a2 United States Patent
Kakivaya et al.

US006546443B1
10y Patent No.: US 6,546,443 B1
5) Date of Patent: Apr. 8, 2003

(54) CONCURRENCY-SAFE READER-WRITER
LOCK WITH TIME OUT SUPPORT

(75) Inventors: Gopala Krishna R. Kakivaya,
Redmond, WA (US); David N. Cutler,
Medina, WA (US); James M. Lyon,
Redmond, WA (US)

(73) Assignee: Microsoft Corporation, Redmond, WA
Us)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 09/465,239

(22) Filed: Dec. 15, 1999

(51) Int. CL7 oo GOG6F 13/376; GOGF 12/00
(52) US.CL .. 710/200; 710/108; 714/15
(58) Field of Searchc.cccoceuvveiine. 7107200, 108;

711/145, 151, 152, 163; 709/101, 102,
104, 107, 229, 232, 248, 400; 707/8-10,
1, 201; 714/2, 15

(56) References Cited
U.S. PATENT DOCUMENTS

5,274,809 A * 12/1993 Iwasaki et al.
5,502,840 A * 3/1996 Barton
5,774,731 A * 6/1998 Higuchi et al.
5,884,316 A 3/1999 Bernstein et al.
6,029,190 A * 2/2000 Oliver
6,167,423 A 12/2000 Chopra et al.

OTHER PUBLICATIONS

“OLE Controls: Understanding Events,” MSDN CD-ROM,
Microsoft Corporation, pp. 1-8, Apr. 1998.

“Hierarchy Chart,” MSDN CD-ROM, Microsoft Corpora-
tion, pp. 1-5, Apr. 1998.

“Microsoft Foundation Class Library Version 4.2,” MSDN
CD-ROM, Microsoft Corporation, pp. 1-5, Apr. 1998.

Schmidt, “Evaluating Architectures for Multithreaded
Object Request Brokers,” Communications of the ACM, vol.
41, No. 10, pp. 54-60, Oct. 1998.

“Multithreading: How to Use the Synchronization Classes,”
MSDN CD-ROM, Microsoft Corporation, pp. 1-2, Apr.
1998.

“CEvent,” MSDN CD-ROM, Microsoft Corporation, pp.
1-2, Apr. 1998.

“OpenEvent,” MSDN CD-ROM, Microsoft Corporation,
pp- 1-2, Apr. 1998.

“Synchronization Functions,” MSDN CD-ROM, Microsoft
Corporation, p. 1, Apr. 1998.

“CreateEvent,” MSDN CD-ROM, Microsoft Corporation,
pp- 1-2, Apr. 1998.

Kleiman et al., Programming with Threads, SunSoft Press,
pp. 248-253, 1996, pp. 259-260, pp. 273-274.

(List continued on next page.)

Primary Examiner—Gopal C. Ray
(74) Attorney, Agent, or Firm—XKlarquist Sparkman, LLP

(7) ABSTRACT

Synchronization services provide a concurrency-safe reader/
writer lock supporting a time out feature. The lock can be
implemented using lockless data structures to provide effi-
cient synchronization services. Various features such as lock
nesting and auto-transformation address common scenarios
arising in componentized programs. The lock supports
upgrading and suspension, and the time out feature can
support an efficient, low-cost optimistic deadlock avoidance
scheme. Peculiarities of the reader/writer scenario are
addressed in an efficient way to maintain lock stability and
consistency, thus providing synchronization services suit-
able for implementation at the kernel level. In one imple-
mentation using event objects, the events are managed for
high efficiency and stability of the lock. For multiprocessor
machines, a hybrid lock avoids a context switch by behaving
as a spin lock before waiting for the lock to become
available.

73 Claims, 14 Drawing Sheets

COMPUTER

PROGRAM

RESOURCES

F\

PROCESS STORAGE
" ﬁ
OBJECT 214 / 3 g A
\

SYNCHRONIZATION SERVICES

340,
LOCK
344

0
/2 354, %
EVENT EVENT

LOCK

US 6,546,443 B1
Page 2

OTHER PUBLICATIONS

Lewis et al., Threads Primer: A Guide to Multithreaded
Programming, SunSoft Press, pp. 65-72, 1996, pp. 87-96,
p. 117, p. 205, pp. 224-227.

Deitel and Deitel, Java How to Program, Prentice Hall,
Second Edition, pp. 688—729, 1998.

Microsoft Corporation, “database.c,” sample file from
Visual C++ 2.0, Dec. 1993.

Microsoft Corporation, “readwrit.c,” sample file from Visual
C++ 2.0, Dec. 1993.

Microsoft Corporation, Read/Write Synchronization Dem-
onstration, excerpt from help Visual C++ 2.0, Dec. 1993.
“semaphore.lock,” DocServer.UserLand.Com website,
http://docserver.userland.com/semaphore/lock, Nov. 2,
1999.

“synch.h,” Victoria University School of Mathematical and
Computing Sciences website, http://www.mcs.vuw.ac.nz/
courses/COMP305/Nachos/nachos__html/synch__h.html,
Nov. 2, 1999.

“lockd—network lock daemon,” Hewleft—Packard Company
website, http://www.software.hp.com/STK/man/11.00/
lockd__1m.html, Oct. 1997.

Agrawal et al., “Integrated Concurrency Control and Recov-
ery Mechanisms: Design and Performance Evaluation,”
ACM Transactions on Database Systems, vol. 10, No. 4, pp.
529-564, Dec. 1985.

Rekesh, Issues in Concurrent Programming, California
Software Laboratories White Paper, pp. 1-31, http://www.c-
swl.com/whiteppr/white/concurrent.html, Sep. 23, 1998.
Kleiman et al., “Writing Multithreaded Code in Solaris,”
SunSoft, Inc., Mountain View, California, pp. 1-6, Dec.
1992.

“SetEvent,” MSDN CD-ROM, Microsoft Corporation, p. 1,
Apr. 1998.

“WaitForSingleObject,” MSDN CD-ROM, Microsoft Cor-
poration, pp. 1-2, Apr. 1998.

Schneider, On Concurrent Programming, Springer—Verlag
New York, Inc., p. 2, 1997, pp. 198-202, pp. 308-335, pp.
337-376.

“Interface ReadWriteLock,” http://g.oswego.edu/dl/classes/
EDU/oswego/cs/dl/util/concurrent/ReadWriteLock.html,
pp- 1-2, Jun. 7, 1999.

Frost, “Portable Thread Synchronization Using C++,” Soft-
ware Tool & Die, http://world.std.com/~jimf/papers/c++
sync/c++sync.html, pp. 1-6, Jun. 7, 1999.
“Readers/Writers Problem,” http://www.cs.umd.edu/~holl-
ings/cs412/s96/synch/synchl.html, pp. 1-2, Jun. 7, 1999.
Christopher, “Animation of Multiple Readers/Writers Algo-
rithms,” http://toolsofcomputing.com/multiplereaderswrit-
ers.htm. pp. 1-5, Jun. 7, 1999.

Herlihy, “Wait-Free Synchronization,” ACM Transactions
on Programming Languages and Systems, vol. 11, No. 1, pp.
124-149, Jan. 1991.

“Parallel Programming—Basic Theory for the Unwary,”
http://www.actcom.co.il/~choo/lupg/tutorials/parallel—
progr.../parallel-programming—theory.htm, pp. 1-10, Jun.
21, 1999.

“Multithreading: When to Use the Synchronization
Classes,” MSDN CD-ROM, Microsoft Corporation, pp.
1-2, Apr. 1998.

“CSemaphore,” MSDN CD-ROM, Microsoft Corporation,
pp- 1-2, Apr. 1998.

Valois, “Lock—Free Linked Lists Using Compare—and—
Swap,” Proceedings of the 14" Annual ACM Symposium on
Principles of Distributed Computing, Ottawa, Ontario,
Canada, pp. 214-222, 1995.

Anderson, “Wait—free Parallel Algorithms for the Union—
Find Problem,” Communications of the ACM, pp. 370-380,
1991.

Anderson, Multiple Processing A Systems Overview, Pren-
tice Hall International Ltd., pp. 330-340, 1989.

“AIX Version 4.3 General Programming Concepts: Writing
and Debugging Programs,” http://www.cs.stedwards.edu/
a_ doc__lib/aixprggd/genprogc/create_ locking sves.htm,
pp. 1-3, Jun. 1, 1999.

Moir, “Practical Implementations of Non—Blocking Syn-
chronization Primitives,” PODC 1997, pp. 219-228, 1997.

“Threads Support Code,” http://goya.inescn.pt/~avs/dot-
Noweb/support/current/threads.red.html, pp. 1-11, Jun. 1,
1999.

“AIX Version 4.3 Base Operating System and Extensions
Technical Reference, vol. 1,” http://www.cs.stedwards.edu/
a_doc_ lib/libs/basetrfl/compare__and _ swap.htm, pp.
1-2, Jun. 1, 1999.

Dietz, “Linux Parallel Procesing Using SMP,” http://su-
parum.rz.uni—-mannheim.de/Linux/parallel/ppsmp.html, pp.
1-9, Jun. 1, 1999.

Birrell, “An Introduction to Programming with Threads,”
Digital Systems Research Center, pp. 1-33, Jan. 6, 1989.
Adya et al.,, “Efficient Optimistic Concurrency Control
Using Loosely Synchronized Clocks,” SIGMOD °95 Pro-
ceedings, San Jose, CA, 1995.

Hsu et al., “Buses,” The Computer Science and Engineering
Handbook, Tucker (ed.), CRC Press, Inc., pp. 440, 1997.
Franklin, “Concurrency Control and Recovery,” The Com-
puter Science and Engineering Handbook, Tucker (ed.),
CRC Press, Inc., pp. 1058-1076, 1997.

Wills, “Process Synchronization and Interprocess Commu-
nication,” The Computer Science and Engineering Hand-
book, Tucker (ed.), CRC Press, Inc., pp. 1725-1746, 1997.
Bernat, “Concurrent/Distributed Computing Paradigm,” The
Computer Science and FEngineering Handbook, Tucker
(ed.), CRC Press, Inc., pp. 2094-2119, 1997.

“Guide to DECthreads,” Digital Equipment Corporation,
Maynard, MA, pp. iii—Glossary—8, Dec. 1997.
Mellor—Crummey et al., “Scalable Reader—Writer Synchro-
nization for Shared—Memory Multiprocessors,” Communi-
cations of the ACM, pp. 106-113, 1991.

“Class Reentrant WritePreferenceReadWriteLock,” SUNY
Oswego website, http://g.oswego.edu/dl/classes/EDU/os-
wego/cs/dl/util/concurrent/ReentrantWriter—Prefer-
enceReadWriteLock.htm, Jun. 7, 1999.

Massalin et al., “A Lock—Free Multiprocessor OS Kernel,”
Columbia University Computer Science Technical Report
No. CUCS-005-91, pp. 1-19, Jun. 19, 1991.

* cited by examiner

U.S. Patent Apr. 8, 2003 Sheet 1 of 14 US 6,546,443 B1

COMPUTER| ___ 20 FIG. 1
PROCESSING | 20
UNIT I OPERATING | _35
| SYSTEM
4 »n | N mo o=
L—— r—-——=——-—-=
/ SYSTEM || APPLICATIONS 36
MEMORY) e J
23 - 25 ,,-”’ /I r———"-"-=-=- 37
- /
- I 2 L MODULES JI«v
I e
ROM — 24 oAt
//
//
KN
32 ~~— 27
»| INTERFACE |»{ HARD |——
DRIVE
N—
33 J___ Foppy | { - 28
INTERFACE |5 PCRIVE 29
BEES |t
MONITOR |— 47
34 CD-ROM ‘
INTERFACE [»| PRIVE I~ 4, 40 —__
[oisk Ml 21 KEYBOARD
48
VIDEO [
ADAPTER MOUSE
/_‘/
4 ‘;’)4 5?i 42 49
SERIAL [«] \ 8
» PORT
INTERFACE le»| MODEM » WAN REMOTE
COMPUTER
53
.| NETWORK [. > -
ADAPTER LAN e
MEMORY
1 _| | STORAGE
50

U.S. Patent Apr. 8, 2003 Sheet 2 of 14 US 6,546,443 B1

G. APPLICATION DLL FILE
INSTANCE VIRTUAL
DATA FUNCTION
STRUCTURE TABLE METHOD 0
70 —_ - > . >
76 —]
72 ——| 77 — N oes
— \
78 q
f METHOD 1
62
/' 64
76
67
METHOD 2
68
8o — |
g2 —1 CLASS FACTORY

U.S. Patent Apr. 8, 2003 Sheet 3 of 14 US 6,546,443 B1

COMPUTER ,206
PROGRAM 330
RESOURCES
_1{ DATA TABLE DATA
332 FIELD 336
334~
318 350
R
PROCESS STORAGE
312 0 OBJECT —
e T~
O OBJECT 314 (g g \
NI - =z /
A
308 320
SYNCHRONIZATION SERVICES
340 342
O LOCK o—] LOCK
344
LOCK
352 0 354 ®
304
EVENT EVENT
=
==
.
T
O 11

U.S. Patent Apr. 8, 2003 Sheet 4 of 14 US 6,546,443 B1
402\
e 1
| 404 |
I 440 I
| |LOCK OBJECT DATA STRUCTURES ,
COOKIES I
|| 406 [READERS| [READER | 408 |
| ™ SIGNALED |- |
| 430
| | 410[WRITER | [WRITER | 415 o~ |
™~ SIGNALED |~ . R |
: : READER [l432a |
	414 [WAITING	[WAITING	416		LUESTINGLEVEL :	
	READERS		WRITERS		READER	430N
	LNESTING LEVEL					
{429 WRITER	[WRITER	gpp	w — — — _ _ _ _ o			
ID SEQ.	- :					
: WRITER NESTING	424					
LEVEL ~						
: 426 0						
L~						
WRITEREVENT	~					
427 EVENT						
READER EVENT	~					
I
: ™ 428 |
' = K :
: 445 |
I I
___________________________ .
. FIG. 5
WAITING | WAITING | WRITER | WRITER | READER | READERS
WRITERS | READERS SIGNALED |SIGNALED
(9BITS) [(10BITS) [(1BM | (1BT) | (18T | (10BITS)
452A 4528 452C 452D 452E 452F

U.S. Patent Apr. 8, 2003 Sheet 5 of 14 US 6,546,443 B1

502 FIG. 6
™ LOAD CURRENT LOCK STATE INTO VARIABLE
Y
504 | STORE OLD VALUE OF VARIABLE
506 508 L — _ _ _ ;
VARIABLE) LOCK NOT |
INDICATES LOCK NO—»! CURRENTLY |
AVAILABLE? | ACQUIRABLE |
. _ |
YES
510 v
T
ADD READER TO VARIABLE
512 l
~{ ATTEMPT COMPARE AND EXCHANGE, USING OLD
VARIABLE AS COMPARAND
S14 520\\| ______ |
| Lock NOT |
NO— acauirep !
| |
— e o — |
YES
516
\,\'— — —— — —
|
LOCK

—_—— —]

| ACQUIRED

U.S. Patent Apr. 8, 2003 Sheet 6 of 14 US 6,546,443 B1

o0z FIG. 7
\
604

ACQUIRE LOCK
RELEASE LOCK

ACQUIRE LOCK
RELEASE LOCK

606

\

ACQUIRE LOCK
RELEASE LOCK

U.S. Patent Apr. 8, 2003 Sheet 7 of 14 US 6,546,443 B1

: T804
' |
INCREMENT | |
LOCK AVAI

: FOR READLSRI? I:;E YES—> READERS | |
| ' (GRANTED) | |
' |
I

NO

v

AVOID LOCK OPERATIONS IF CACHING EVENTS |—— 806

INCREMENT WAITING READERS 808
|

FIND OR CREATE MANUAL EVENT — 810

|~ 812

WAIT ON EVENT WITH TIMEOUT

U.S. Patent Apr. 8, 2003 Sheet 8 of 14 US 6,546,443 B1

FIG. 8B

DECREMENT

WAITING |— 822 820

READERS
(BEGIN
TIMEOUT
SEQUENCE)

<+—YES

NO
v

DECREMENT WAITING READERS: INCREMENT —— 824
READERS (GRANTED)

.4

830

LAST SIGNALED
WAITING READER?

YES
4

AVOID TIMEOUT RACE CONDITION 832
(FORCE GRANT IF APPROPRIATE) —

834

RESET EVENT (CLOSE GATE) NO

\ 4

—— 836

TURN OFF READER SIGNAL

gl
ey |
A

A

END

U.S. Patent Apr. 8, 2003 Sheet 9 of 14 US 6,546,443 B1
FIG.9
902
| S04
DECREMENT
READERS |4NO LAST READER?
(RELEASE)

YES

END
908
906
WAITING FIND OR
WRITERS? YES—> CREATE EVENT
L 910!
TURNON |~
NO WRITER SIGNAL
924
/ \ 4
FIND OR DECREMENT | 912
CREATE |eYES WAITING READERS |-
EVENT READERS? (RELEASE)
— —
Y 920
NO 940
TURNON |—96 -
READER = ‘
SIGNAL DECREMENT READERS
(RELEASE) | RESUME A
v 7 WAITING
DECREMENT 928 | WRITER
READERS TURN ON READER AND
|| (RELEASE) | WRITER SIGNALS I\ oz
L v
RELEASE EVENTS IF N
WAITING
READERS — > |«
930 v

END

U.S. Patent Apr. 8, 2003 Sheet 10 of 14 US 6,546,443 B1

1002 1004
/—/
LOCK INCREMENT
AVAILABLE FOR YES—>»| WRITERS
WRITER? (GRANTED)
NO
1008

ADD TO WAITING WRITERS

I

FIND OR CREATE AUTOMATIC EVENT — 1010

v

WAIT ON EVENT 1012
WITH TIMEOUT
1030
1020 /
ONE LESS
YES—»| WAITING
WRITER
l 1032
NO 1922 AVOID
| v 7 TIMEOUT
ONE LESS WAITING WRITER: ONE | RACE
| WRITER I CONDITION
&

(e)

U.S. Patent

Apr. 8, 2003 Sheet 11 of 14

1104

US 6,546,443 Bl

FIG. 11

WAITING
READERS?

FIND OR CREATE
READER EVENT

NO 1112~ TURN ON READER] |
1122 | SIGNAL |
1120 I 7 I
1114~ |
FIND OR CREATE |\ o WAITING || CLEARWRITER ||
WRITER EVENT WRITERS? | |
P S |
: I _i
TURN ON 1124
| | WRITER SIGNAL T/ NO
| v | . 2
: CLEAR WRITER || : CLEAR WRITER ’“‘I’ 1130
L & — 1134
1126 /
1132
WAITING RESUME WAITING
READERS? _~ 'E5™™ READERS
1140
/ NO
1136
RESUME A vEs<” WAITING
WAITING WRITERS?
WRITER

NO

LI‘

Lagl B

END

U.S. Patent Apr. 8, 2003 Sheet 12 of 14 US 6,546,443 B1
NOTE NO
1202~ \WRITER FIG. 12
1204
1210 ~——

1222

WAITING
READERS?

NO

FIND OR CREATE

YES—» READER EVENT

1220 1212~ NOTE READER TO
/ BE SIGNALED
FIND OR CREATE | o WAITING
WRITER EVENT WRITERS?
NOTE WRITER
TO BE SIGNALED ”N*O <
1230
\ UPDATE LOCK STATE [
1224 1234
1232
WAITING RESUME WAITING
READERS? _~ YES™ READERS
1240
/ NO
1236
RESUME A VES WAITING
WAITING WRITERS?
WRITER

—> NO<+—

=

U.S. Patent Apr. 8, 2003 Sheet 13 of 14 US 6,546,443 B1

NOTE ONE LESS READER ~ |—— 1302
(PREPARE TO RELEASE)
1304
LAST READER?
YES
1308
1306
WAITING FIND OR
WRITERS? YES— CREATE EVENT
v 1310
NO NOTE WRITER |~
1324 SIGNALED
R
CREATE |«YES RVEIQ[I)TEIEEC,;)
EVENT :
NOTE READER |—— 1326 NO
SIGNALED
NOTE WRITERAND |___1332
READER SIGNALED
‘ il

v
UPDATE LOCK STATE

| 1342

U.S. Patent

FI1G. 13B

Apr. 8,

2003 Sheet 14 of 14

1352

1364

J

RESUME
WAITING
READERS

LAST READER?

YES

WAITING
WRITERS?

NO

WAITING
READERS?

NO

US 6,546,443 Bl

1356

/./

RESUME A
WAITING
WRITER

RELEASE EVENTS IF
CACHING

1368

END

US 6,546,443 B1

1

CONCURRENCY-SAFE READER-WRITER
LOCK WITH TIME OUT SUPPORT

A portion of the disclosure of this patent document is
submitted on one compact disc and is hereby incorporated
herein by reference. The compact disc contains exactly one
file, created on Jul. 2, 2002, which is named “source-txt” and
is 75,040 bytes in size. An additional, identical compact disc
is also included, for a total of two compact discs.

TECHNICAL FIELD

The invention relates to providing synchronization ser-
vices for maintaining integrity of data accessed concurrently
by both readers and writers.

BACKGROUND OF THE INVENTION

In many information processing applications, multiple
executing entities attempt to access data concurrently. For
example, in a database program, multiple users may attempt
to access the same database tables, records, and fields at the
same time. Common examples of such database programs
include software for processing class registrations at a
university, travel reservations, money transfers at a bank,
and sales at a retail business. In these examples, the pro-
grams may update databases of class schedules, hotel
reservations, account balances, product shipments,
payments, or inventory for actions initiated by the individual
users. Sometimes a single program executes multiple
threads accessing the same data concurrently. For example,
one thread may watch for changes in data made by another
thread.

However, data corruption may result when concurrent
data access is uncontrolled. For example, consider the
following scenario in which two computers, A and B, both
attempt to remove one item from inventory by subtracting
one from an inventory field in a database:

1. The inventory field value is “2”

2. Computer A reads the inventory field (“2”) to its local

storage

3. Computer B reads the inventory field (“2”) to its local

storage

4. Computer A subtracts “1” from its local storage,

yielding “1”
5. Computer B subtracts “1” from its local storage,
yielding “1”

6. Computer A writes its local storage (“17) to the

inventory field

7. Computer B writes its local storage (“1”) to the

inventory field

8. The inventory field value is “1”

One would expect the value “2” to become “0” after two
computers attempt to subtract “1” from it, but in the illus-
trated scenario, the result is instead “1.” Since the algorithm
failed to take concurrency into account, the database has
been corrupted. Such concurrency problems can arise when-
ever multiple executing entities (e.g., processes, tasks,
threads, processors, or programming objects) access the
same data.

Programmers have advanced a variety of approaches to
address problems arising from concurrent processing. On a
general level, many programming systems provide synchro-
nization services to provide certain guarantees even in the
face of concurrency. For example, some programming envi-
ronments support simple synchronization mechanisms such
as semaphores, locks, critical sections, and mutual exclusion

10

15

20

25

30

35

40

45

50

55

60

65

2

objects (mutexes); each of these mechanisms controls con-
current access to a resource.

One particular concurrency scenario poses a special set of
problems: sharing a resource between readers and writers.
Since the readers do not modify the resource, it is commonly
acceptable (and generally more efficient) to allow more than
one of the readers to access the resource concurrently
because there is no chance of data corruption. However, a
writer is not permitted to write to (i.e., modify) the resource
concurrently while another reader or writer is accessing the
resource. Otherwise, the data may become corrupted as
shown in the above example.

One approach to solving the reader/writer problem is to
employ a synchronization mechanism called a semaphore. A
semaphore is a value that multiple processes can check and
change simultaneously, and logic associated with the sema-
phore guarantees the semaphore will not be corrupted. So,
for example, the semaphore can be set to on (i.e., 1) or off
(i.e., 0) to indicate whether or not a process is accessing the
protected resource. Logic associated with the semaphore
protects the semaphore from corruption by guaranteeing that
two processes cannot simultaneously set the semaphore to
on. Thus, a software developer can include logic referencing
the semaphore in programming code. For example, a pro-
grammer could include logic that waits until a semaphore is
off (i.e., 0) before writing to a resource. Thus, a later-in-time
process must wait until a first-in-time process is finished
with the resource; the later-in-time process then updates the
semaphore accordingly to prevent others from writing to the
resource.

Specifically, in the reader/writer context, a pair of sema-
phores can be used for each protected resource to track how
many readers access the resource and whether there is a
writer accessing the resource. Readers check the “whether
there is a writer” semaphore before proceeding, and writers
check both the “whether there is a writer” and “how many
readers” semaphores before proceeding. However, the sema-
phore approach has several drawbacks.

First, in a system with many resources to protect, main-
taining a pair of semaphores for each of the protected
resources may consume excessive system resources. For
example, in large database systems, it may require consid-
erable computing power to administer the semaphores for
the large number of database fields and tables in the system.

Second, the semaphore approach can lead to a problem
called deadlock. Deadlock occurs when two or more pro-
cesses (or threads) vie for two or more protected resources.
For example, consider process A and process B, both of
which require writing to fields Y and Z to update a database.
Deadlock occurs under the following scenario:

1. Process A updates a semaphore protecting field Y to

indicate Y is unavailable to other processes

2. Process B updates a semaphore protecting field Z to

indicate Z is unavailable to other processes
3. Process A examines the semaphore protecting field Z
and determines Z is unavailable (as noted by B), so
process A waits for process B to release field Z

4. Process B examines the semaphore protecting field Y
and determines Y is unavailable (as noted by A), so
process B waits for process A to release field Y

5. Both processes wait forever

Although there are ways of dealing with the deadlock
problem, such as conventional deadlock detection and con-
ventional deadlock avoidance, again, considerable comput-
ing power is typically required to implement such solutions.
Also, none of the solutions completely solves the problem.

US 6,546,443 B1

3

In light of the difficulty of solving the deadlock problem and
the relative rarity of deadlock conditions, some systems
ignore the deadlock problem altogether. However, such an
approach can lead to a subtle software defect that is difficult
to detect and debug.

Thus, an efficient synchronization mechanism for
addressing the reader/writer scenario is needed, and a
mechanism for avoiding the deadlock problem is needed.

SUMMARY OF THE INVENTION

The invention includes a method and system for providing
reader/writer synchronization services using interlocked
operations. Various features provided by the synchronization
services lead to better use of resources and improved per-
formance. The synchronization services manage the details
of lock operation, freeing programmers from devoting time
and resources to develop their own synchronization logic.

Data structures for implementing the reader/writer ser-
vices can be maintained using an interlocked operation (e.g.,
an interlocked compare and exchange operation). Such an
implementation is sometimes called “lockless” since logic to
lock the data structures is not necessary. In addition, by
maintaining some data structure elements in storage local to
a thread, the lock services can more efficiently access lock
state information.

In one arrangement, the system uses an execution sus-
pension mechanism known as an event. The arrangement
can thus be implemented on a variety of execution environ-
ments that support events.

In a just-in-time event creation feature, the system avoids
excessive resource consumption by waiting until there is
contention for a lock before creating an event. The event is
then released when contention subsides. The system thus
reduces the number of simultaneously-active events and
reduces the total resources required in an implementation
having multiple locks. Additionally, the events can be
recycled (i.e., cached) by placing them into an event pool. In
this way, the overhead for creating and destroying events is
avoided.

A time out feature facilitates an optimistic deadlock
avoidance scheme, providing programmers with a feature to
address the deadlock problem. Various challenging pro-
gramming pitfalls relating to implementing time outs are
avoided.

For example, races particular to the time out arrangement
are addressed to avoid lock corruption or inconsistency.
Also, an event creation failure detection feature maintains
stability and consistency of lock data structures in the face
of insufficient available resources. The synchronization ser-
vices are thus sufficiently robust for use in the kernel of an
operating system or an execution engine.

In addition, the lock services support a set of features for
componentized applications. For example, the services sup-
port upgrading a lock from reader status to writer status and
downgrading a lock from writer status to reader status. Also,
the lock can be suspended and restored. In these scenarios,
information about intermediate writers (writers accessing
the protected resource before the operation is complete) is
provided. In addition, lock nesting can be tracked using
thread-local storage, and certain nested requests can be
monitored and automatically transformed to avoid deadlock.

Finally, a feature to improve efficiency on multiprocessor
machines spins a lock request a small number of times
before invoking an execution suspension mechanism. Thus,
a context switch can be avoided.

Additional features and advantages of the invention will
be made apparent from the following detailed description of

10

15

20

25

30

35

45

50

55

60

65

4

illustrated embodiments, which proceeds with reference to
the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system that may
be used to implement the described reader/writer lock.

FIG. 2 is a block diagram of an object conforming to the
Component Object Model specification of Microsoft
Corporation, which may be used to construct objects for
developing an object-based application managed by the
described application management framework.

FIG. 3 is a block diagram showing an exemplary lock
services architecture.

FIG. 4 is a block diagram showing an exemplary lock
state data structure arrangement.

FIG. 5 is a block diagram showing an exemplary lock
inner state data structure in a single 32-bit word.

FIG. 6 is a flowchart showing a method for adding a
reader to a lock state data structure using an atomic compare
and exchange.

FIG. 7 is a block diagram showing plural downstream
components accessing synchronization services.

FIGS. 8A and 8B are a flowchart showing an exemplary
acquire reader lock method.

FIG. 9 is a flowchart showing an exemplary release reader
lock method.

FIG. 10 is a flowchart showing an exemplary acquire
writer lock method.

FIG. 11 is a flowchart showing an exemplary release
writer lock method.

FIG. 12 is a flowchart showing an alternative exemplary
release writer lock method.

FIGS. 13A and 13B are a flowchart showing an alternative
exemplary release reader lock method.

DETAILED DESCRIPTION OF THE
INVENTION

The invention is directed toward a method and system for
providing synchronization services for protecting resources
accessed by reading and writing entities. In one embodiment
illustrated herein, the invention is incorporated into an
operating system entitled “MICROSOFT WINDOWS
2000,” both marketed by Microsoft Corporation of
Redmond, Wash. Briefly described, this software is a
scaleable, high-performance network and computer operat-
ing system supporting distributed client/server computing,
and providing an object execution environment for object
applications conforming to COM.

Exemplary Operating Environment

FIG. 1 and the following discussion are intended to
provide a brief, general description of a suitable computing
environment in which the invention may be implemented.
While the invention will be described in the general context
of computer-executable instructions of a computer program
that runs on a computer, those skilled in the art will
recognize the invention also may be implemented in com-
bination with other program modules. Generally, program
modules include routines, programs, objects (also called
components), data structures, etc. that perform particular
tasks or implement particular abstract data types. Moreover,
those skilled in the art will appreciate that the invention may
be practiced with other computer system configurations,
including single- or multiprocessor computer systems,

US 6,546,443 B1

5

minicomputers, mainframe computers, as well as personal
computers, hand-held computing devices, microprocessor-
based or programmable consumer electronics, and the like.
The illustrated embodiment of the invention also is practiced
in distributed computing environments where tasks are
performed by remote processing devices that are linked
through a communications network. But, some embodi-
ments of the invention can be practiced on stand-alone
computers. In a distributed computing environment, pro-
gram modules may be located in both local and remote
memory storage devices.

With reference to FIG. 1, an exemplary system for imple-
menting the invention includes a conventional computer 20,
including a processing unit 21, a system memory 22, and a
system bus 23 that couples various system components
including the system memory to the processing unit 21. The
processing unit may be any of various commercially avail-
able processors, including Intel x86, Pentium and compat-
ible microprocessors from Intel and others, including Cyrix,
AMD and Nexgen; Alpha from Compaq (formerly Digital),
MIPS from MIPS Technology, NEC, IDT, Siemens, and
others; and the PowerPC from IBM and Motorola. Dual
microprocessors and other multi-processor architectures
also can be used as the processing unit 21.

The system bus may be any of several types of bus
structure including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of
conventional bus architectures such as PCI, VESA,
Microchannel, ISA and EISA, to name a few. The system
memory includes read only memory (ROM) 24 and random
access memory (RAM) 25. A basic input/output system
(BIOS), containing the basic routines that help to transfer
information between elements within the computer 20, such
as during start-up, is stored in ROM 24.

The computer 20 further includes a hard disk drive 27, a
magnetic disk drive 28, e.g., to read from or write to a
removable disk 29, and an optical disk drive 30, e.g., for
reading a CD-ROM disk 31 or to read from or write to other
optical media. The hard disk drive 27, magnetic disk drive
28, and optical disk drive 30 are connected to the system bus
23 by a hard disk drive interface 32, a magnetic disk drive
interface 33, and an optical drive interface 34, respectively.
The drives and their associated computer-readable media
provide nonvolatile storage of data, data structures,
computer-executable instructions, etc. for the computer 20.
Although the description of computer-readable media above
refers to a hard disk, a removable magnetic disk and a CD,
it should be appreciated by those skilled in the art that other
types of media which are readable by a computer, such as
magnetic cassettes, flash memory cards, digital video disks,
Bernoulli cartridges, and the like, may also be used in the
exemplary operating environment.

Anumber of program modules may be stored in the drives
and RAM 25, including an operating system 35, one or more
application programs 36, other program modules 37, and
program data 38. The operating system 35 in the illustrated
computer is the MICROSOFT WINDOWS NT Server oper-
ating system.

A user may enter commands and information into the
computer 20 through a keyboard 40 and pointing device,
such as a mouse 42. Other input devices (not shown) may
include a microphone, joystick, game pad, satellite dish,
scanner, or the like. These and other input devices are often
connected to the processing unit 21 through a serial port
interface 46 that is coupled to the system bus, but may be
connected by other interfaces, such as a parallel port, game

10

15

20

25

35

40

45

50

55

60

65

6

port or a universal serial bus (USB). A monitor 47 or other
type of display device is also connected to the system bus 23
via an interface, such as a video adapter 48. In addition to the
monitor, computers typically include other peripheral output
devices (not shown), such as speakers and printers.

The computer 20 may operate in a networked environ-
ment using logical connections to one or more remote
computers, such as a remote client computer 49. The remote
computer 49 may be a workstation, a terminal computer,
another server computer, a router, a peer device or other
common network node, and typically includes many or all of
the elements described relative to the computer 20, although
only a memory storage device 50 has been illustrated in FIG.
1. The logical connections depicted in FIG. 1 include a local
area network (LAN) 51 and a wide area network (WAN) 52.
Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets and the Inter-
net.

When used in a LAN networking environment, the com-
puter 20 is connected to the local network 51 through a
network interface or adapter 53. When used in a WAN
networking environment, the computer 20 typically includes
a modern 54, or is connected to a communications server on
the LAN, or has other means for establishing communica-
tions over the wide area network 52, such as the Internet.
The modem 54, which may be internal or external, is
connected to the system bus 23 via the serial port interface
46. In a networked environment, program modules depicted
relative to the computer 20, or portions thereof, may be
stored in the remote memory storage device. It will be
appreciated that the network connections shown are exem-
plary and other means of establishing a communications link
between the computers may be used.

In accordance with the practices of persons skilled in the
art of computer programming, the present invention is
described below with reference to acts and symbolic repre-
sentations of operations that are performed by the computer
20, unless indicated otherwise. Such acts and operations are
sometimes referred to as being computer-executed. It will be
appreciated that the acts and symbolically represented
operations include the manipulation by the processing unit
21 of electrical signals representing data bits which causes
a resulting transformation or reduction of the electrical
signal representation, and the maintenance of data bits at
memory locations in the memory system (including the
system memory 22, hard drive 27, floppy disks 29, and
CD-ROM 31) to thereby reconfigure or otherwise alter the
computer system’s operation, as well as other processing of
signals. The memory locations where data bits are main-
tained are physical locations that have particular electrical,
magnetic, or optical properties corresponding to the data
bits.

Object Overview

FIG. 2 and the following discussion are intended to
provide an overview of programming objects, using the
MICROSOFT Component Object Model (COM) as an
exemplary object model. In the illustrated embodiments, the
synchronization services are implemented in an extension to
the MICROSOFT COM Environment termed “COM+.”
COM is a model for accommodating programming objects
and can be implemented on a variety of platforms, such as
the MICROSOFT WINDOWS NT operating system. In the
illustrated embodiments of the invention, the application
objects conform to the MICROSOFT Component Object
Model (“COM”) specification (i.c., are implemented as a

US 6,546,443 B1

7

“COM Object” 76) and are executed using the COM+
services of the MICROSOFT WINDOWS 2000 operating
system, but alternatively may be implemented according to
other object standards (including the CORBA (Common
Object Request Broker Architecture) specification of the
Object Management Group and JavaBeans by Sun
Microsystems) and executed under object services of
another operating system. The COM specification defines
binary standards for objects and their interfaces which
facilitate the integration of software programming objects
into applications. (For a detailed discussion of COM and
OLE, see Kraig Brockschmidt, Inside OLE, Second Edition,
Microsoft Press, Redmond, Wash. (1995)).

In accordance with COM, the COM object 60 is repre-
sented in the computer system 20 (FIG. 1) by an instance
data structure 62, a virtual function table 64, and member
methods (also called member functions) 66—68. The
instance data structure 62 contains a pointer 70 to the virtual
function table 64 and data 72 (also referred to as data
members, or properties of the object). A pointer is a data
value that holds the address of an item. The virtual function
table 64 contains entries 76-78 for the member methods
66—68. Each of the entries 76-78 contains a reference to the
code 66—68 that implements the corresponding member
methods.

The pointer 70, the virtual function table 64, and the
member methods 66—68 implement an interface of the COM
object 60. By convention, the interfaces of a COM object are
illustrated graphically as a plug-in jack as shown for the
objects 404 and 428 in FIG. 5. Also, interfaces convention-
ally are given names beginning with a capital “I.” In
accordance with COM, the COM object 60 can include
multiple interfaces, which are implemented with one or
more virtual function tables. The member function of an
interface is denoted as “IInterfaceName::MethodName.”

The virtual function table 64 and member methods 66—68
of the COM object 60 are provided by an object server
program 80 (hereafter “object server DLL”) which is stored
in the computer 20 (FIG. 1) as a dynamic link library file
(denoted with a “.dll” file name extension). In accordance
with COM, the object server DLL 80 includes code for the
virtual function table 64 and member methods 66—68 of the
classes that it supports, and also includes a class factory 82
that generates the instance data structure 62 for an object of
the class.

Other objects and programs (referred to as a “client” of
the COM object 60) access the functionality of the COM
object by invoking the member methods through the COM
object’s interfaces. First however, the COM object is instan-
tiated (i.e., by causing the class factory to create the instance
data structure 62 of the object); and the client obtains an
interface pointer to the COM object.

Before the COM object 60 can be instantiated, the object
is first installed on the computer 20. Typically, installation
involves installing a group of related objects called a pack-
age. The COM object 60 is installed by storing the object
server DLL file(s) 80 that provides the object in data storage
accessible by the computer 20 (typically the hard drive 27,
shown in FIG. 1), and registering COM attributes (e.g., class
identifier, path and name of the object server DLL file 80,
etc.) of the COM object in the system registry. The system
registry is a configuration database.

A client requests instantiation of the COM object using
system-provided services and a set of standard, system-
defined component interfaces based on class and interface
identifiers assigned to the COM Object’s class and inter-

10

15

20

25

30

35

40

45

50

55

60

65

8

faces. More specifically, the services are available to client
programs as application programming interface (API) func-
tions provided in the COM+ library, which is a component
of the MICROSOFT WINDOWS 2000 operating system in
a file named “OLE32. DLL.” Also in COM+, classes of
COM objects are uniquely associated with class identifiers
(“CLSIDs”), and registered by their CLSID in a system
configuration database referred to as the “registry.” The
registry entry for a COM object class associates the CLSID
of the class with information identifying an executable file
that provides the class (e.g., a DLL file having a class factory
to produce an instance of the class). Class identifiers are
128-bit globally unique identifiers (“GUIDs”) that the pro-
grammer creates with a COM+ service named “CoCreateG-
UID” (or any of several other APIs and utilities that are used
to create universally unique identifiers) and assigns to the
respective classes. The interfaces of a component addition-
ally are associated with interface identifiers (“IIDs”).

In particular, the COM+ library provides an API function,
“CoCreatelnstance(),” that the client program can call to
request creation of a component using its assigned CLSID
and an IID of a desired interface. In response, the
“CoCreatelnstance()” API looks up the registry entry of the
requested CLSID in the registry to identify the executable
file for the class. The “CoCreatelnstance()” API function
then loads the class executable file, and uses the class factory
in the executable file to create an instance of the COM object
60. Finally, the “CoCreatelnstance()” API function returns
a pointer of the requested interface to the client program.
The “CoCreatelnstance()” API function can load the execut-
able file either in the client program’s process, or into a
server process which can be either local or remote (i.e., on
the same computer or a remote computer in a distributed
computer network) depending on the attributes registered for
the COM object 60 in the system registry.

Once the client of the COM object 60 has obtained this
first interface pointer of the COM object, the client can
obtain pointers of other desired interfaces of the component
using the interface identifier associated with the desired
interface. COM+ defines several standard interfaces gener-
ally supported by COM objects including the “IUnknown”
interface. This interface includes a member function named
“Querylnterface().” The “Querylnterface()” function can be
called with an interface identifier as an argument, and
returns a pointer to the interface associated with that inter-
face identifier. The “IUnknown” interface of each COM
object also includes member functions, “AddRef()” and
“Release()”, for maintaining a count of client programs
holding a reference (e.g., an interface pointer) to the COM
object. By convention, the “IUnknown” interface’s member
functions are included as part of each interface on a COM
object. Thus, any interface pointer that the client obtains to
an interface of the COM object 60 can be used to call the
Querylnterface function.

Illustrated Embodiments

In the following illustrated embodiments, synchronization
services are provided to executing entities performing read
and write operations on a protected resource. In the illus-
trated embodiments, the reading and writing entities are
threads running in various processes; however, the illus-
trated principles could equally be applied to other executing
entities, including processes, tasks, computer systems,
processors, and programming objects.

In the illustrated embodiments, each process can have one
or more threads. The practice of executing more than one

US 6,546,443 B1

9

thread per process is called multithreading. The illustrated
embodiments thus provide useful synchronization services
for use in a multithreading context, allowing programmers
to more easily develop thread-safe solutions to various
programming problems.

Overview of Reader/Writer Synchronization
Services

An overview of an exemplary arrangement utilizing an
event-based reader/writer synchronization service system is
shown in FIG. 3. In the example, a computer 304 executes
a program 306. The program 306 is a client of the synchro-
nization services 308 and comprises various objects 312 and
314 residing in a process 318, which accomplishes work for
the program 306. The threads 320 of the process 318 execute
the logic associated with the objects 312 and 314, and more
than one thread can be executing an object’s logic concur-
rently. Although a single process 318 in a single program
306 is shown, there may be multiple processes and programs
accessing various protected resources 330, such as a data
field 332, a database table 334, or other data 336. The
resources 330 are protected in that concurrent access to them
is controlled to prevent corruption.

From time to time, the objects 312 or 314 require reading
from and writing to (i.e., modifying) the protected resources
330. To prevent data corruption, the objects contain logic to
acquire a lock before reading or writing to the protected
resources 330. When acquiring the lock, the object specifies
whether it will be a reader (i.e., perform only reads on the
protected resource while holding the lock) or a writer (i.e.,
perform at least one operation modifying the resource while
holding the lock). Since the threads 320 execute the logic in
the objects 312 or 314, the arrangement is sometimes
described in terms of reading or writing threads (or simply
“readers” and “writers”). However, the synchronization ser-
vices could also be used in an arrangement wherein each
process has only one thread, so it may be appropriate to
describe the arrangement in terms of reading or writing
processes. The terms “readers” and “writers” could similarly
be applied, then, to any executing entity.

In the illustrated example, an execution environment (e.g.,
an operating system or a virtual machine) includes a syn-
chronization services module 308 providing lock objects
340, 342, and 344. In the example, the lock objects 340, 342,
and 344 provide an interface having various methods, such
as AcquireReaderLocko() and ReleaseWriterLock() which
are accessed by the objects 312 and 314. In keeping with the
principles of object-oriented programming, the lock objects
340, 342, and 344 can include various data members for
tracking the state of the lock. In one implementation, a
portion of the lock state is stored in thread local storage 350.

From time to time, execution of various of the threads 320
is suspended via the synchronization services 308 using
events 352 and 354. This technique is sometimes called
“blocking.” Typically, a thread’s execution remains sus-
pended until the event 352 or 354 is sent a resume indication,
although a time out feature is supported, as described in
more detail below.

Use of the synchronization services may vary widely in
practice. For example, instead of protecting data fields, the
locks may be used to protect any resource, such as a
programming object or hardware.

Lock Terminology

The reader/writer synchronization services provide pro-
tection for a resource when properly called by executing
entities. For example, a thread about to perform a read calls

10

15

20

25

30

35

40

45

50

55

60

65

10

a “Request Reader Lock” function before performing the
read. Sometimes such a sequence is called “requesting
protection for a read operation,” “attempting to acquire a
reader lock,” or “requesting a reader lock.” Similarly, a
thread about to perform a write is “requesting protection for
a write operation,” “attempting to acquire a writer lock,” or
“requesting a writer lock.”

Typically, the acquire function returns a result code indi-
cating success or failure (e.g., due to a time out). The
sequence of requesting the lock and meeting with success is
sometimes called simply “acquiring a reader (or writer)
lock.” Providing the protection to the requesting thread (e.g.,
as evidenced by providing an indication of success) is
sometimes called simply “granting the lock.”

Subsequently, the executing entity releases the lock. Dur-
ing the time between when the executing entity has acquired
the lock and when it releases the lock, the executing entity
is said to hold the lock. When a lock is released by one
executing entity that releases the lock for grant to another
executing entity, the releasing executing entity is sometimes
said to “pass” the lock.

Overview of Lockless Operation

Various data structures can be used to represent a lock’s
state. When a thread attempts to acquire a lock, the lock’s
state is checked and updated if appropriate. Efficiency of the
lock can be increased by using an interlocked operation
(e.g., interlocked compare and exchange, interlock exchange
and add, interlocked increment, or interlocked test and set).
For example, an interlocked compare and exchange opera-
tion can simultaneously check the lock’s state and update it.

Typically, the interlocked operation provides an indica-
tion of whether the update was successful. Failure typically
indicates the lock could not be granted because the lock state
could not be changed. The logic of the synchronization
services may then take other steps (e.g., suspend execution
of the requesting thread until the lock is available). The
various interlocked operations can be incorporated in the
logic of the synchronization services to avoid a separate lock
protecting the lock’s state.

Although some implementations of interlocked compare
and exchange operate with a low level (e.g., hardware) lock,
a synchronization mechanism (e.g., a lock) constructed with
them is sometimes called “lockless” because the low level
lock requires no additional data structures and is very
efficient. The advantage to such an arrangement is that
additional resources required for maintaining data structures
for a separate lock are avoided.

In the particular case of a reader/writer lock constructed
using interlocked operations, data structures for the reader/
writer lock are maintained, but separate data structures for
locks to maintain the data structures for the reader/writer
lock are not required. In other words, the reader/writer lock
is a lock, but the data structures for the lock are maintained
without need for a separate lock data structure.

Constructing a reader/writer lock supporting time outs
with interlocked operations poses certain programming
challenges. Solutions to these challenges ensure the lock is
stable and consistent and thus suitable for use in an operating
system or execution engine.

Overview of Componentized Application Support Features

As is described in more detail in a later section, it is
common for programs to be constructed from multiple
components. A single executing entity such as a thread may
execute instructions in more than one component to com-
plete work. One of the goals of object-oriented program-
ming is to enable components from various sources to work
together. Ideally, a component developer can implement

