210> SEQ ID NO 336 <211> LENGTH: 60 <212> TYPE: DNA

<213> ORGANISM: Arabidopsis thaliana

-continued <400> SEQUENCE: 336 atatgtcata ttgagaactc tttagccttt ggcttctgtt cctgacactt atatagtgaa 60 <210> SEQ ID NO 337 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 337 tttcatatga gtgtatatat tcatgtacct atctctctca attgcttctc accaaaatca 60 <210> SEQ ID NO 338 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 338 60 <210> SEQ ID NO 339 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEOUENCE: 339 agggttttaa gccaagctta tatagcccgt cataaagaga actcatctgc ctctctcta 60 <210> SEQ ID NO 340 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 340 ctctcaatac caataaatat caccaccgtc cttctctcct atcactattc aatctatcgc 60 <210> SEQ ID NO 341 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 341 gactctttgc aataatatat aaataggcat gcagtgttag tgttgtttgt atcatgacag 60 <210> SEQ ID NO 342 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 342 acaatgette caattgtata tataaaaege cagteeetee attetttte aaaeeetaae 60 <210> SEQ ID NO 343 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 343 ctcttccctt gtcccctata aatatctttc tatcgaccat cttccttctc acaacttcaa 60 <210> SEQ ID NO 344 <211> LENGTH: 60

<212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana

-continued	
<400> SEQUENCE: 344	
aagacacgac caaatgtett ataaatgata tttgtgttta teteeatggt aatagaaatg	60
<210> SEQ ID NO 345 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 345	
tcatttgttg tgttgtgtat atatagtagc tctcagcaga tttgaaggat atcgaaactc	60
<210> SEQ ID NO 346 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 346	
cacacacgca tatatatata aatacagaca caagccttca tatggatctt atagagatga	60
<210> SEQ ID NO 347 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 347	
ccacttttat taaaactcat atatatacac tgagccatta gtccatgaat aaccaaccag	60
<210> SEQ ID NO 348 <211> LENGTH: 60 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 348	
aaacactttc atcaactata tatacatact ttgctagtcc aacttccaat aactcaaaat	60
<210> SEQ ID NO 349 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 349	
getecteeca ateaceeaac ecaat	25
<210> SEQ ID NO 350 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 350	
	25
<pre><210> SEQ ID NO 351 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> DEÃOFNCF: 221	

gcgtttctct tgtcccaact ctttca

<223> OTHER INFORMATION: Synthetic oligonucleotide

-continued	

208

<210> SEQ ID NO 352	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 352	
CTCTTGTCCC AACTCTTTCA TTCACAA	27
-210. CEO ID NO 252	
<210> SEQ ID NO 353	
<2112 HENGIN: 28	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
1 5	
<400> SEQUENCE: 353	
ctccctcttc tagcaactaa ttcaaaaa	28
<210> SEQ ID NO 354	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synchecic Origonacieotide	
ALON SPOTTENCE, 254	
(400) DEQUENCE: 554	
cctagatgga ttaagaactc aactttct	28
<210> SEQ ID NO 355	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 355	
	2.0
cagiticiat gegittetet taaaattigt	30
<210 SEC ID NO 356	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
-	
<400> SEQUENCE: 356	
gcgtttctct taaaatttgt cccaaaact	29
<210> SEQ ID NO 357	
<211> LENGTH: 30	
<212> IIFE: DWA <213 \ OPCINISM. Intificial Sequence	
<2205 FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 357	
ccccatcaac atatatttat ctagttatga	30
<210> SEQ ID NO 358	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> UKGANISM: ATTILICIAL SEQUENCE	
C / /IIN BENITIKET	

-continued

<400> 2FÕOFWCF: 329	
ctagttatga cactaaataa tatgttagaa	30
<210> SEQ ID NO 359	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 359	
tootaattac otttoacact otacgoat	28
<210> SEQ ID NO 360	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 360	
cactctacgc atgtgaccag gctcgaaa	28
<210> SEQ ID NO 361	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361	
<223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt	27
<223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt	27
<223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362	27
<223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28	27
<223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA	27
<223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence	27
<223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	27
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	27
<223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 362	27
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA <2113> ORGANISM: Artificial Sequence <220> FEATURE: <2223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 362 ccqtcqacaa atatgtttca tatctctt</pre>	27
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <2223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 362 ccgtcgacaa atatgtttca tatctctt</pre>	27 28
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 362 ccgtcgacaa atatgtttca tatctctt <210> SEO ID NO 363</pre>	27 28
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 362 ccgtcgacaa atatgtttca tatctctt <210> SEQ ID NO 363 <211> LENGTH: 29</pre>	27 28
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 362 ccgtcgacaa atatgtttca tatctctt <210> SEQ ID NO 363 <211> LENGTH: 29 <212> TYPE: DNA</pre>	27 28
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 362 ccgtcgacaa atatgtttca tatctctt <210> SEQ ID NO 363 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence</pre>	27
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt </pre>	27 28
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 362 ccgtcgacaa atatgtttca tatcttt <210> SEQ ID NO 363 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	27
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 362 ccgtcgacaa atatgtttca tatctctt <210> SEQ ID NO 363 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 363</pre>	27
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 362 ccgtcgacaa atatgtttca tatctctt <210> SEQ ID NO 363 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 363 cttorttatt gatattaget tooptaget</pre>	27 28
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt </pre>	27 28 29
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 362 ccgtcgacaa atatgtttca tatctctt <210> SEQ ID NO 363 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 363 cttcgttatt gctattccct tacctcctt</pre>	27 28 29
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 362 ccgtcgacaa atatgtttca tatctctt <210> SEQ ID NO 363 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <222> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 363 cttcgttatt gctattccct tacctcctt <210> SEQ ID NO 364 <210> SEQ ID NO 364</pre>	27 28 29
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 361 ccactcaaac cgtcgacaaa tatgttt <210> SEQ ID NO 362 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 362 ccgtcgacaa atatgtttca tatctct <210> SEQ ID NO 363 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 363 cttcgttatt gctattcct tacctctt <210> SEQ ID NO 364 <211> LENGTH: 27 <212> TYPE: DNA</pre>	27 28 29

209

<210> SEQ ID NO 364
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<400> SEQUENCE: 364

cccttacctc ctttagttga cttgctt

<210> SEQ ID NO 365 <211> LENGTH: 28 <212> TYPE: DNA

-continued

-continued		
<pre><213> ORGANISM: Artificial Sequence </pre>		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 365		
cttcttctcg ggaggaatag aagaagaa	28	
<210> SEQ ID NO 366		
<211> LENGTH: 28 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATORE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 366		
ctcgggagga atagaagaag aagaagaa	28	
<210> SEQ ID NO 367		
<211> LENGTH: 28 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 367		
caatgeetet caatteteaa acaattaa	28	
<210> SEO ID NO 368		
<211> LENGTH: 30		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 368	20	
Cloccaallo loadacaall adalalogal	30	
<210> SEQ ID NO 369		
<211> LENGTH: 29 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 369		
cctcccaaac cattaaaaat cgatttta	29	
<210> SEQ ID NO 370 <211> LENGTH: 32		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 370		
ccattaaaaa tcgattttta atttacagtt ga	32	
<210> SEQ ID NO 371		
<211> LENGTH: 29		
<213> ORGANISM: Artificial Sequence		
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>		
<400> SEQUENCE: 371		
	29	
ouucooluoy cycyalacyo aacaloala	6 J	

<210> SEQ ID NO 372	
<211> LENGTH: 30	
<212> TYPE: DNA <213> OPCINISM, Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 372	
	2.0
gigigalaly caacalcala aaglalgial	30
<210> SEQ ID NO 373	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 373	
	2.4
cccccacta tacatacage attett	26
<210> SEQ ID NO 374	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 374	
catacagcat tettgeggtt tgatata	27
<210> SEQ ID NO 375	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 375	
	2.5
CITCITCIGC AGICGCIAGC CCICIA	26
<210> SEQ ID NO 376	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
1 5	
<400> SEQUENCE: 376	
	0.7
ctgcagtcgc tagccctcta atctaaa	27
<210> SEQ ID NO 377	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: ATTIFICIAL Sequence	
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 377	
gcacagagat gacgtgttct tatcctt	27
<210> SEQ ID NO 378	
<211> LENGTH: 27	
<212> TYPE: DNA	

<223> OTHER INFORMATION: Synthetic oligonucleotide

215	216
-continu	led
<400> SEQUENCE: 378	
gacgtgttct tatccttctg cagtcaa	27
<210> SEQ ID NO 379 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 379	
ccatcgtcag atcaagatct atcgaaa	27
<210> SEQ ID NO 380 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 380	
ggatetgaea taageaaaet gtaaaga	27
<210> SEQ ID NO 381 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 381	
cctcttcttc ttcctttgtt tttctatat	29
<210> SEQ ID NO 382 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 382	
cgtgtggatc tgctttgact aactcat	27
<210> SEQ ID NO 383 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 383	
ccttctgtta cacttgaaga acgaatgt	28
<210> SEQ ID NO 384 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 384	
gtcccccaaa aagagtttga tatctttt	28
<210> SEQ ID NO 385 <211> LENGTH: 29	

<212> TYPE: DNA

-continued		
<pre><213> ORGANISM: Artificial Sequence</pre>		
<220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 385		
gccaggcata catataat acatataca	29	
<210> SEO ID NO 386		
<211> LENGTH: 28		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 300		
gcgtcatgac atatacatgg ttatgtaa	28	
<210> SEQ ID NO 387		
<211> LENGTH: 26 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>		
<400> SEQUENCE: 387		
gccaggcacg actattattc catata	26	
<210> SEQ ID NO 388		
<211> LENGTH: 27		
<212> NFE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 388		
gggaaccett aagtatgatt ggtggat	27	
<210> SEQ ID NO 389		
<211> LENGTH: 27		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 389		
ccaaacctct acgcatgaac atatctt	27	
<210> SEQ ID NO 390		
<211> LENGTH: 27		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 390		
gtggatettg gettgaateg aateaga	27	
<210> SEO ID NO 391		
<211> LENGTH: 29		
<212> TYPE: DNA		
<213> OKGANISM: AILIIICIAI Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 391		
ctggtcaaaa accgagatca agcaaaaga	29	

<210> SEO ID NO 392	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEALORE:	
(225) OTHER INFORMATION. Synchectic Origonacteocide	
<400> SEQUENCE: 392	
ccgagatcaa gcaaaagaga agtactgat	29
<210> SEO ID NO 393	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
(115) office information. Synchoolic official	
<400> SEQUENCE: 393	
actccaaaat gtcaacgaaa cataaattt	29
<210> SEQ ID NO 394	
<211> LENGTH: 27	
<212> TYPE: DNA	
<2213> ORGANISM: Artificial Sequence	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
1 5	
<400> SEQUENCE: 394	
	0.7
Cogaaloggaa cadaloa	27
<210> SEQ ID NO 395	
<211> LENGTH: 27	
<212> TYPE: DNA	
<2213> ORGANISM: AICHICIAI Sequence	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 395	
atoctactic tragcastar trassia	27
geoergeere cougeareae couraca	27
<210> SEQ ID NO 396	
<211> LENGTH: 26	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
ADD SECTIFICE 206	
<400> PEÕNENCE: 3A0	
gtcatgaaga gcaagcagcg ctggat	26
A4A	
<210> SEQ ID NO 397 2011- LENGTH, 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 397	
ccaccaatca agacctatgc tcttga	26
-010, CEO ID NO 200	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	

- 1	\mathbf{a}	1
	4	T

-continued	
<400> SEQUENCE: 398	
catgatetet etetatetet etetta	27
<210> SEQ ID NO 399 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 399	
ggggcatgaa tttaattaca tgtgcat	27
<210> SEQ ID NO 400 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 400	
ggcacaacct atagagaaac tggaca	26
<210> SEQ ID NO 401 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 401	
cacccgcatt tccaagcaca tgag	24
<210> SEQ ID NO 402 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 402	
ccaagcacat gaggggggtt tgtagt	26
<210> SEQ ID NO 403 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 403	
getcateaca cacetteate attetet	27
<210> SEQ ID NO 404 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEOUENCE: 404	
cottcatcat totoccdac cacataa	27
<210> SEQ ID NO 405 <211> LENGTH: 29	

<212> TYPE: DNA

.

-continued		
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 405		
ctcacccatt actttctctc ttgcatcat	29	
<210> SEQ ID NO 406 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 406		
ctctcttgca tcatcaaact ccaaataat	29	
<210> SEQ ID NO 407 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 407		
gaaatagett aacceteatg ataatega	28	
<210> SEQ ID NO 408 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 408		
ccctcatgat aatcgatctt agcagat	27	
<210> SEQ ID NO 409 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 409		
cctcttcatg attatcagtc gcagct	26	
<210> SEQ ID NO 410 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 410		
gattatcagt cgcagctcaa tcttat	26	
<210> SEQ ID NO 411 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 411		
geceetttt etttteagte gaaattat	28	

-continued

<210> SEQ ID NO 412	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 412	
cagtcgaaat tatagaatct agggtttct	29
<210> SEO ID NO 413	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
(223) OTHER INFORMATION. Syncheolic Oligonacieolide	
<400> SEQUENCE: 413	
tcccctcaaa agaaaaatcc ctctttaa	28
<210> SEO ID NO 414	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
(223) OTHER INFORMATION: Synthetic Origonacteotide	
<400> SEQUENCE: 414	
ccctctttaa atcctcttct tcttcttct	29
<210> SEO ID NO 415	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEOUENCE: 415	
-	
cgcacaacaa tgaattaatc aagactaga	29
<210> SEO ID NO 416	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synchecic origonacteoride	
<400> SEQUENCE: 416	
caagactaga accacgttat caagaaga	
jj	28
	28
<210> SEO ID NO 417	28
<210> SEQ ID NO 417 <211> LENGTH: 28	28
<pre><210> SEQ ID NO 417 <211> LENGTH: 28 <212> TYPE: DNA</pre>	28
<pre><210> SEQ ID NO 417 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence</pre>	28
<210> SEQ ID NO 417 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	28
<pre><210> SEQ ID NO 417 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	28
<pre><210> SEQ ID NO 417 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEOUENCE: 417</pre>	28
<pre><210> SEQ ID NO 417 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 417</pre>	28
<pre><210> SEQ ID NO 417 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 417 accctaaacc aaagcaggat aactttat</pre>	28 28
<pre><210> SEQ ID NO 417 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 417 accctaaacc aaagcaggat aactttat</pre>	28 28
<pre><210> SEQ ID NO 417 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 417 accctaaacc aaagcaggat aactttat <210> SEQ ID NO 418</pre>	28
<pre><210> SEQ ID NO 417 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 417 accctaaacc aaagcaggat aactttat <210> SEQ ID NO 418 <211> LENGTH: 28</pre>	28 28
<pre><210> SEQ ID NO 417 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 417 accctaaacc aaagcaggat aactttat </pre>	28 28
<pre><210> SEQ ID NO 417 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 417 accctaaacc aaagcaggat aactttat <210> SEQ ID NO 418 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence</pre>	28
<pre><210> SEQ ID NO 417 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 417 accctaaacc aaagcaggat aactttat <210> SEQ ID NO 418 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: </pre>	28

227	228
-continued	
<400> SEQUENCE: 418	
gcaggataac tttatgtaag tagacaga	28
<210> SEQ ID NO 419 <211> LENGTH: 27	
<pre><li< td=""><td></td></li<></pre>	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 419	
cccctcaaaa ggaaaagctt cactgaa	27
<210> SEQ ID NO 420 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
2223 OTHER INFORMATION. Synchectic Origonacteoride	
<400> SEQUENCE: 420	
gcttcactga agaacatgga ctccatat	28
<210> SEQ ID NO 421 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FRATURE.	
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 421	
ggctcagaaa gacagagaga gaagaga	27
<210> SEQ ID NO 422 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 422	
cagagagaga agagagaatg agaaaaag	28
<pre><210> SEQ ID NO 423 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 423</pre>	
<4003 2PÕOPNCE: 452	
tcgcttcact ataagaagaa taagatgaa	29
<210> SEQ ID NO 424 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 424	
gaagaataag atgaagagga caagaatgt	29
<210> SEQ ID NO 425 <211> LENGTH: 26 <212> TYPE: DNA	

-continued	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 425	
gcaccataga cttcaccgta gcagat	26
<210> SEQ ID NO 426 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 426	
caccgtagca gatcaagaaa gagaaaga	28
<210> SEQ ID NO 427 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 427	
cccttgtgga cttgtcttca aaatacct	28
<210> SEQ ID NO 428 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 428	
cctgagcaac aagttgtgca aatctca	27
<210> SEQ ID NO 429 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 429	
ctgctactgg tacatggtat acatacaga	29
<210> SEQ ID NO 430 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 430	
ggtatacata cagacatgaa gacgacta	28
<210> SEQ ID NO 431 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 431	
ccaacataga taattgaaaa agaatgagaa ga	32

<210> SEQ ID NO 432		
<211> LENGTH: 29		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 432		
gagaagagaa atgcctcctt gtgaagctt	29	
<210> SEQ ID NO 433		
<211> LENGTH: 29		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 433		
gagactctac tatcataata atcccttta	29	
<210> SEQ ID NO 434		
<211> LENGTH: 27		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 434		
ccctttaqac aqqqatatqa aqaaaqa	27	
<210> SEO ID NO 435		
<211> LENGTH: 29		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
(225) offick infoktion. Syncheole offiginacieociae		
<400 SECUENCE: 435		
	29	
ggtaacttta acaatcatcg catctctct	29	
ggtaacttta acaatcatcg catctctct	29	
ggtaacttta acaatcatcg catctctct	29	
ggtaacttta acaatcatcg catctctct <210> SEQ ID NO 436 <211> LENGTH: 27	29	
ggtaacttta acaatcatcg catctctct <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA	29	
ggtaacttta acaatcatcg catctctct <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <212> OPGONUSH: Artificial Sequence	29	
ggtaacttta acaatcatcg catctctct <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> EFATIDE:	29	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligopucleotide</pre>	29	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	29	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436</pre>	29	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436</pre>	29	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 ggcatctctc_tctcatcaga_aaaaggt</pre>	29	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctctc tctcatcaga aaaaggt</pre>	29 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctctc tctcatcaga aaaaggt</pre>	29 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctctc tctcatcaga aaaaggt <210> SEO ID NO 437</pre>	29 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <212> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctct ctctatcaga aaaaggt <210> SEQ ID NO 437 <211> LENGTH: 27</pre>	29 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctctc tctcatcaga aaaaggt <210> SEQ ID NO 437 <211> LENGTH: 27 <211> TYPE: DNA</pre>	29 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctctc tctcatcaga aaaaggt <210> SEQ ID NO 437 <211> LENGTH: 27 <212> TYPE: DNA <213> OPGANISM: Artificial Sequence <210> OPGANISM: Artificial Sequence </pre>	29 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctctc tctcatcaga aaaaggt </pre>	29 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctct tctcatcaga aaaaggt </pre> close SEQ ID NO 437 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	29 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctct ctctatcaga aaaaggt </pre> <210> SEQ ID NO 437 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	29 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctct ctctcatcaga aaaaggt <210> SEQ ID NO 437 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 437</pre>	29 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctct ctctatcaga aaaaggt </pre>	29 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctct tctcatcaga aaaaggt </pre> close SEQ ID NO 437 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> FEATURE: <220> FEATURE: <220> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 437	29 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctct tctcatcaga aaaaggt </pre> c210> SEQ ID NO 437 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 437 cgcgtttcac tagctatacc cacttgt	29 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctct tctcatcaga aaaaggt <210> SEQ ID NO 437 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 437 cgcgtttcac tagctatacc cacttgt</pre>	29 27 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctct tctcatcaga aaaaggt <210> SEQ ID NO 437 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 437 cgcgtttcac tagctatacc cacttgt </pre>	29 27 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctct ctccatcaga aaaaggt </pre> <pre>c210> SEQ ID NO 437 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 437 cgcgtttcac tagctatacc cacttgt </pre>	29 27 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctct tctcatcaga aaaaggt </pre> <pre>clos SEQ ID NO 437 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 437 cgcgtttcac tagctatacc cacttgt </pre>	29 27 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctct tctcatcaga aaaaggt </pre> <pre>c210> SEQ ID NO 437 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 437 cgcgtttcac tagctatacc cacttgt </pre>	29 27 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctct tctcatcaga aaaaggt </pre> <pre>c210> SEQ ID NO 437 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 437 cgcgtttcac tagctatacc cacttgt </pre> <pre>c210> SEQ ID NO 438 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <210> SEQ ID NO 438 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <210> SEQ ID NO 438 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	29 27 27	
<pre>ggtaacttta acaatcatcg catctctt <210> SEQ ID NO 436 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 436 cgcatctct ctctatcaga aaaaggt </pre> <pre>c210> SEQ ID NO 437 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 437 cgcgtttcac tagctatacc cacttgt </pre> <pre>c210> SEQ ID NO 438 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <210> SEQ ID NO 438 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> OTHER INFORMATION: Synthetic oligonucleotide </pre>	29 27 27	

1	2	3
Z	۰,	٦.

-continued		
<400> SEQUENCE: 438		
cactagctat acccacttgt atatatga	28	
<210> SEQ ID NO 439 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 439		
cttggctgca ttatactcta ctccactt	28	
<210> SEQ ID NO 440 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 440		
ggetgeatta taetetaete caetteat	28	
<210> SEQ ID NO 441 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 441		
ggcettttte ecacatteaa ggettta	27	
<210> SEQ ID NO 442 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 442		
cccacattca aggetttaga tgagacaa	28	
<210> SEQ ID NO 443 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 443		
ggetcaatet cattettaa ttttteea	28	
<210> SEQ ID NO 444 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 444		
ctcaatctca ttctttaatt tttccatgca a	31	
<210> SEQ ID NO 445 <211> LENGTH: 28 <212> TYPE: DNA		

-continued	
-2135 ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
ADD SECTIONCE. AAE	
CHOUS SEQUENCE: HHS	
ggctcaatct cattttctat ttttccat	28
<210> SEO ID NO 446	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 446	
ccatgcaaga ctctatgata caattaatt	29
<210> SEO ID NO 447	
<211> LENGTH: 30	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 447	
gctcaattcc attcgttatt ccttcatgca	30
- •	
-210, CEO ID NO 440	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATORE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 448	
ccctctgata caaccaaaga ctcccatt	28
<210> SEO TO NO 449	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 449	
ggeteaacet cattetetat tetteeat	28
<210> SEO ID NO 450	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<2207 FEALURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
· · · - · · · · · · · · · · · · · · · ·	
<400> SEQUENCE: 450	
ceteattete tattetteea tgeaaga	27
2105 SEO ID NO 451	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEALURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 451	
ggctaccaca caagttetea ttetteat	28

<210> SEQ ID NO 452	
<211> LENGTH: 27	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 452	
	27
ccacacaagt teleattett catglea	27
<210> SEQ ID NO 453 <211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
400. CROMENCE 452	
<400> SEQUENCE: 453	
ggctaccaaa tatgattett etatteat	28
<210> SEQ ID NO 454	
<211> LENGTH: 29 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic origonucreotide	
<400> SEQUENCE: 454	
cateteette taaataatgt gtacaetea	29
5.5	
2105 SEC ID NO 455	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 455	
gctactaaac atgactcttt tcgccatgt	29
<210> SEQ ID NO 456	
<211> LENGTH: 28 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 456	
ctaaacatga ctcttttcgc catgttag	28
<210> SEQ ID NO 457	
<211> LENGTH: 27	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 457	
	27
yyeraelaaa tattyttete etattea	<i>∠</i> /
<210> SEQ ID NO 458 <211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	

_

239	240
-continu	ed
<400> SEQUENCE: 458	
ctcctattca tctttgacat ctccttct	28
<210> SEQ ID NO 459 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 459	
cettggetat taaacatgae tetttte	27
<210> SEQ ID NO 460 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 460	
ggctattaaa catgactott ttogocata	29
<210> SEQ ID NO 461 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 461	
ggctaccaaa tatgattett etatteat	28
<210> SEQ ID NO 462 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 462	
gctaccaaat atgattette tatteatet	29
<210> SEQ ID NO 463 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 463	
gctactaaac atgacgcttt ccgccatg	28
<210> SEQ ID NO 464 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 464	
cgctttccgc catgttagac ctctctt	27
<210> SEQ ID NO 465	

<211> LENGTH: 27 <212> TYPE: DNA
-continued	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 465	
ctcggaaaca tagtgtatct gttttgt	27
<210> SEQ ID NO 466 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 466	
cgcaagtgag agaatgtctg taactgta	28
<210> SEQ ID NO 467 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 467	
~ gtgcggatat caaaggaaac attgtaa	27
<210> SEQ ID NO 468 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 468	
gtgtgaggag gagaagtgag aatgtctgt	29
<210> SEQ ID NO 469 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 469	
cgcgttacct tgcataaaac cactctt	27
<210> SEQ ID NO 470 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 470	
ccactcttgt tcgactataa tctccactt	29
<210> SEQ ID NO 471 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 471	
gcgctcatcg actcttcagt tgcttat	27

<210> SEQ ID NO 472		
<211> LENGTH: 28		
<212> TYPE: DNA		
<2213> ORGANISM: AICHICIAI Sequence		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 472		
actetteagt tgettattae accaaact	28	
<210> SEO ID NO 473		
<211> LENGTH: 27		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<2220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
-400× SECHENCE, 472		
<400> SEQUENCE: 473		
gccaacaacg accgtggctc cggaaat	27	
<210> SEQ ID NO 474		
<211> LENGTH: 27		
<212> TYPE: DNA		
<2213> ORGANISM: Artificial Sequence		
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide</pre>		
<400> SEQUENCE: 474		
cataacteea gaaattaate tteeatt	27	
-Joggeooog Jaaacageo coccaco		
<210> SEQ ID NO 475		
<211> LENGIH: 29 <212> TVDE: DNA		
<212> IIPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 475		
caaacaacga cagatgagct ttcttccat	29	
-010. CEO ID NO 476		
<210> SEQ ID NO 476		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 476		
gctttcttcc atggatccgc cgacaa	26	
<210> SEQ ID NO 477		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<2223> OTHER INFORMATION: Synthetic oligonucleotide		
400> SECHENCE: 477		
CHOOP SEQUENCE: 4//		
gctggttgat gatagggatg tatgtagt	28	
2105 SEO ID NO 478		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		

245

-contin	nued
<400> SEQUENCE: 478	
agggatgtat gtagtgattt ggttttgt	28
<210> SEQ ID NO 479 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 479	
gactgccact aacttcagaa tctgaagt	28
<210> SEQ ID NO 480 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 480	
ctgaagtcat caacatgcta accctaat	28
<210> SEQ ID NO 481 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 481	
cgactactgg ctgataacat ccaccaa	27
<210> SEQ ID NO 482 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 482	
ggctagccta ttcatcgaga acctagct	28
<210> SEQ ID NO 483 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 483	
cttaatcacc aacacagtag attgatatat	30
<210> SEQ ID NO 484 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 484	
ccaacacagt agattgatat atttgggttt a	31
<210> SEQ ID NO 485 <211> LENGTH: 27 <212> TYPE: DNA	

-continued	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Symptoptic oligopucleatide</pre>	
<223> OTHER INFORMATION: SYNCHELIC OTIGONUCLEOLIDE	
cancentat taantatan aanatat	27
cayoyaytat taayoytaty accatyt	27
<210> SEQ ID NO 486 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 486	
gcgtccgagc gtgtgtttgt acatcta	27
<210> SEQ ID NO 487 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
	27
<pre><210> SEQ ID NO 488 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 488	
ccaccaactc aacatctata agcatatt	28
<210> SEQ ID NO 489 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 489	
ccatgactgg actgaaagaa tctcctt	27
<210> SEQ ID NO 490 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 490	
gaateteett etatatetat etattttggt	30
<210> SEQ ID NO 491 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 491	
cagattette tetacaattt gtttttttg	29

<210> SEO	TD NO 492	
<211> LENG	TH: 28	
<212> TYPE	- DNA	
<213> ORGA	NISM. Artificial Sequence	
<220> FEAT	IIIBE.	
<223> OTHE	R INFORMATION: Synthetic oligonucleotide	
(223) 0111E	in information. Synchectic origonacteoctae	
~400 SEOU	ENCE 492	
(400) PEÕO	ENCE. 152	
tagattatas	attagagaaa gataaaag	29
0999009090	ooouguguuu guouuuuo	20
-2105 SEO	TD NO 493	
<210> SEQ <211 \ LENG	TD NO 495	
<212> TVPE		
<213> ORGA	NISM. Artificial Sequence	
<220> FEAT	IIIBE:	
<223> OTHE	R INFORMATION: Synthetic oligonucleotide	
<400> SEOU	ENCE: 493	
1007 5220		
actttatada	tatteteta etaeteaat	29
J		
<210> SEO	TD NO 494	
<211> LENG	TH: 30	
<212> TYPE	· DNA	
<213> ORGA	NISM: Artificial Sequence	
<220> FEAT	URE:	
<223> OTHE	R INFORMATION: Synthetic oligonucleotide	
<400> SEOU	ENCE: 494	
ctctactact	caatctqaaa tttacatcca	30
	5	
<210> SEO	ID NO 495	
<211> LENG	TH: 29	
<212> TYPE	: DNA	
<213> ORGA	NISM: Artificial Sequence	
<220> FEAT	URE :	
<223> OTHE	R INFORMATION: Synthetic oligonucleotide	
<400> SEQU	ENCE: 495	
gcaaatcttt	atttgcagtt ttaaaacca	29
<210> SEQ	ID NO 496	
<211> LENG	TH: 27	
<212> TYPE	: DNA	
<213> ORGA	NISM: Artificial Sequence	
<220> FEAT	URE:	
<223> OTHE	R INFORMATION: Synthetic oligonucleotide	
<400> SEQU	ENCE: 496	
ccatagaaga	ageaagaeea ettgtat	27
.010 082	ID NO. 407	
<210> SEQ	רכי ונשו אפי סאר חד / גיי	
<zii> LENG</zii>	TH: 28	
<212> TYPE	: DNA NICM Artificial Companya	
<213> ORGA	NISM: AFUIFICIAL SEQUENCE	
<zzu> FEAT</zzu>	UNE: D INFORMATION, Symphotic olicopyslastida	
<223> OTHE	A INFORMATION: SYNCHELIC OIIGONUCLEOTIGE	
<400 \ CEOU	ENCE - 497	
~-007 BEQ0		
cototactto	ctatoaadaa tttottoa	28
Jeeecageeg	jaajaa	
<210> SEO	ID NO 498	
<211> LENG	TH: 28	
<212> TYPE	: DNA	
<213> ORGA	NISM: Artificial Sequence	
<220> FEAT	URE:	
<223> OTHE	R INFORMATION: Synthetic oligonucleotide	

ົ	5	1
- 4	Э	л

-continued	
<400> SEQUENCE: 498	
ctctctatct ctctctcact ctaaaagt	28
<210> SEQ ID NO 499 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 499	
getgtgaaga actetetet ttteaag	27
<210> SEQ ID NO 500 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 500	
ctctctctt ttcaaggtgg gagcaat	27
<210> SEQ ID NO 501 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 501	
ccctcatgaa aaggaacaaa agtttaaag	29
<210> SEQ ID NO 502 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 502	
gtgttcttga aggaaaccct ctcataaaat	30
<210> SEQ ID NO 503 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 503	
cccgcatgat caaaaaggtt aaagat	26
<210> SEQ ID NO 504 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 504	27
ergregaarg taacatogag aggtaca	<u> </u>
<210> SEQ ID NO 505 <211> LENGTH: 27 <212> TYPE: DNA	

-continued	
212 ODCANISM. Artificial Socuerco	
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 505	
	27
gyagadatee aaceaagaat attyttt	27
<210> SEQ ID NO 506	
<211> LENGTH: 28	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 506	
ccaaccaaga atattgtttc ttgagtat	28
<210> SEQ ID NO 507	
<211> LENGTH: 28 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 507	
catggggaca tttgactctc ttcttgta	28
<210> SEO ID NO 508	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 508	
ggggacattt gactctcttc ttgtagct	28
<210> SEQ 1D NO 509 <211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
2400 SECTIFNER 509	
CTOCK SEQUENCE: 505	25
yyryyddadl loaddydday aarya	20
<210> SEQ ID NO 510	
<211> LENGTH: 28	
<212> TIPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 510	
ggacatctag tcgaattatt attgtgtt	28
<210> SEO ID NO 511	
<pre><211> LENGTH: 29</pre>	
<212> TYPE: DNA	
<213> OKGANISM: ATTIFICIAI Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 511	
gttgctagtt accaccatga acataaata	29

<210> SEO ID NO 512	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 512	
cagelagela glelaelgaa lllaaaal	28
<210> SEQ ID NO 513	
<211> LENGTH: 28	
<212> TYPE: DNA	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 513	
qqqacatttq actttacatq ttatqtct	28
555	
<210> SEQ ID NO 514	
<211> LENGIH: 28 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SECUENCE: 514	
(100) bigomen. Sil	
gactttacat gttatgtctc ttttgcaa	28
210 SEO ID NO 515	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic ofigonucleotide	
<400> SEQUENCE: 515	
ggtcatgtag agcagacgaa accctaa	27
<210> SEQ ID NO 516	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: ATTITICIAI Sequence	
<pre><223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 516	
qaqqqaqtqa qqqqcaaaaq cqtaat	26
9-999-9-9- <u>3333,00000</u> 030000	
<210> SEQ ID NO 517	
<211> LENGTH: 27 <212\ TYDE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEOUENCE: 517	
~	
ccaggatett catettetee ttettet	27
<210> SEO ID NO 518	
<211> LENGTH: 31	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> rEAIUKE: <223> OTHER INFORMATION: Synthetic olicopuslectide	
OILOUTION SINGULO OILGONACIOOLAC	

257	258
-continued	
<400> SEQUENCE: 518	
cttctccttc ttctgaaaac taattaaact t	31
<210> SEQ ID NO 519 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 519	
gttcattcaa acccaggaaa aaatatc	27
<210> SEQ ID NO 520 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 520	
~ tcaaacccag gaaaaaatat cctcatg	27
<210> SEQ ID NO 521 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 521	
ggagtcaaaa gaactctcaa ggtctttta	29
<210> SEQ ID NO 522 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 522	
gttcacatgc cactcctttg aaatttca	28
<210> SEQ ID NO 523 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 523	
ccactccttt gaaatttcac ctcctgtt	28
<210> SEQ ID NO 524 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 524	
ccttcatgat atattgatat cttcttgtt	29
<210> SEQ ID NO 525	

<211> LENGTH: 29 <212> TYPE: DNA

-continued	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 525	
tgatatette ttgttattae attttgagt	29
<210> SEQ ID NO 526 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 526	
cacgggccac ggcgttgata aaacat	26
<210> SEQ ID NO 527 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 527	
cctgccaata gagatcttac cctgtaa	27
<210> SEQ ID NO 528 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 528	
ccaatagaga tettaeeetg taatgeat	28
<210> SEQ ID NO 529 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 529	
ggaagtaaag gacctgccaa tggaga	26
<210> SEQ ID NO 530 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 530	
gccaatggag aggcgcccta aaacta	26
<210> SEQ ID NO 531 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 531	
gcctgccaat agaaagatgc cctatta	27

<210> SEQ ID NO 532	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic origonacteoride	
<400> SEOUENCE: 532	
~	
gccctattac tgctccgctt atcgta	26
<210> SEQ ID NO 533	
<211> LENGIH: 27 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 533	
togoccagta atocaaccat acattat	27
	2,
<210> SEQ ID NO 534	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEALURE:	
(115) office information. Synchectro offgoracteoerae	
<400> SEQUENCE: 534	
cccagtaatc caaccataca ttatctct	28
-210, CEO ID NO E2E	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 535	
gaggattege cetgtaatge ttteta	26
<210> SEQ ID NO 536	
<211> LENGTH: 27	
<212> IIPE: DNA <213> ORGANISM. Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 536	
agaatataat aatttataga aagaaat	27
gooolglaal getteetaee aagaaat	Z /
<210> SEQ ID NO 537	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<2202 FEALURE: <2235 OTHER INFORMATION: Synthetic olicopyclectide	
2207 STAR INFORMATION. Synchectic Stigondeteotide	
<400> SEQUENCE: 537	
ctgccaatgg tgatcttgcc ctgtaat	27
-2105 SEO ID NO 538	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	

_

263	264	
-continue	d	
<400> SEQUENCE: 538		
ggtgatettg eeetgtaatg catattea	28	
<210> SEQ ID NO 539 <211> LENGTH: 27 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 539		
cgaagacaga tctggtaaaa atcgaaa	27	
<210> SEQ ID NO 540 <211> LENGTH: 28 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 540		
gacagatetg gtaaaaateg aaaagaca	28	
<210> SEQ ID NO 541		
<212> TYPE: DNA 212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 541		
gagccactct cgatatataa tactacaa	28	
<210> SEQ ID NO 542		
<211> LENGTH: 25 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 542		
ccaggggaca gatgcttcgt ttact	25	
<210> SEQ ID NO 543 <211> LENGTH: 27		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 543		
gggacagatg cttcgtttac tcgacat	27	
<210> SEQ ID NO 544 <211> LENGTH: 27 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 544		
gccccttctt atatcgagtc aacaaaa	27	
<210> SEQ ID NO 545		

<211> LENGTH: 26 <212> TYPE: DNA

US 8,030,473 B2

2	65	
4	03	

-continued		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 545		
gccactccga aaaccttcta aagcat	26	
<210> SEQ ID NO 546 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 546		
ctccgaaaac cttctaaagc atctgaaa	28	
<210> SEQ ID NO 547 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 547		
ttggcttaga_cattlette_ttgate	27	
<210> SEQ ID NO 548 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 548		
gategettet tateateteg tetgtt	26	
<210> SEQ ID NO 549 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 549		
geteteteee tetetaegte tatttat	27	
<210> SEQ ID NO 550 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 550		
ccctctctac gtctatttat ctatcta	27	
<210> SEQ ID NO 551 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 551		
gcgccatgtt gtgtgatcgt gtcat	25	

-continued	

<210> SEQ ID NO 552		
<211> LENGTH: 27		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 552		
togtgtcatg agogtatgtt atgtata	27	
<210> SEQ ID NO 553		
<211> LENGTH: 27		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 553		
gcettetgte ateacetttt atttget	27	
<210 SEO ID NO 554		
<211> LENGTH 30		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 554		
	2.0	
getttattgt etetttta agettttgat	30	
210 STO ID NO 555		
<211> LENGTH: 26		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 555		
anagettatt teggateage estatt	26	
	20	
<210> SEQ ID NO 556		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
ADD. CEOUENCE FEC		
<400> SEQUENCE: 556		
ttgccatcac ccatctttt cacatatt	28	
	20	
<210> SEQ ID NO 557		
<211> LENGTH: 27		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 557		
accgtgatga cgttatatgg agatttt	27	
-		
<210> SEQ ID NO 558		
<211> LENGTH: 32		
<212> TYPE: DNA		
<213> UKGANISM: ATTIIICIAI SEQUENCE		
<pre><2202 FEALURE: <2023 OFUED INFORMATION. Completing alignmustation</pre>		

A/A	
769	
2W/	

269	270	
-continue	d	
<400> SEQUENCE: 558		_
ggagattttg ttgatgttac gaacgtgtgt at	32	
<210> SEQ ID NO 559 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 559		
gggageteet tttettette tettaat	27	
<210> SEQ ID NO 560 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 560		
geteettte ttettetett aattagte	28	
<210> SEQ ID NO 561 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 561		
ctcccagttt gtctgcagat gcatgt	26	
<pre><210> SEQ ID NO 562 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEOUENCE: 562</pre>		
	25	
gaageageg geeeaeegae eeeee	25	
<210> SEQ ID NO 563 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 563		
cgctgcttgc tettcatgac ttttgt	26	
<210> SEQ ID NO 564 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 564		
tgctcttcat gacttttgtt taattgata	29	
<210> SEQ ID NO 565 <211> LENGTH: 27 <212> TYPE: DNA		

-continued	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 565	
gccttcaatc actctggaga aactaca	27
<210> SEQ ID NO 566 <211> LENGTH: 29 <212> TYPE: DNA <212> ORGANISM: Artificial Sequence <220> FEATURE: <220> FHATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 566	
ctggagaaac tacaaaacct tgattatta	29
<210> SEQ ID NO 567 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
cccctcaatt atategette gatett	26
<210> SEQ ID NO 568 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 568	
cgcttcgatc tttccttctt tgagta	26
<210> SEQ ID NO 569 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 569	
cccctcaact tacacgtttt gcttct	26
<210> SEQ ID NO 570 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 570	
gcttctcaat cttcaagacc aatcgtt	27
<210> SEQ ID NO 571 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 571	
ccctcaacct attttatcgc atttttca	28

<210> SEQ ID NO 572	
<211> LENGTH: 26 <212> TYPE: DNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 572	
ctcagttete accecattea aaacet	26
<210> SEQ ID NO 573	
<211> LENGTH: 28 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEALORE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 573	
cacctgctaa tgattgtagc atgaagga	28
<210> SEQ ID NO 574	
<211> LENGTH: 27 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEALORE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 574	
gtagcatgaa ggagaagaag aagaaga	27
<210> SEQ ID NO 575	
<211> LENGTH: 26 <212> TYPE: DNA	
<213 > ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 575	
cggagtccga ggtgaaaaaa taagga	26
<210> SEO ID NO 576	
<211> LENGTH: 27	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 576	
ggatccaact atcagatctg acacaat	27
<210> SEQ ID NO 577	
<211> LENGTH: 29 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEALORE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 577	
ctctagatat ctctatccgt tatatcata	29
<210> SEQ ID NO 578	
<211> LENGTH: 29 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	

275	276
-continued	
<400> SEQUENCE: 578	
tccgttatat catatcatca tcatgatta	29
<210> SEQ ID NO 579 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 579	
cctaaccaca tatcatatat atcatcatc	29
<210> SEQ ID NO 580 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 580	
aggggttgct ttgtagtatc gttgaaa	27
<210> SEQ ID NO 581 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 581	
gcttcgttct ctattcttcc atgttaga	28
<210> SEQ ID NO 582 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 582	
gtcatgaatc ggacttatca tgtcaca	27
<210> SEQ ID NO 583 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> DEQUENCE: 583	
gcgaattttt tggcttacgg tttttcga	28
<210> SEQ ID NO 584 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 584	
ggcttacggt ttttcgattt gaatgat	27
<210> SEQ ID NO 585 <211> LENGTH: 25 <212> TYPE: DNA	

-continued	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 585	
ggcagtetee ttggetatet tgaca	25
<210> SEQ ID NO 586 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 586	
cattcacgtt atacctgttt ttctttct	28
<210> SEQ ID NO 587 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
	20
<pre><210> SEQ ID NO 588 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	28
<400> SEOUENCE: 588	
ggtgagcgaa tgttgacgat ttttgga	27
<210> SEQ ID NO 589 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 589	
ggettaetta tetagggtet ttttte	27
<210> SEQ ID NO 590 <211> LENGTH: 28 <12> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 590	
ctagggtctt tttttccatt ttcatcat	28
<210> SEQ ID NO 591 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 591	
tcggtagctt cctcttcgat cgtat	25

-continued

210 SEC ID NO 592	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
400 CEOUENCE, EOO	
CHOUS SEQUENCE: 552	
cctcttcgat cgtatggcaa atttct	26
<210> SEQ ID NO 593	
<211> LENGTH: 26	
<212> IIPE: DWA <213\ ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 593	
attacetae actaceeaa tttact	26
etteeaetee ggteaaaggg titeat	20
<210> SEQ ID NO 594	
<211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEALORE:	
(223) OTHER INFORMATION. SYNCHOLIC OLIGONACIOULAC	
<400> SEQUENCE: 594	
agggtttcat gaccggagac atcaa	25
<210> SEO ID NO 595	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 595	
\sim	
acccctcatg atttgatata taaagatag	29
-010, CEO ID NO EOC	
<210> SEQ 1D NO 596	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596	
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagtttg	28
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagtttg	28
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagtttg	28
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagtttg <210> SEQ ID NO 597	28
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagtttg <210> SEQ ID NO 597 <211> LENGTH: 24 <210> DNA</pre>	28
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagtttg <210> SEQ ID NO 597 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence</pre>	28
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagtttg <210> SEQ ID NO 597 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	28
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagtttg <210> SEQ ID NO 597 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	28
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagtttg <210> SEQ ID NO 597 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	28
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagtttg <210> SEQ ID NO 597 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 597</pre>	28
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagtttg <210> SEQ ID NO 597 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 597 ctcccggacc cattcaacgg attt</pre>	28
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagtttg <210> SEQ ID NO 597 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 597 ctcccggacc cattcaacgg attt</pre>	28
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagtttg <210> SEQ ID NO 597 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 597 ctcccggacc cattcaacgg attt</pre>	28
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagtttg <210> SEQ ID NO 597 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 597 ctcccggacc cattcaacgg attt <210> SEQ ID NO 598 </pre>	28
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagtttg <210> SEQ ID NO 597 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 597 ctcccggacc cattcaacgg attt <210> SEQ ID NO 598 <211> LENGTH: 26 <210> DND 598</pre>	28
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagttg <210> SEQ ID NO 597 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 597 ctccccggacc cattcaacgg attt <210> SEQ ID NO 598 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <210> GRGANISM: Artificial Sequence</pre>	28
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 596 cggtgaatac tactaagatc taagttg <210> SEQ ID NO 597 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 597 ctcccggacc cattcaacgg attt <210> SEQ ID NO 598 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: </pre>	28

ാ	o	1
	o	Т

-continued		
<400> SEQUENCE: 598		
ccgcaggtcg agacgagatt ttatat	26	
<210> SEQ ID NO 599 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 599		
ctcttggtgt cattctggcg tagtga	26	
<210> SEQ ID NO 600 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 600		
gtgaccacca ttgcagccgt tttat	25	
<210> SEQ ID NO 601 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 601		
ggaactcccg atgtcatttg gtgat	25	
<210> SEQ ID NO 602 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 602		
ggtgatgcca agccatgtat gtaaaat	27	
<210> SEQ ID NO 603 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 603		
cttggcaccc acaggctata ttaatta	27	
<210> SEQ ID NO 604 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 604		
cgagcggtgt agtcaacggt tga	23	
<210> SEQ ID NO 605 <211> LENGTH: 25 <212> TYPE: DNA		

-continued	
<pre><213> ORGANISM: Artificial Sequence</pre>	
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 605	
gctgtgggaa aacatgacaa ttcag	25
<210> SEQ ID NO 606 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 606	
cagggtttta ctccattgat tcacttgt	28
<210> SEQ ID NO 607 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
caccected gagetette teta	24
<210> SEQ ID NO 608 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 608	
aggetggett ttaeteattt accaaat	27
<210> SEQ ID NO 609 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 609	
ctgcaccaac atattaatat gattaatca	29
<210> SEQ ID NO 610 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 610	
cagaatctga ggaataacaa aggattct	28
<210> SEQ ID NO 611 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 611	
gcctcgcaat gcttcactaa cgttat	26

	aont	- 4	2011	- d
-	COIL		IIU	=u

<210> SEQ ID NO 612	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
(223) OTHER INFORMATION: Synchecic Origonacteoriae	
<400> SEQUENCE: 612	
ggggttattc atttctccaa tatccaa	27
<210> SEO ID NO 613	
<211> LENGTH: 23	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400 \ SFOUFNCE - 613	
CAODY SEQUENCE. 013	
gagcgccggc gaaaaaagtc tct	23
<210> SEQ ID NO 614	
ZIIS DENGIR: 20	
<213> ORGANISM· Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> 2FŐNFW/FF: 014	
cgacgattgt cattagaaga gtcgta	26

The invention claimed is:

1. An siRNA-triggering or RNAi-triggering nucleic acid cassette, comprising: ³⁵

- an initiator sequence that consists of about 20 to 25 nucleotides and has an initiation cleavage site between the tenth and eleventh or eleventh and twelfth nucleotides counted from the 3' end of the initiator sequence, and wherein the initiator sequence is recognized by a RNAinduced Silencing Complex guided by an siRNA or a miRNA that has sufficient complementarity to said initiator sequence to initiate cleavage in 21-nucleotide register from said initiation cleavage site; and
- at least one 21-nucleotide gene suppressing segment engineered to be in about 21-nucleotide register counted either upstream or downstream from the initiation cleavage site, wherein the gene suppressing segment or its complement is complementary to RNA transcribed from a target gene selected for siRNA inhibition. 50

2. An expression vector, comprising the nucleic acid cassette of claim 1 operably linked to a promoter.

3. The nucleic acid cassette of claim **1**, wherein the initiator sequence is selected from any one of SEQ ID NO: 1-142 and 281-285.

4. The nucleic acid cassette of claim 1, comprising two or more 21-nucleotide gene suppressing segments engineered to be in about 21-nucleotide register counted either upstream or downstream from the initiation cleavage site, wherein the sequence of each of at least two of the gene suppressing segments or the complement thereto is complementary to sequences of RNA transcribed from a single target gene selected for siRNA inhibition.

5. A transgenic plant cell that expresses RNA for suppressing a target gene, wherein said plant cell comprises recombinant DNA from which there is transcribed a RNA comprising: ⁶⁵

an initiator sequence that consists of about 20-25 nucleotides having an initiation cleavage site located between the tenth and eleventh or eleventh and twelfth nucleotide counted from the 3' end of the initiator sequence, wherein the initiator sequence is recognized by a RNAinduced Silencing Complex guided by an siRNA or a miRNA that has sufficient complementarity to said initiator sequence to initiate cleavage in 21-nucleotide register from said initiation cleavage site, and wherein said initiator sequence is linked to or overlaps with

at least one gene suppressing segment of 21-nucleotides engineered to be in 21-nucleotide register counted either upstream or downstream from the initiation cleavage site, wherein said gene suppressing segment or its complement is complementary to RNA transcribed from said target gene.

6. The transgenic plant cell of claim **5**, wherein the RNA transcribed from the recombinant DNA is a first RNA, and further comprising DNA from which there is transcribed a second RNA that anneals to said first RNA at said initiation cleavage site.

7. The transgenic plant cell of claim 6 wherein said second RNA is an exogenous miRNA or siRNA.

8. The transgenic plant cell of claim 6 wherein said second
 ⁵⁵ RNA is a miRNA or siRNA transcribed from a native plant gene.

9. The transgenic plant cell of claim **5** wherein said RNA comprises two or more of said gene suppressing segments, wherein the sequence of each of at least two of the gene suppressing segments or the complement thereto is complementary to sequences of RNA transcribed from a single target gene selected for siRNA inhibition.

10. The transgenic plant cell of claim **5** wherein said target gene is an endogenous plant gene.

11. The transgenic plant cell of claim 5 wherein said plant cell is a corn cell and said target gene encodes lysine keto-glutarate reductase.

12. The transgenic plant cell of claim **5** wherein said target gene is a gene of a plant pathogen or plant pest.

13. The transgenic plant cell of claim 5 wherein said target gene is a gene of a nematode or insect or virus or fungus.

14. The transgenic plant cell of claim **5** wherein said plant ₅ cell is a soybean cell and said target gene is a gene of a soybean cyst nematode.

15. The transgenic plant cell of claim **5** wherein said recombinant DNA comprises a promoter functional in said plant operably linked to DNA coding for said RNA.

16. The transgenic plant cell of claim **15** wherein said promoter is characterized as being a constitutive promoter, an inducible promoter, a tissue specific promoter, a ubiquitous promoter or a combination thereof.

17. The transgenic plant cell of claim 5 wherein said plant cell is a corn, soybean, cotton, canola, wheat or rice cell.

18. The transgenic plant cell of claim 5 wherein said recombinant DNA further comprises nucleotides for expressing at least one protein.

19. A method of inhibiting expression of a target gene or sequence in a cell, the method comprising exposing the cell to 20 an effective amount of the nucleic acid cassette of claim **1**.

20. A method of inhibiting expression of a target gene or sequence in a cell, the method comprising exposing the cell to an effective amount of the vector of claim **2**.

21. The method of claim **19**, wherein the cell is a plant cell, $_{25}$ a fungal cell, or an invertebrate cell.

22. The method of claim 19, wherein the cell is in a multicellular organism.

23. A method of inducing production of at least one siRNA in a cell, comprising:

³⁰ transforming the cell with a recombinant nucleic acid molecule comprising the nucleic acid cassette of claim 1, wherein the recombinant nucleic acid molecule directs expression of a RNA from the nucleic acid cassette, which RNA is processed in the cell to produce at least one siRNA, thereby inducing the production of at least ³⁵ one siRNA in the cell.

24. A method of inhibiting activity of a target gene in a plant cell, comprising:

- transforming the plant cell with a recombinant nucleic acid
 molecule comprising the nucleic acid cassette of claim 40
 1, wherein at least one gene suppressing segment of the
 nucleic acid cassette is specific for the target gene; and
- expressing the nucleic acid molecule, thereby producing in the plant cell at least one siRNA specific for the target gene which inhibits activity of the target gene in the $_{45}$ plant cell.

25. A method of inhibiting activity of a target gene in a plant seed cell comprising:

providing in one of more said plant seed cells:

- (a) a recombinant nucleic acid molecule comprising the nucleic acid cassette of claim 1, wherein at least one gene suppressing segment of the nucleic acid cassette is specific for the target gene and wherein said cassette comprises a seed-specific promoter operably linked to said initiator sequence and said at least one gene suppressing segment; and 55
- (b) a recombinant DNA with a seed specific promoter operably linked to DNA transcribing an miRNA or siRNA that anneals to said initiator sequence at said initiation cleavage site; and

expressing (a) and (b).

26. An siRNA-triggering or RNAi-triggering nucleic acid cassette, comprising:

an initiator sequence that consists of about 20 to 25 nucleotides and has an initiation cleavage site between the tenth and eleventh or eleventh and twelfth nucleotides counted from the 3' end of the initiator sequence, and wherein the initiator sequence is recognized by a RNA- induced Silencing Complex guided by an siRNA or a miRNA that has sufficient complementarity to said initiator sequence to initiate cleavage in 21-nucleotide register from said initiation cleavage site; and

two or more 21-nucleotide gene suppressing segments engineered to be in about 21-nucleotide register counted either upstream or downstream from the initiation cleavage site, wherein the sequence of each of at least two of the gene suppressing segments or the complement thereto is complementary to RNA transcribed from different target genes selected for siRNA inhibition.

27. An expression vector, comprising the nucleic acid cassette of claim 26 operably linked to a promoter.

28. The nucleic acid cassette of claim **26**, wherein the initiator sequence is selected from any one of SEQ ID NO: 1-142 and 281-285.

29. A transgenic plant cell that expresses RNA for suppressing two or more target genes, wherein said plant cell comprises recombinant DNA comprising the nucleic acid cassette of claim **26**.

30. A method of inhibiting expression of two or more target genes or sequences in a cell, the method comprising exposing the cell to an effective amount of the nucleic acid cassette of claim **26**.

31. A method of inhibiting expression of two or more target genes or sequences in a cell, the method comprising exposing the cell to an effective amount of the vector of claim **27**.

32. The method of claim **30**, wherein the cell is a plant cell, a fungal cell, or an invertebrate cell.

33. The method of claim **30**, wherein the cell is in a multicellular organism.

34. A method of inducing production of at least two siR-NAs each of which is specific for a different target gene in a cell, comprising:

transforming the cell with a recombinant nucleic acid molecule comprising the nucleic acid cassette of claim 26, wherein the recombinant nucleic acid molecule directs expression of a RNA from the nucleic acid cassette, which RNA is processed in the cell to produce two or more siRNAs, thereby inducing the production of at least two siRNAs in the cell each of which is specific for a different target gene.

35. A method of inhibiting activity of at least two target genes in a plant cell, comprising:

- transforming the plant cell with a recombinant nucleic acid molecule comprising the nucleic acid cassette of claim26, wherein each of the two or more gene suppressing segments of the nucleic acid cassette is specific for one of the at least two target genes; and
- expressing the nucleic acid molecule, thereby producing in the plant cell two or more siRNAs, which inhibit activity of the at least two target genes in the plant cell.

36. A method of inhibiting activity of at least two target genes in a plant seed cell comprising:

providing in one of more said plant seed cells:

- (a) a recombinant nucleic acid molecule comprising the nucleic acid cassette of claim 26, wherein the two or more gene suppressing segments of the nucleic acid cassette are specific for the two or more target genes and wherein said cassette comprises a seed-specific promoter operably linked to said initiator sequence and said two or more gene suppressing segments; and
- (b) a recombinant DNA with a seed specific promoter operably linked to DNA transcribing an miRNA or siRNA that anneals to said initiator sequence at said initiation cleavage site; and

expressing (a) and (b).

60

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

: 8,030,473 B2
: 11/334776
: October 4, 2011
: Carrington et al.

Page 1 of 2

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page, Section (56) OTHER PUBLICATIONS:

Page 1, right column, a carriage return was omitted such that at Carrington, "(Jun. 2005). Carrington et al." should read --(Jun. 2005).¶ Carrington et al.--.

In the Specification:

Column 1, lines 13-17, "This invention was made with United States government support pursuant to grant MCB-0209836 from the National Science Foundation, grant A143288 from the National Institutes of Health, and grant 2005-35319-15280 from the USDA; the United States government has certain rights in the invention."

should read

--This invention was made with government support under grant MCB-0209836

awarded by the National Science Foundation, under grant A143288 awarded by the

National Institutes of Health, and under grant 2005-35319-15280 awarded by the USDA;

the government has certain rights in the invention .--.

Column 10, line 37, a carriage return was omitted such that "lower (T_m) . cDNA" should read --lower $(T_m).$ cDNA--.

Column 26, line 64, "it complement" should read --its compliment--.

Column 28, line 6, "site; both." should read --site; or both.--.

Column 29, line 60, "energy each" should read --energy of each--.

Column 41, line 23, "RNA i-Triggering" should read --RNAi-Triggering--.

Column 41, line 44, "included the" should read --included in the--.

Column 42, line 65, "enhance" should read --enhanced--.

Column 43, lines 34-35, "the in initiator" should read -- the initiator--.

Column 43, line 43, "the in initiator" should read --the initiator--.

Signed and Sealed this Twenty-seventh Day of March, 2012

David J. Kappos Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) U.S. Pat. No. 8,030,473 B2

Column 44, line 2, "on of" should read --one of--.

Column 47, line 1, "For description" should read --For a description--.

Column 47, line 3, "constructs; see" should read --constructs, see--.

Column 47, line 33, "should e" should read --should be--.

Column 52, line 26, "DNA Progeny" should read --DNA. Progeny--.

Column 53, line 27, "metabolism" should read --metabolism.--.

Column 56, line 22, "energy each" should read --energy of each--.

Column 70, line 9, "(dsRNA Either" should read --(dsRNA). Either--.

Column 71, line 54, "comprising the a" should read --comprising a--.

Column 72, line 45, "transgenic described" should read --transgenic plants described--.

Column 73, line 27, "expression some of known" should read --expression of some

known--.

Column 100, line 31, "TAS/c-based" should read --TAS1c-based--.