a2 United States Patent

Sullivan

US008837600B2

US 8,837,600 B2
*Sep. 16, 2014

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

REDUCING LATENCY IN VIDEO ENCODING
AND DECODING

Inventor: Gary J. Sullivan, Redmond, WA (US)

Assignee: Microsoft Corporation, Redmond, WA
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 219 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/270,969

Filed: Oct. 11, 2011

Prior Publication Data

US 2013/0003864 Al Jan. 3, 2013

Related U.S. Application Data

Provisional application No. 61/571,553, filed on Jun.
30, 2011.

Int. Cl1.

HO4N 7/12 (2006.01)

HO4N 19/31 (2014.01)

HO4N 19/46 (2014.01)

HO4N 19/103 (2014.01)

HO4N 19/172 (2014.01)

HO4N 19/70 (2014.01)

U.S. CL

CPC HO04N 19/00545 (2013.01); HO4N 19/0043

(2013.01); HO4N 19/00018 (2013.01); HO4N
19/00266 (2013.01); HO4N 19/00884 (2013.01)
USPC 375/240.25
Field of Classification Search
USPC 375/240.01, 240.18, 240.19, 240.23,
375/240.25, 240.28
See application file for complete search history.

00
‘ Start '

(56) References Cited
U.S. PATENT DOCUMENTS

4,309,754 A
4,642,756 A

1/1982 Dinwiddie, Ir.
2/1987 Sherrod

(Continued)

FOREIGN PATENT DOCUMENTS

CN
CN

1960472
101051465

5/2007
10/2007

(Continued)
OTHER PUBLICATIONS

3rd Generation Partnership Project, “Multimedia telephony over IP

Multimedia Subsystem (IMS); Optimization opportunities (Release

7),” 3GPP Technical Report TR 26.914 V7.0.0, 18 pp. (Mar. 2006).
(Continued)

Primary Examiner — William C Vaughn, Jr.

Assistant Examiner — Michael Bennett

(74) Attorney, Agent, or Firm — Aaron Chatterjee; Andrew
Sanders; Micky Minhas

(57) ABSTRACT

Techniques and tools for reducing latency in video encoding
and decoding by constraining latency due to reordering of
video frames, and by indicating the constraint on frame reor-
dering latency with one or more syntax elements that accom-
pany encoded data for the video frames. For example, a real-
time communication tool with a video encoder sets a syntax
element that indicates a constraint on frame reordering
latency, which is consistent with inter-frame dependencies
between multiple frames of a video sequence, then outputs
the syntax element. A corresponding real-time communica-
tion tool with a video decoder receives the syntax element that
indicates the constraint on frame reordering latency, deter-
mines the constraint on frame reordering latency based on the
syntax element, and uses the constraint on frame reordering
latency to determine when a reconstructed frame is ready for
output (in terms of output order).

33 Claims, 8 Drawing Sheets

A

/

Set syntax element(s) that indicate a
constraint on latency.

P~ 610

A

A

Output the syntax element(s), thereby
facilitating determination of when
reconstructed frames are ready for output
in terms of output order.

P~ 620

End

US 8,837,600 B2
Page 2

(56)

5,465,335
5,861,920
5,909,559
6,002,801
6,006,303
6,105,048
6,219,502
6,249,288
6,278,691
6,298,166
6,427,058
6,438,169
6,782,368
6,823,016
6,963,347
7,043,088
7,072,404
7,085,322
7,099,389
7,116,714
7,130,526
7,289,047
7,366,236
7,370,325
7,424,730
7,573,407
7,653,128
7,735,087
7,787,539
7,817,723
7,889,788
8,291,448
8,396,082
2002/0036707
2003/0185298
2003/0235251
2004/0117427
2004/0146109
2004/0190617
2004/0208245
2005/0053157
2005/0175091
2005/0180511
2005/0289505
2006/0002479
2006/0056517
2006/0114995
2006/0126726
2006/0126744
2006/0133479
2006/0133770
2006/0193383
2006/0204119
2006/0215754
2006/0227872
2006/0233525
2006/0239343
2006/0248516
2007/0030911
2007/0183507
2007/0223595
2007/0233989
2007/0286276
2007/0291857
2007/0297501
2008/0013620
2008/0048894
2008/0107184
2008/0123736
2008/0137736
2008/0159408
2008/0225949
2009/0002379
2009/0003446
2009/0003447

References Cited

U.S. PATENT DOCUMENTS

A
A
A
A
A

A

Bl
Bl
Bl
Bl
Bl
Bl
B2
Bl
Bl
B2
B2
B2
Bl
B2
B2
B2
Bl
Bl
B2
B2
B2
B2
B2
B2
B2
B2
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

11/1995
1/1999
6/1999

12/1999

12/1999
8/2000
4/2001
6/2001
8/2001

10/2001
7/2002
8/2002
8/2004

11/2004

11/2005
5/2006
7/2006
8/2006
8/2006

10/2006

10/2006

10/2007
4/2008
5/2008
9/2008
8/2009
1/2010
6/2010
8/2010

10/2010
2/2011

10/2012
3/2013
3/2002

10/2003

12/2003
6/2004
7/2004
9/2004

10/2004
3/2005
8/2005
8/2005

12/2005
1/2006
3/2006
6/2006
6/2006
6/2006
6/2006
6/2006
8/2006
9/2006
9/2006

10/2006

10/2006

10/2006

11/2006
2/2007
8/2007
9/2007

10/2007

12/2007

12/2007

12/2007
1/2008
2/2008
5/2008
5/2008
6/2008
7/2008
9/2008
1/2009
1/2009
1/2009

Anderson
Mead et al.
So

Strongin et al.
Barnaby et al.
He

Osari et al.
Campbell
Ohyama et al.
Ratnakar et al.
Akiba et al.
Takashima et al.
Fujii et al.
Nguyen et al.
Selvaggi et al.
Chiu et al.
Ttokawa

Ngai et al.

Yu et al.
Hannuksela
Abelard et al.
Nagori
Winger

Hull et al.
Chou

Reznik
Shibata et al.
Hayashi

Chencccoeevvvvvvnnnnne

Wiegand et al.
Toma et al.
Pekonen et al.
Hannuksela et al.
Gu

Alvarez et al.
Hsiun et al.
Allen et al.
Kondo et al.
Shen et al.
Maclnnis et al.
Lillevold

Puri et al.
Arafune et al.
Williams
Fernandes
Maclnnis et al.
Robey et al.
Lin et al.

Peng et al.
Chen et al.
Shibata et al.
Alvarez et al.
Feng et al.
Buxton et al.
Mori et al.
Shibata et al.
Mohsenian
Gordon

Yoon
Maheshwari et al.
Hannuksela et al.

Garcia-Arellano et al.

Gartner et al.
Hussain

Hussain et al.
Hannuksela et al.
Ridge et al.

Katsavounidis et al.

Sekiguchi et al.
Richardson et al.
Degtyarenko

Adachi et al.

Baeza et al.
Wu et al.

Christoffersen et al.

375/240.12

. 375/240.12

2009/0003451 Al 1/2009 Lin et al.
2009/0010337 Al 1/2009 Wang
2009/0109988 Al 4/2009 Musunuri et al.

2009/0147859 Al 6/2009 McGowan et al.

2009/0175548 Al 7/2009 Fukuhara et al.

2010/0008418 Al 1/2010 Wu et al.

2010/0158135 Al 6/2010 Yin et al.

2010/0189182 Al 7/2010 Hannuksela

2010/0195721 Al 82010 Wu et al.

2011/0002376 Al 1/2011 Ahmed et al.

2011/0002397 Al* 1/2011 Wangetal. ... 375/240.26
2011/0080940 Al 4/2011 Bocharov et al.

FOREIGN PATENT DOCUMENTS

CN 101569170 10/2009

EP 0909 094 4/1999

EP 1195992 4/2002

WO WO 2006/096612 9/2006

WO WO 2006/134110 12/2006
OTHER PUBLICATIONS

Akramullah et al., “Parallelization of MPEG-2 Video Encoder for
Parallel and Distributed Computing Systems,” IEEE, pp. 834-837
(Aug. 1995).

ATI Technologies, Inc., “Introduction to H.264,” 6 pp. (month
unknown, 2005).

Azevedo et al., “A Highly Scalable Parallel Implementation of
H.264,” Transactions on High-Performance Embedded Architectures
and Compilers, 25 pp. (Sep. 2009).

Chen et al., “Implementation of H.264 Encoder and Decoder on
Personal Computers,” Journal of Visual Comm. and Image Represen-
tation, 19 pp. (Apr. 2006).

Chen, “Synchronization and Control of Multi-threads for MPEG-4
Video Decoder,” IEEE 1999 Int’l Conf. on Consumer Electronics,pp.
298-299 (Jun. 1999).

Dawson, “Coding for Multiple Cores on Xbox 360 and Microsoft
Windows,” 8 pp. (Aug. 2006) [Downloaded from the Internet on Jan.
22, 2007].

De Neve et al., “Real-Time BSD-driven Adaptation Along the Tem-
poral Axis of H.264/AVC Bitstreams,” Advances in Multimedia
Information Processing, pp. 131-140 (2006).

Dufty, “CLR Inside Out: Using Concurrency for Scalability,” MSDN
Magazine, 11 pp. (Sep. 2006) [Downloaded from the Internet on Jan.
22, 2007].

Foldoc.Org, “priority scheduling,” 1 p. (No date) [Downloaded from
the Internet on Jan. 26, 2007].

Foldoc.Org, “multitasking,” 1 p. (Document dated Apr. 24, 1998)
[Downloaded from the Internet on Jan. 26, 2007].

Gerber et al., “Optimizing Video Encoding using Threads and Paral-
lelism: Part 1—Threading a video codec,” 3 pp., downloaded from
Embedded.com, (Dec. 2009).

Huang et al., “Joint Algorithm/Code-Level Optimization of H.264
Video Decoder for Mobile Multimedia Applications,” ICASSP, pp.
2189-2192 (Mar. 2008).

Intel Corp., “Intel’s Next Generation Integrated Graphics Architec-
ture—Intel® Graphics Media Accelerator X3000 and 3000,” 14 pp.
(Jul. 2006).

International Search Report dated May 15, 2012, from International
Patent Application No. PCT/US2011/055835, 3 pp.

ISO/IEC, “Information Technology—Coding of Audio-Visual
Objects: Visual,” ISO/IEC 14496-2, Committee Draft, 327 pp. (Mar.
1998).

ISO/IEC, “Text of ISO/IEC 14496-10:2005/FPDAM3 Scalable
Video Coding (in Integrated Form with ISO/IEC 14996-10),” ISO/
IEC JTC I/SC 29/WG 11 N8241, 552 pp. (Jul. 2006).

ISO/IEC, “Text of ISO/IEC FCD 29199-2 (JPEG XR image cod-
ing—Specification),” ISO/IEC JTC 1/SC 29/WG 11 N4739, 173 pp.
(Sep. 2008).

ISO/IEC, “Digital Compression and Coding of Continuous-tone Still
Images,” ISO DIS 10918-1, CCITT Recommendation T.81, 211 pp.
(1992).

US 8,837,600 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

ISO/IEC, “Information technology—Coding of moving pictures and
associated audio for digital storage media at up to about 1,5 Mbit/
s—Part 2: Video,” ISO/IEC 11172-2, 122 pp. (Aug. 1993).

ITU, “Advanced video coding for generic audiovisual services,” Rec-
ommendation ITU-T H.264, 676 pp. (Mar. 2010).

ITU-T Recommendation H.262, “Transmission of Non-Telephone
Signals—Information Technology—Generic Coding of Moving Pic-
tures and Associated Audio Information: Video,” 218 pp. (Jul. 1995).
Jacobs et al., “Thread-Parallel MPEG-2, MPEG-4 and H.264 Video
Encoders for SoC Multi-Processor Architectures,” IEEE Trans. on
Consumer Electronics, vol. 52, No. 1, pp. 269-275 (Feb. 2006).
Joint Collaborative Team on Video Coding, “Description of video
coding technology proposal by Texas Instruments Inc.,” JCTVC-
A101, 45 pp. (Apr. 2010).

Kim et al., “Multi-thread VLIW processor architecture for HDTV
decoding,” IEEE 2000 Custom Integrated Circuits Conf., pp. 559-
562 (May 2000).

Loomis et al., “VC-1 Technical Overview,” 7 pp. (Apr. 2006) [Down-
loaded from the Internet on Jan. 24, 2007].

MainConcept, “MainConcept™ Showcase 2.8,” 4 pp. (downloaded
from the World Wide Web on Apr. 6, 2011).

Marpe et al., “A Fast Renormalization Technique for H.264/MPEG4-
AVC Arithmetic Coding,” 14 pp. (2006).

Murata et al., “Fast 2D IDCT Implementation with Multimedia
Instructions for a Software MPEG?2 Decoder,” Int’l Conf. on Acous-
tics, Speech, and Signal Processing, vol. 5, pp. 3105-3108 (May
1998).

Narasimhan, “Contributions to Carriage of AVC in MPEG-2, ” ISO/
IEC/JTC1/SC29/WG11, MPEG2003/m9448, 12 pp. (2003).
Ochring et al., “MPEG-2 Video Decompression on Simultaneous
Multithreaded Multimedia,” Int. Conf. on Parallel Architectures and
Compilation Techniques (PACT ’99), Newport Beach, CA (Oct.
1999).

Ostermann et al., “Video Coding with H.264/AVC: Tools, Perfor-
mance, and Complexity,” I[EEFE Circuits and Systems Magazine, pp.
7-28 (Aug. 2004).

Park et al., “On high-level syntax for maximum DPB size and frame
latency,” JCTVC-G546, 4 pp. (Nov. 2011).

Park et al., “On high-level syntax for maximum DPB size and frame
latency (JCTVC-G546),” 8 pp. (Nov. 2011).

Prada-Rojas et al,. “Towards a Component-based Observation of
MPSoC,” IEEE, pp. 542-549 (Sep. 2009).

Richardson, H.264 and MpEG-4 Video Compression: Video Coding
for Next-generation Multimedia, Chapter 6, “H.264/MPEG4 Part
10,” pp. 159-223 (Aug. 2003).

Sambe et al., “High-speed Distributed Video Transcoding for Mul-
tiple Rates and Formats,” IEICE Trans on Information and Systems,
vol. E88-D, Issue 8, pp. 1923-1931 (Aug. 2005).

Schwarz et al., “Overview of the Scalable H.264/MPEG4-AVC
Extension,” IEEE Int’l Conf. on Image Processing, pp. 161-164 (Oct.
2006).

Segall et al., “Spatial Scalability Within the H.264/AVC Scalable
Video Coding Extension,” IEEE Trans. on Circuits and Systems for
Video Technology, vol. 17, No. 9, pp. 1121-1135 (Sep. 2007).
SMPTE, “Proposed SMPTE Standard for Television: VC-1 Com-
pressed Video Bitstream Format and Decoding Process,” SMPTE
421M, pp. i-xx, 5-7, 23-27 (Aug. 2005).

SMPTE, “VC-1 Compressed Video Bitstream Format and Decoding
Process,” SMPTE 421M-2006, 493 pp. (Feb. 2006).

Sullivan, “DirectX Video Acceleration Specification for H.264/AVC
Decoding,” 66 pp. (Dec. 2007—updated Dec. 2010).

Sullivan et al., “DirectX Video Acceleration Specification for H.264/
MPEG-4 AVC Multiview Video Coding (MVC), Including the Stereo
High Profile,” 17 pp. (Mar. 2011).

Sullivan et al., “Microsoft DirectX VA: Video Acceleration API/
DDI,” 88 pp. (2001).

Sullivan, “Proposed constraint on reordering latency,” JCTVC-F541,
S pp. (Jul. 2011).

Sullivan, “Proposed constraint on reordering latency (for further
consideration of JCTVC-F541),” JCTVC-G779, S pp. (Nov. 2011).
Van Der Tol et al., “Mapping of MPEG-4 decoding on a flexible
architecture platform,” Proceedings of the SPIE, Media Processors,
vol. 4674, 13 pp. (Jan. 2002).

Van Der Tol et al., “Mapping of H.264 decoding on a multiprocessor
architecture,” Proceedings of the SPIE, vol. 5022, pp. 707-718 (May
2003).

Wang, “H.264 Baseline Video Implementation on the CT3400 Multi-
core DSP” Cradle Technologies, 15 pp. (2006).

Wang, “[Mp4-tech] [H.264] output timing, bumping process, miss-
ing HRD parameters,” downloaded from World Wide Web, 3 pp.
(document marked May 5, 2006).

Wiegand et al., “Introduction to the Special Issue on Scalable Video
Coding—Standardization and Beyond,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 17, No. 9, pp. 1099-1102 (Sep.
2007).

Wikipedia, “Motion JPEG,” 4 pp., downloaded from the World Wide
Web on Dec. 29, 2010.

Written Opinion dated May 15, 2012, from International Patent
Application No. PCT/US2011/055835, 4 pp.

Yadav et al., “Software-only Multiple Variable Length Decoding for
Real-Time Video on MDSP,” Int’l Conf. on Consumer Electronics,
pp. 141-142 (Jan. 2005).

Youssef, “JPEG and MPEG Standards,” 14 pp., downloaded from the
World Wide Web on Dec. 29, 2010.

* cited by examiner

U.S. Patent Sep. 16,2014 Sheet 1 of 8 US 8,837,600 B2

| computing environment 100 communication @
130 connection(s) 170
r (-
centra graphics or input device(s) 150
unit 110 unit 115
J L

r N\ 7 \ output device(s) 160
memory 120 | | memory 125

i' I
| |
| processing co-processing I

|
| |
| |
|

storage 140

software 180 implementing one or more
innovations for reducing latency in encoding and decoding

Figure 2a 201
RTC tool 210 RTC tool 210
encoder 220 <_> . <:> encoder 220
decoder 270 decoder 270

playback tool 214

Figure 2b

decoder 270

cncoding tool 212 z
playback tool 214
encoder 220

decoder 270

US 8,837,600 B2

Sheet 2 of 8

Sep. 16, 2014

U.S. Patent

0L€ BoIE BYRD
papoo Aselodway

 ——
1L ©ep
PopoOd
08¢
I2p0od
Teuueyd
S—TT

7P € S1euSIS [0NnUod

JswaSeur A10WSW 1€€ (S)ourexy
|||||||||||| 921Nn0S
< r 0§ Jopooud &—— 0te
¢ | 10300708
_ [¥€ (S)owrey
_ popod
! T 605 (s)owrexy oce
_ (304) popooop (s)owrey
A4 /—\ 90IN0S
0S¢ JojeInuid S \ \
$$9001d Surpodap cc
! uog [| €o¢
owely
papooap

06¢

S~—— [uuERyd

0¢

¢ 2In31

A\

9t

e

~

19¢

v

09¢ BaIE 238I0)S
Lowow Aresoduwioy
QwIBlJ pOpoop

0Z¢ ®ate 93v10)8 Alowaw
Areiodwid) owey 30IN0S

11€ (S)owey
20IN0S
Suraure
0I¢
201n0S
03pIA

US 8,837,600 B2

Sheet 3 of 8

Sep. 16, 2014

U.S. Patent

0€t BoIE BIED
papoo Aretodwdy

Z€P STRUSIS [0RUOD
JUSWASRURI AIOUISW

C 07— e e e ——— 4. ||||||||||||||||||||||||| _

691 ()
(321) popooaap

1 .
E— } 15t
_ (S)owreyy
_ papoo
T2t wiep _
opood _
Pop v /_\
0Ty
10POOP 0S P 10poddp
[ouuRyd

S—TT [euueyd

(\l%

 2In31,J

—s

ISy wy | | cop
oweyy

popooap

AN

AR\
NCEAN

\

09§ BoIE 08R10)8
Kowrowr Aresodwioy
QWIBIJ POpOIIP

—

I120uanboas
mdino

18% mdino

2q 0}

Qwielj 1xou

0oy
UonRUTISIP
indino

US 8,837,600 B2

Sheet 4 of 8

Sep. 16, 2014

U.S. Patent

Y

708

qs oSy

AR

T0S

BS 2In31,]

U.S. Patent Sep. 16,2014 Sheet 5 of 8 US 8,837,600 B2

o A AN

AR RRE
R EER:

Figure 5d

504

Figure 5c

503

U.S. Patent Sep. 16,2014 Sheet 6 of 8 US 8,837,600 B2

e
SREAC

g

Rt

Figure Se
505
H @m

U.S. Patent Sep. 16,2014 Sheet 7 of 8 US 8,837,600 B2

Figure 6

600
g ~ 610
Set syntax element(s) that indicate a
constraint on latency.
~ 620

Output the syntax element(s), thereby
facilitating determination of when
reconstructed frames are ready for output
in terms of output order.

End

U.S. Patent Sep. 16,2014 Sheet 8 of 8 US 8,837,600 B2

Figure 7

[l

700

Receive and parse syntax element(s) ~ 710

that indicate a constraint on latency.

l

Receive encoded data for
frames of a video sequence.

l

Decode at least some of the encoded
data to reconstruct one of the frames.

;

Output reconstructed frame.

~ 720

~ 730

~ 740

End

US 8,837,600 B2

1

REDUCING LATENCY IN VIDEO ENCODING
AND DECODING

RELATED APPLICATION

The present application claims the benefit of U.S. Provi-
sional Patent Application No. 61/571,553, filed Jun. 30,2011,
the disclosure of which is hereby incorporated by reference.

BACKGROUND

Engineers use compression (also called source coding or
source encoding) to reduce the bit rate of digital video. Com-
pression decreases the cost of storing and transmitting video
information by converting the information into a lower bit
rate form. Decompression (also called decoding) reconstructs
a version of the original information from the compressed
form. A “codec” is an encoder/decoder system.

Over the last two decades, various video codec standards
have been adopted, including the H.261, H.262 (MPEG-2 or
ISO/IEC 13818-2), H.263 and H.264 (AVC or ISO/IEC
14496-10) standards and the MPEG-1 (ISO/IEC 11172-2),
MPEG-4 Visual (ISO/IEC 14496-2) and SMPTE 421M stan-
dards. More recently, the HEVC standard is under develop-
ment. A video codec standard typically defines options for the
syntax of an encoded video bitstream, detailing parameters in
the bitstream when particular features are used in encoding
and decoding. In many cases, a video codec standard also
provides details about the decoding operations a decoder
should perform to achieve correct results in decoding.

A basic goal of compression is to provide good rate-dis-
tortion performance. So, for a particular bit rate, an encoder
attempts to provide the highest quality of video. Or, for a
particular level of quality/fidelity to the original video, an
encoder attempts to provide the lowest bit rate encoded video.
In practice, depending on the use scenario, considerations
such as encoding time, encoding complexity, encoding
resources, decoding time, decoding complexity, decoding
resources, overall delay, and/or smoothness in playback also
affect decisions made during encoding and decoding.

For example, consider use scenarios such as video play-
back from storage, video playback from encoded data
streamed over a network connection, and video transcoding
(from one bit rate to another bit rate, or one standard to
another standard). At the encoder side, such applications may
permit off-line encoding that is not at all time-sensitive.
Therefore, an encoder can increase encoding time and
increase resources used during encoding to find the most
efficient way to compress video, and thereby improve rate-
distortion performance. If a small amount of delay is also
acceptable at the decoder side, the encoder can further
improve rate-distortion performance, e.g., by exploiting
inter-picture dependencies from pictures farther ahead in a
sequence.

On the other hand, consider use scenarios such as remote
desktop conferencing, surveillance video, video telephony
and other real-time communication scenarios. Such applica-
tions are time-sensitive. Low latency between recording of
input pictures and playback of output pictures is a key factor
in performance. When encoding/decoding tools adapted for
non-real-time communication are applied in real-time com-
munication scenarios, overall latency is often unacceptably
high. The delays that these tools introduce during encoding
and decoding may improve performance for regular video
playback, but they disrupt real-time communication.

SUMMARY

In summary, the detailed description presents techniques
and tools for reducing latency in video encoding and decod-

20

25

30

35

40

45

50

55

60

65

2

ing. The techniques and tools can reduce latency so as to
improve responsiveness in real-time communication. For
example, the techniques and tools reduce overall latency by
constraining latency due to reordering of video frames, and
by indicating the constraint on frame reordering latency with
one or more syntax elements that accompany coded data for
the video frames.

According to one aspect of the techniques and tools
described herein, a tool such as a video encoder, real-time
communication tool with a video encoder, or other tool, sets
one or more syntax elements that indicate a constraint on
latency (e.g., a constraint on frame reordering latency consis-
tent with inter-frame dependencies between multiple frames
of'a video sequence). The tool outputs the syntax element(s),
thereby facilitating simpler and quicker determination of
when reconstructed frames are ready for output in terms of
output order of the frames.

According to another aspect of the techniques and tools
described herein, a tool such as a video decoder, real-time
communication tool with a video decoder, or other tool,
receives and parses one or more syntax elements that indicate
a constraint on latency (e.g., a constraint on frame reordering
latency). The tool also receives encoded data for multiple
frames of'a video sequence. At least some of the encoded data
is decoded to reconstruct one of the frames. The tool can
determine the constraint on latency based on the syntax ele-
ment(s), then use the constraint on latency to determine when
a reconstructed frame is ready for output (in terms of output
order). The tool outputs the reconstructed frame.

The foregoing and other objects, features, and advantages
of' the invention will become more apparent from the follow-
ing detailed description, which proceeds with reference to the
accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an example computing system in
which some described embodiments can be implemented.

FIGS. 2a and 25 are diagrams of example network envi-
ronments in which some described embodiments can be
implemented.

FIG. 3 is a diagram of an example encoder system in
conjunction with which some described embodiments can be
implemented.

FIG. 4 is a diagram of an example decoder system in
conjunction with which some described embodiments can be
implemented.

FIGS. 5a-5¢ are diagrams showing coded order and output
order for frames in several example series.

FIG. 6 is a flowchart showing an example technique for
setting and outputting one or more syntax elements that indi-
cate a constraint on latency.

FIG. 7 is a flowchart showing an example technique for
reduced-latency decoding.

DETAILED DESCRIPTION

The detailed description presents techniques and tools for
reducing latency in video encoding and decoding. The tech-
niques and tools can help reduce latency so as to improve
responsiveness in real-time communication.

In video coding/decoding scenarios, some delay is inevi-
table between the time an input video frame is received and
the time the frame is played back. The frame is encoded by an
encoder, delivered to a decoder and decoded by the decoder,
and some amount of latency is caused by practical limitations
on encoding resources, decoding resources and/or network

US 8,837,600 B2

3

bandwidth. Other latency is avoidable, however. For
example, latency might be introduced by an encoder and
decoder to improve rate-distortion performance (e.g., to
exploit inter-frame dependencies from pictures farther ahead
in a sequence). Such latency can be reduced, although there
may be a penalty in terms of rate-distortion performance,
processor utilization or playback smoothness.

With techniques and tools described herein, latency is
decreased by constraining latency (hence, limiting the tem-
poral extent of inter-frame dependencies) and indicating the
constraint on latency to a decoder. For example, the constraint
on latency is a constraint on frame reordering latency. Alter-
natively, the constraint on latency is a constraint in terms of
seconds, milliseconds, or another time measure. The decoder
can then determine the constraint on latency and use the
constraint when determining which frames are ready for out-
put. In this way, delay can be reduced for remote desktop
conferencing, video telephony, video surveillance, web cam-
era video and other real-time communication applications.

Some of the innovations described herein are illustrated
with reference to syntax elements and operations specific to
the H.264 and/or HEVC standard. Such innovations can also
be implemented for other standards or formats.

More generally, various alternatives to the examples
described herein are possible. Certain techniques described
with reference to flowchart diagrams can be altered by chang-
ing the ordering of stages shown in the flowcharts, by split-
ting, repeating or omitting certain stages, etc. The various
aspects of latency reduction for video encoding and decoding
can be used in combination or separately. Different embodi-
ments use one or more of the described techniques and tools.
Some of the techniques and tools described herein address
one or more of the problems noted in the background. Typi-
cally, a given technique/tool does not solve all such problems.
1. Example Computing Systems.

FIG. 1 illustrates a generalized example of a suitable com-
puting system (100) in which several of the described tech-
niques and tools may be implemented. The computing system
(100) is not intended to suggest any limitation as to scope of
use or functionality, as the techniques and tools may be imple-
mented in diverse general-purpose or special-purpose com-
puting systems.

With reference to FIG. 1, the computing system (100)
includes one or more processing units (110, 115) and memory
(120, 125). In FIG. 1, this most basic configuration (130) is
included within a dashed line. The processing units (110, 115)
execute computer-executable instructions. A processing unit
can be a general-purpose central processing unit (CPU), pro-
cessor in an application-specific integrated circuit (ASIC) or
any other type of processor. In a multi-processing system,
multiple processing units execute computer-executable
instructions to increase processing power. For example, FIG.
1 shows a central processing unit (110) as well as a graphics
processing unit or co-processing unit (115). The tangible
memory (120, 125) may be volatile memory (e.g., registers,
cache, RAM), non-volatile memory (e.g., ROM, EEPROM,
flash memory, etc.), or some combination of the two, acces-
sible by the processing unit(s). The memory (120, 125) stores
software (180) implementing one or more innovations for
reducing latency in video encoding and decoding, in the form
of computer-executable instructions suitable for execution by
the processing unit(s).

A computing system may have additional features. For
example, the computing system (100) includes storage (140),
one or more input devices (150), one or more output devices
(160), and one or more communication connections (170). An
interconnection mechanism (not shown) such as a bus, con-

20

25

30

35

40

45

50

55

60

65

4

troller, or network interconnects the components of the com-
puting system (100). Typically, operating system software
(not shown) provides an operating environment for other
software executing in the computing system (100), and coor-
dinates activities of the components of the computing system
(100).

The tangible storage (140) may be removable or non-re-
movable, and includes magnetic disks, magnetic tapes or
cassettes, CD-ROMs, DVDs, or any other medium which can
be used to store information in a non-transitory way and
which can be accessed within the computing system (100).
The storage (140) stores instructions for the software (180)
implementing one or more innovations for latency reduction
in video encoding and decoding.

The input device(s) (150) may be a touch input device such
as a keyboard, mouse, pen, or trackball, a voice input device,
a scanning device, or another device that provides input to the
computing system (100). For video encoding, the input
device(s) (150) may be a camera, video card, TV tuner card,
or similar device that accepts video input in analog or digital
form, ora CD-ROM or CD-RW that reads video samples into
the computing system (100). The output device(s) (160) may
be a display, printer, speaker, CD-writer, or another device
that provides output from the computing system (100).

The communication connection(s) (170) enable communi-
cation over a communication medium to another computing
entity. The communication medium conveys information
such as computer-executable instructions, audio or video
input or output, or other data in a modulated data signal. A
modulated data signal is a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media can use an electrical, optical,
RF, or other carrier.

The techniques and tools can be described in the general
context of computer-readable media. Computer-readable
media are any available tangible media that can be accessed
within a computing environment. By way of example, and not
limitation, with the computing system (100), computer-read-
able media include memory (120, 125), storage (140), and
combinations of any of the above.

The techniques and tools can be described in the general
context of computer-executable instructions, such as those
included in program modules, being executed in a computing
system on a target real or virtual processor. Generally, pro-
gram modules include routines, programs, libraries, objects,
classes, components, data structures, etc. that perform par-
ticular tasks or implement particular abstract data types. The
functionality of the program modules may be combined or
split between program modules as desired in various embodi-
ments. Computer-executable instructions for program mod-
ules may be executed within a local or distributed computing
system.

The terms “system” and “device” are used interchangeably
herein. Unless the context clearly indicates otherwise, neither
term implies any limitation on a type of computing system or
computing device. In general, a computing system or com-
puting device can be local or distributed, and can include any
combination of special-purpose hardware and/or general-
purpose hardware with software implementing the function-
ality described herein.

For the sake of presentation, the detailed description uses
terms like “determine” and “‘use” to describe computer opera-
tions in a computing system. These terms are high-level
abstractions for operations performed by a computer, and
should not be confused with acts performed by a human

US 8,837,600 B2

5

being. The actual computer operations corresponding to these
terms vary depending on implementation.
1I. Example Network Environments.

FIGS. 2a and 26 show example network environments
(201, 202) that include video encoders (220) and video
decoders (270). The encoders (220) and decoders (270) are
connected over a network (250) using an appropriate com-
munication protocol. The network (250) can include the
Internet or another computer network.

In the network environment (201) shown in FIG. 2a, each
real-time communication (“RTC”) tool (210) includes both
an encoder (220) and a decoder (270) for bidirectional com-
munication. A given encoder (220) can produce output com-
pliant with the SMPTE 421M standard, ISO-IEC 14496-10
standard (also known as H.264 or AVC), HEVC standard,
another standard, or a proprietary format, with a correspond-
ing decoder (270) accepting encoded data from the encoder
(220). The bidirectional communication can be part ofa video
conference, video telephone call, or other two-party commu-
nication scenario. Although the network environment (201)
in FIG. 2a includes two real-time communication tools (210),
the network environment (201) can instead include three or
more real-time communication tools (210) that participate in
multi-party communication.

A real-time communication tool (210) manages encoding
by an encoder (220). FIG. 3 shows an example encoder sys-
tem (300) that can be included in the real-time communica-
tion tool (210). Alternatively, the real-time communication
tool (210) uses another encoder system. A real-time commu-
nication tool (210) also manages decoding by a decoder
(270). FIG. 4 shows an example decoder system (400), which
can be included in the real-time communication tool (210).
Alternatively, the real-time communication tool (210) uses
another decoder system.

In the network environment (202) shown in FIG. 25, an
encoding tool (212) includes an encoder (220) that encodes
video for delivery to multiple playback tools (214), which
include decoders (270). The unidirectional communication
can be provided for a video surveillance system, web camera
monitoring system, remote desktop conferencing presenta-
tion or other scenario in which video is encoded and sent from
one location to one or more other locations. Although the
network environment (202) in FIG. 25 includes two playback
tools (214), the network environment (202) can include more
or fewer playback tools (214). In general, a playback tool
(214) communicates with the encoding tool (212) to deter-
mine a stream of video for the playback tool (214) to receive.
The playback tool (214) receives the stream, buffers the
received encoded data for an appropriate period, and begins
decoding and playback.

FIG. 3 shows an example encoder system (300) that can be
included in the encoding tool (212). Alternatively, the encod-
ing tool (212) uses another encoder system. The encoding
tool (212) can also include server-side controller logic for
managing connections with one or more playback tools (214).
FIG. 4 shows an example decoder system (400), which can be
included in the playback tool (214). Alternatively, the play-
back tool (214) uses another decoder system. A playback tool
(214) can also include client-side controller logic for manag-
ing connections with the encoding tool (212).

In some cases, the use of a syntax element to indicate
latency (e.g., frame reordering latency) is specific to a par-
ticular standard or format. For example, encoded data can
contain one or more syntax elements that indicate a constraint
on latency as part of the syntax of an elementary coded video
bitstream defined according to the standard or format, or as
defined media metadata relating to the encoded data. In such

20

25

30

35

40

45

50

55

60

65

6

cases, the real-time communication tool (210), encoding tool
(212) and/or playback tool (214) with reduced latency may be
codec dependent, in that decisions they make can depend on
bitstream syntax for a particular standard or format.

In other cases, the use of a syntax element to indicate a
constraint on latency (e.g., frame reordering latency) is out-
side a particular standard or format. For example, syntax
element(s) that indicate a constraint on latency can be sig-
naled as part of the syntax of a media transmission stream,
media storage file or, more generally, a media system multi-
plexing protocol or transport protocol. Or, syntax element(s)
that indicate latency can be negotiated between real-time
communication tools (210), encoding tools (212) and/or
playback tools (214) according to a media property negotia-
tion protocol. In such cases, the real-time communication tool
(210), encoding tool (212) and playback tool (214) with
reduced latency may be codec independent, in that they can
work with any available video encoder and decoder, assuming
a level of control over inter-frame dependencies set during
encoding.

II1. Example Encoder Systems.

FIG. 3 is a block diagram of an example encoder system
(300) in conjunction with which some described embodi-
ments may be implemented. The encoder system (300) can be
a general-purpose encoding tool capable of operating in any
of multiple encoding modes such as a low-latency encoding
mode for real-time communication, transcoding mode, and
regular encoding mode for media playback from a file or
stream, or it can be a special-purpose encoding tool adapted
for one such encoding mode. The encoder system (300) can
be implemented as an operating system module, as part of an
application library or as a standalone application. Overall, the
encoder system (300) receives a sequence of source video
frames (311) from a video source (310) and produces
encoded data as output to a channel (390). The encoded data
output to the channel can include one or more syntax elements
that indicate a constraint on latency (e.g., frame reordering
latency) to facilitate reduced-latency decoding.

The video source (310) can be a camera, tuner card, storage
media, or other digital video source. The video source (310)
produces a sequence of video frames at a frame rate of, for
example, 30 frames per second. As used herein, the term
“frame” generally refers to source, coded or reconstructed
image data. For progressive video, a frame is a progressive
video frame. For interlaced video, in example embodiments,
an interlaced video frame is de-interlaced prior to encoding.
Alternatively, two complementary interlaced video fields are
encoded as an interlaced video frame or separate fields. Aside
from indicating a progressive video frame, the term “frame”
can indicate a single non-paired video field, a complementary
pair of video fields, a video object plane that represents a
video object at a given time, or a region of interest in a larger
image. The video object plane or region can be part of a larger
image that includes multiple objects or regions of a scene.

An arriving source frame (311) is stored in a source frame
temporary memory storage area (320) that includes multiple
frame buffer storage areas (321, 322, .. ., 32»). A frame buffer
(321, 322, etc.) holds one source frame in the source frame
storage area (320). After one or more of the source frames
(311) have been stored in frame buffers (321, 322, etc.), a
frame selector (330) periodically selects an individual source
frame (329) from the source frame storage area (320). The
order in which frames are selected by the frame selector (330)
for input to the encoder (340) may differ from the order in
which the frames are produced by the video source (310),e.g.,
a frame may be ahead in order, to facilitate temporally back-
ward prediction. Before the encoder (340), the encoder sys-

US 8,837,600 B2

7

tem (300) can include a pre-processor (not shown) that per-
forms pre-processing (e.g., filtering) of the selected frame
(331) before encoding.

The encoder (340) encodes the selected frame (331) to
produce a coded frame (341) and also produces memory
management control signals (342). If the current frame is not
the first frame that has been encoded, when performing its
encoding process, the encoder (340) may use one or more
previously encoded/decoded frames (369) that have been
stored in a decoded frame temporary memory storage area
(360). Such stored decoded frames (369) are used as refer-
ence frames for inter-frame prediction of the content of the
current source frame (331). Generally, the encoder (340)
includes multiple encoding modules that perform encoding
tasks such as motion estimation and compensation, frequency
transforms, quantization and entropy coding. The exact
operations performed by the encoder (340) can vary depend-
ing on compression format. The format of the output encoded
data can be a Windows Media Video format, VC-1 format,
MPEG-x format (e.g., MPEG-1, MPEG-2, or MPEG-4),
H.26x format (e.g., H.261, H.262, H.263, H.264), HEVC
format or other format.

The coded frames (341) and memory management control
signals (342) are processed by a decoding process emulator
(350). The decoding process emulator (350) implements
some of the functionality of a decoder, for example, decoding
tasks to reconstruct reference frames that are used by the
encoder (340) in motion estimation and compensation. The
decoding process emulator (350) uses the memory manage-
ment control signals (342) to determine whether a given
coded frame (341) needs to be reconstructed and stored for
use as a reference frame in inter-frame prediction of subse-
quent frames to be encoded. If the control signals (342) indi-
cate that a coded frame (341) needs to be stored, the decoding
process emulator (350) models the decoding process that
would be conducted by a decoder that receives the coded
frame (341) and produces a corresponding decoded frame
(351). In doing so, when the encoder (340) has used decoded
frame(s) (369) that have been stored in the decoded frame
storage area (360), the decoding process emulator (350) also
uses the decoded frame(s) (369) from the storage area (360)
as part of the decoding process.

The decoded frame temporary memory storage area (360)
includes multiple frame buffer storage areas (361, 362, . . .,
36n). The decoding process emulator (350) uses the memory
management control signals (342) to manage the contents of
the storage area (360) in order to identify any frame buffers
(361, 362, etc.) with frames that are no longer needed by the
encoder (340) for use as reference frames. After modeling the
decoding process, the decoding process emulator (350) stores
anewly decoded frame (351) in a frame buffer (361, 362, etc.)
that has been identified in this manner.

The coded frames (341) and memory management control
signals (342) are also buffered in a temporary coded data area
(370). The coded data that is aggregated in the coded data area
(370) can contain, as part of the syntax of an elementary
coded video bitstream, one or more syntax elements that
indicate a constraint on latency. Or, the coded data that is
aggregated in the coded data area (370) can include syntax
element(s) that indicate a constraint on latency as part of
media metadata relating to the coded video data (e.g., as one
or more parameters in one or more supplemental enhance-
ment information (“SEI”) messages or video usability infor-
mation (“VUI”) messages).

The aggregated, coded data (371) from the temporary
coded data area (370) are processed by a channel encoder
(380). The channel encoder (380) can packetize the aggre-

20

25

30

35

40

45

50

55

60

65

8

gated data for transmission as a media stream, in which case
the channel encoder (380) can add, as part of the syntax of the
media transmission stream, syntax element(s) that indicate a
constraint on latency. Or, the channel encoder (380) can orga-
nize the aggregated data for storage as a file, in which case the
channel encoder (380) can add, as part of the syntax of the
media storage file, syntax element(s) that indicate a constraint
on latency. Or, more generally, the channel encoder (380) can
implement one or more media system multiplexing protocols
or transport protocols, in which case the channel encoder
(380) can add, as part of the syntax of the protocol(s), syntax
element(s) that indicate a constraint on latency. The channel
encoder (380) provides output to a channel (390), which
represents storage, a communications connection, or another
channel for the output.

IV. Example Decoder Systems.

FIG. 4 is a block diagram of an example decoder system
(400) in conjunction with which some described embodi-
ments may be implemented. The decoder system (400) can be
a general-purpose decoding tool capable of operating in any
of multiple decoding modes such as a low-latency decoding
mode for real-time communication and regular decoding
mode for media playback from a file or stream, or it can be a
special-purpose decoding tool adapted for one such decoding
mode. The decoder system (400) can be implemented as an
operating system module, as part of an application library or
as a standalone application. Overall, the decoder system
(400) receives coded data from a channel (410) and produces
reconstructed frames as output for an output destination
(490). The coded data can include one or more syntax ele-
ments that indicate a constraint on latency (e.g., frame reor-
dering latency) to facilitate reduced-latency decoding.

The decoder system (400) includes a channel (410), which
can represent storage, a communications connection, or
another channel for coded data as input. The channel (410)
produces coded data that has been channel coded. A channel
decoder (420) can process the coded data. For example, the
channel decoder (420) de-packetizes data that has been
aggregated for transmission as a media stream, in which case
the channel decoder (420) can parse, as part of the syntax of
the media transmission stream, syntax element(s) that indi-
cate a constraint on latency. Or, the channel decoder (420)
separates coded video data that has been aggregated for stor-
age as a file, in which case the channel decoder (420) can
parse, as part of the syntax of the media storage file, syntax
element(s) that indicate a constraint on latency. Or, more
generally, the channel decoder (420) can implement one or
more media system demultiplexing protocols or transport
protocols, in which case the channel decoder (420) can parse,
as part of the syntax of the protocol(s), syntax element(s) that
indicate a constraint on latency.

The coded data (421) that is output from the channel
decoder (420) is stored in a temporary coded data area (430)
until a sufficient quantity of such data has been received. The
coded data (421) includes coded frames (431) and memory
management control signals (432). The coded data (421) in
the coded data area (430) can contain, as part of the syntax of
an elementary coded video bitstream, one or more syntax
elements that indicate a constraint on latency. Or, the coded
data (421) in the coded data area (430) can include syntax
element(s) that indicate a constraint on latency as part of
media metadata relating to the encoded video data (e.g., as
one or more parameters in one or more SEI messages or VUI
messages). In general, the coded data area (430) temporarily
stores coded data (421) until such coded data (421) is used by
the decoder (450). At that point, coded data for a coded frame
(431) and memory management control signals (432) are

US 8,837,600 B2

9

transferred from the coded data area (430) to the decoder
(450). As decoding continues, new coded data is added to the
coded data area (430) and the oldest coded data remaining in
the coded data area (430) is transferred to the decoder (450).

The decoder (450) periodically decodes a coded frame
(431) to produce a corresponding decoded frame (451). As
appropriate, when performing its decoding process, the
decoder (450) may use one or more previously decoded
frames (469) as reference frames for inter-frame prediction.
The decoder (450) reads such previously decoded frames
(469) from a decoded frame temporary memory storage area
(460). Generally, the decoder (450) includes multiple decod-
ing modules that perform decoding tasks such as entropy
decoding, inverse quantization, inverse frequency transforms
and motion compensation. The exact operations performed
by the decoder (450) can vary depending on compression
format.

The decoded frame temporary memory storage area (460)
includes multiple frame buffer storage areas (461, 462, . . .,
461n). The decoded frame storage area (460) is an example of
a decoded picture buffer. The decoder (450) uses the memory
management control signals (432) to identify a frame buffer
(461, 462, etc.) in which it can store a decoded frame (451).
The decoder (450) stores the decoded frame (451) in that
frame buffer.

An output sequencer (480) uses the memory management
control signals (432) to identity when the next frame to be
produced in output order is available in the decoded frame
storage area (460). To reduce latency of the encoding-decod-
ing system, the output sequencer (480) uses syntax elements
that indicate constraints on latency to expedite identification
of'frames to be produced in output order. When the next frame
(481) to be produced in output order is available in the
decoded frame storage area (460), it is read by the output
sequencer (480) and output to the output destination (490)
(e.g., display). In general, the order in which frames are
output from the decoded frame storage area (460) by the
output sequencer (480) may differ from the order in which the
frames are decoded by the decoder (450).

V. Syntax Elements that Facilitate Reduced-Latency Encod-
ing and Decoding.

In most video codec systems, the coded order (also called
the decoding order or bitstream order) is the order in which
video frames are represented in coded data in a bitstream and,
hence, processed during decoding. The coded order may dif-
fer from the order in which the frames are captured by a
camera before encoding and differ from the order in which
decoded frames are displayed, stored, or otherwise output
after decoding (output order or display order). Reordering of
frames relative to the output order has benefits (primarily in
terms of compression capability), but it increases the end-to-
end latency of encoding and decoding processes.

Techniques and tools described herein reduce latency due
to reordering of video frames and, by providing information
about constraints on the reordering latency to decoder sys-
tems, also facilitate latency reduction by the decoder systems.
Such latency reduction is useful for many purposes. For
example, it can be used to reduce the time lag that occurs in
interactive video communication using a video conferencing
system, so that the conversation flow and interactivity of
communication between remote participants will be more
rapid and natural.

A. Approaches to Output Timing and Output Ordering.

According to the H.264 standard, a decoder can use two
approaches to determine when a decoded frame is ready to be
output. A decoder can use timing information in the form of
decoding timestamps and output timestamps (e.g., as sig-

20

25

30

35

40

45

50

55

60

65

10

naled in picture timing SEI messages). Or, the decoder can
use buffering capacity limits signaled with various syntax
elements to determine when a decoded frame is ready to be
output.

Timing information can be associated with each decoded
frame. The decoder can use timing information to determine
when a decoded frame can be output. In practice, however,
such timing information may be unavailable to a decoder.
Moreover, even when timing information is available, some
decoders do not actually use this information (e.g., because a
decoder has been designed to work regardless of whether
timing information is available).

Buffering capacity limits are indicated with several syntax
elements according to the H.264 standard (and draft versions
of the HEVC standard), including the syntax element max_
dec_frame_buffering, the syntax element num_reorder_
frames, relative ordering information (termed “picture order
count” information) and other memory management control
information signaled in the bitstream. The syntax element
max_dec_frame_buffering (or the derived variable specified
as MaxDpbFrames) specifies the required size of a decoded
picture buffer (“DPB”) in units of frame buffers. As such, the
syntax element max_dec_frame_buffering expresses a top-
level memory capacity used for a coded video sequence, so as
to enable a decoder to output pictures in the correct order. The
syntax element num_reorder_frames (or max_num_reorder_
frames) indicates the maximum number of frames (or
complementary field pairs, or non-paired fields) that can pre-
cede any frame (or complementary field pair, or non-paired
field) in coded order and follow it in output order. In other
words, num_reorder_frames specifies a constraint on the
memory capacity necessary for picture reordering. The syn-
tax element max_num_ref frames specifies the maximum
number of short-term and long-term reference frames (or
complementary reference field pairs, or non-paired reference
fields) that may be used by the decoding process for inter
prediction of any picture in the sequence. The syntax element
max_num_ref_frames also determines the size of the sliding
window for decoded reference picture marking. Like num_
reorder_frames, max_num_ref_ frames specifies a constraint
on required memory capacity.

A decoder uses the max_dec_frame_buffering (or MaxD-
pbFrames) and num_reorder_frames syntax elements to
determine when a buffering capacity limit has been exceeded.
This happens, for example, when a new decoded frame needs
to be stored in the DPB, but there is no available space
remaining in the DPB. In this situation, the decoder uses
picture order count information to identify, among the pic-
tures that have been decoded, which is the earliest in output
order. The picture that is earliest in output order is then output.
Such processing is sometimes called “bumping” because a
picture is “bumped out” of the DPB by the arrival of a new
picture that needs to be stored.

Information indicated with the max_dec_frame_buffering
(or MaxDpbFrames) and num_reorder_frames syntax ele-
ments suffices for determining memory capacity needed in a
decoder. When used to control the “bumping” process for
picture output, however, use of such information can intro-
duce latency unnecessarily. As defined in the H.264 standard,
the max_dec_frame_buffering and num_reorder_frames syn-
tax elements do not establish a limit on the amount of reor-
dering that can be applied to any particular picture and, hence,
do not establish a limit on end-to-end latency. Regardless of
the values ofthese syntax elements, a particular picture can be
kept in the DPB for an arbitrarily long time before it is output,
which corresponds to substantial latency added by pre-buff-
ering of the source pictures by an encoder.

